首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins from liver and intestine. We set out to study the phenotypic modulation of all common genetic variants in the MTP gene. In addition, we aimed at characterizing the association between the various polymorphisms. A total of 564 healthy men were genotyped for the MTP -493 G/T, -400 A/T, and -164 T/C promoter polymorphisms, as well as the Q/H 95, I/T 128, Q/E 244, and H/Q 297 missense polymorphisms. The -493 G/T, -164 T/C, and I/T 128 polymorphisms showed to be in almost complete linkage disequilibrium. Subjects homozygous for the less common -493 T, -164 C, and T 128 alleles showed significantly lower plasma total and LDL cholesterol levels and plasma LDL apoB levels, and also significantly higher body mass index (BMI) and plasma insulin levels compared with carriers of the common alleles. The associations between plasma total cholesterol and MTP -493 genotype was verified in a cohort consisting of 1,117 disease-free control subjects of the West of Scotland Coronary Prevention Study (WOSCOPS). None of the other polymorphisms showed any significant change in either lipid and lipoprotein levels or anthropometric variables.In summary, two promoter polymorphisms and one missense polymorphism in the MTP gene alter plasma total and LDL cholesterol levels, plasma LDL apoB levels, BMI, and insulin levels. This may, in turn, have implications for genetic regulation of cardiovascular risk factors.  相似文献   

2.
Apolipoprotein B (apoB) metabolism was investigated in 20 men with plasma triglyceride 0.66-2.40 mmol/l and plasma cholesterol 3.95-6. 95 mmol/l. Kinetics of VLDL(1) (S(f) 60-400), VLDL(2) (S(f) 20-60), IDL (S(f) 12-20), and LDL (S(f) 0;-12) apoB were analyzed using a trideuterated leucine tracer and a multicompartmental model which allowed input into each fraction. VLDL(1) apoB production varied widely (from 5.4 to 26.6 mg/kg/d) as did VLDL(2) apoB production (from 0.18 to 8.4 mg/kg/d) but the two were not correlated. IDL plus LDL apoB direct production accounted for up to half of total apoB production and was inversely related to plasma triglyceride (r = -0.54, P = 0.009). Percent of direct apoB production into the IDL/LDL density range (r = 0.50, P < 0.02) was positively related to the LDL apoB fractional catabolic rate (FCR). Plasma triglyceride in these subjects was determined principally by VLDL(1) and VLDL(2) apoB fractional transfer rates (FTR), i.e., lipolysis. IDL apoB concentration was regulated mainly by the IDL to LDL FTR (r = -0.71, P < 0.0001). LDL apoB concentration correlated with VLDL(2) apoB production (r = 0.48, P = 0.018) and the LDL FCR (r = -0.77, P < 0. 001) but not with VLDL(1), IDL, or LDL apoB production. Subjects with predominantly small, dense LDL (pattern B) had lower VLDL(1) and VLDL(2) apoB FTRs, higher VLDL(2) apoB production, and a lower LDL apoB FCR than those with large LDL (pattern A). Thus, the metabolic conditions that favored appearance of small, dense LDL were diminished lipolysis of VLDL, resulting in a raised plasma triglyceride above the putative threshold of 1.5 mmol/l, and a prolonged residence time for LDL. This latter condition presumably permitted sufficient time for the processes of lipid exchange and lipolysis to generate small LDL particles.  相似文献   

3.
Very low density lipoprotein (VLDL) and low density lipoprotein (LDL) apoprotein (apo)-B turnover rates were measured simultaneously by injecting 131I-labeled VLDL and 125I-labeled LDL into fasting baboons (Papio sp.) selectively bred for high serum cholesterol levels and having either low or high LDL levels. The radioactivities in VLDL, intermediate density lipoprotein (IDL), LDL apoB, and urine were measured at intervals between 5 min and 6 days. Kinetic parameters for apoB were calculated in each baboon fed a chow diet or a high cholesterol, high fat diet (HCHF). VLDL apoB residence times were similar in the two groups of animals fed chow; they were increased by HCHF feeding in high LDL animals, but not in low LDL animals. Production rates of VLDL apoB were decreased by the HCHF diet in both high and low LDL animals. Most of the radioactivity from VLDL apoB was transferred to IDL. However, a greater proportion of radioactivity was removed directly from IDL apoB in low LDL animals than in high LDL animals, and only about one-third appeared in LDL. In high LDL animals, a greater proportion of this radioactivity was converted to LDL (61.4 +/- 7.2% in chow-fed animals and 49.2 +/- 10.9% in animals fed the HCHF diet; mean +/- SEM, n = 5). Production rates for LDL apoB were higher in high LDL animals than those in low LDL animals on both diets. The HCHF diet increased residence times of LDL apoB without changing production rates in both groups. VLDL apoB production was not sufficient to account for LDL apoB production in high LDL animals, a finding that suggested that a large amount of LDL apoB was derived from a source other than VLDL apoB in these animals.  相似文献   

4.
The aim of this study was to investigate the effect of the microsomal triglyceride transfer protein (MTP) -493G/T polymorphism on clinical and biochemical parameters in relation to the presence of metabolic syndrome (MS). A group of 270 participants, 143 men and 127 women [50 men/36 women fulfilled the International Diabetes Federation (IDF) criteria of MS], was categorized on the basis of the MTP -493G/T polymorphism: GG homozygotes (Group GG) and carriers of the T allele (Group TT+TG). In men with MS, the presence of the T allele was associated with elevated concentrations of plasma insulin (by 48%, P<.01) and nonesterified fatty acids (by 49%, P<.05); homeostasis model assessment for insulin resistance index was higher by 64% (P<.05). Carriers of the T allele were further characterized by elevated plasma concentrations of total cholesterol (by 14%, P<.05) and by increased triglycerides in plasma (by 95%, P<.01) and in very low-density lipoprotein (by 106%, P<.01). They also had lower concentrations of n-6 polyunsaturated fatty acids in plasma phospholipids (by 3.5%, P<.05), lower Delta5-desaturase activities (by 18%, P<.05) and elevated concentrations of conjugated dienes in low-density lipoprotein (by 29%, P<.01). No significant differences between Groups GG and TT+TG were found in men without MS and in women with and without MS. Our results imply evidence for interactive effects of genetic, metabolic and gender-specific factors on several components of metabolic syndrome, which can increase the risk for cardiovascular disease.  相似文献   

5.
6.
The kinetics of apolipoprotein B (apoB) were measured in seven studies in heterozygous, familial hypercholesterolemic subjects (FH) and in five studies in normal subjects, using in vivo tracer kinetic methodology with a [3H]leucine tracer. Very low density (VLDL) and low density lipoproteins (LDL) were isolated ultracentrifugally and LDL was fractionated into high and low molecular weight subspecies. ApoB was isolated, its specific radioactivity was measured, and the kinetic data were analyzed by compartmental modeling using the SAAM computer program. The pathways of apoB metabolism differ in FH and normal subjects in two major respects. Normals secrete greater than 90% of apoB as VLDL, while one-third of apoB is secreted as intermediate density lipoprotein IDL/LDL in FH. Normals lose 40-50% of apoB from plasma as VLDL/IDL, while FH subjects lose none, metabolizing all of apoB to LDL. In FH, there is also the known prolongation of LDL residence time. The leucine tracer, biosynthetically incorporated into plasma apoB, permits distinguishing the separate pathways by which the metabolism of apoB is channeled. ApoB synthesis and secretion require 1.3 h. ApoB is secreted by three routes: 1) as large VLDL where it is metabolized by a delipidation chain; 2) as a rapidly metabolized VLDL fraction converted to LDL; and 3) as IDL or LDL. ApoB is metabolized along two pathways. The delipidation chain processes large VLDL to small VLDL, IDL, and LDL. The IDL pathway channels nascent, rapidly metabolized VLDL and IDL particles into LDL. It thus provides a fast pathway for the entrance of apoB tracer into LDL, while the delipidation pathway is a slower route for channeling apoB through VLDL into LDL. LDL apoB is derived in almost equal amounts from both pathways, which feed predominantly into large LDL. Small LDL is a product of large LDL, and the major loss of LDL-apoB is from small LDL. Two features of apoB metabolism in FH, the major secretory pathway through IDL and the absence of a catabolic loss of apoB from VLDL/IDL, greatly facilitate measuring the metabolic channeling of apoB into LDL.  相似文献   

7.
Previous studies established that following simultaneous injection of 125I-labeled homologous very low density lipoproteins (VLDL) and 131I-labeled homologous low density lipoproteins (LDL) into miniature pigs, a large proportion of LDL apolipoprotein B (apoB) was synthesized directly, independent of VLDL or intermediate density lipoprotein (IDL) apoB catabolism. The possibility that cholestyramine alone (a bile acid sequestrant) or in combination with mevinolin (a cholesterol synthesis inhibitor) could regulate the direct LDL apoB synthetic pathway was investigated. 125I-labeled VLDL and 131I-labeled LDL were injected into miniature pigs (n = 8) during a control period and following 18 days of cholestyramine treatment (1.0 g kg-1d-1) or following 18 days of treatment with cholestyramine and mevinolin (1.2 mg kg-1d-1). ApoB in each lipoprotein fraction was selectively precipitated using isopropanol in order to calculate specific activity. In control experiments, LDL apoB specific activity curves reached their peak values well before crossing the VLDL or IDL apoB curves. However, cholestyramine treatment resulted in LDL apoB curves reaching maximal values much closer to the point of intersection with the VLDL or IDL curves. Kinetic analyses demonstrated that cholestyramine reduced total LDL apoB flux by 33%, which was due entirely to inhibition of the LDL apoB direct synthesis pathway since VLDL-derived apoB was unaffected. In addition, the LDL apoB pool size was reduced by 30% and the fractional catabolic rate of LDL apoB was increased by 16% with cholestyramine treatment. The combination of mevinolin and cholestyramine resulted in an even more marked inhibition of the direct LDL apoB synthesis pathway (by 90%), and in two animals this pathway was completely abolished. This inhibition was selective as VLDL-derived LDL apoB synthesis was not significantly different. LDL apoB pool size was reduced by 60% due primarily to the reduced synthesis as well as a 40% greater fractional removal rate. These results are consistent with the idea that cholestyramine and mevinolin increase LDL catabolism by inducing hepatic apoB, E receptors. We have now shown that the direct synthesis of LDL apoB is selectively inhibited by these two drugs.  相似文献   

8.
Yamada Y  Ando F  Shimokata H 《Genomics》2005,86(1):76-85
We examined whether a -34T --> C polymorphism of the gene for cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1), a -493G --> T polymorphism of the microsomal triglyceride transfer protein gene (MTP), and a CGG repeat polymorphism of the very low density lipoprotein receptor gene (VLDLR) were associated with bone mineral density (BMD) in community-dwelling Japanese women and men. The -34T --> C polymorphism of CYP17A1 was associated with BMD in postmenopausal women, with the CC genotype being related to increased BMD. The -493G --> T polymorphism of MTP was associated with BMD in premenopausal women, with the TT genotype being related to increased BMD. The CGG repeat polymorphism of VLDLR was associated with BMD in men, with two (CGG)(n > or= 8) alleles being related to increased BMD. These results suggest that CYP17A1 and MTP are susceptibility loci for increased BMD in postmenopausal and premenopausal Japanese women, respectively, and that VLDLR constitutes such a locus in Japanese men.  相似文献   

9.
To study the metabolic pathways of apolipoprotein B (apoB), a series of studies were carried out in which both radioiodinated very low density lipoproteins (VLDL) and tritiated leucine were simultaneously injected into three hypertriglyceridemic subjects. The appearance and disappearance of tritium activity in VLDL apoB, intermediate density lipoprotein (IDL) apoB, and low density lipoprotein (LDL) apoB were followed as was the disappearance of iodine activity from VLDL and the appearance and disappearance of iodine activity in IDL apoB and LDL apoB. It was found that a delipidation chain could describe the kinetics of both endogenously and exogenously labeled VLDL. A slow component of VLDL was necessary to fit the VLDL 131I-labeled apoB data and was consistent with the observed VLDL [3H]apoB kinetics. In addition, the estimated rate of conversion of VLDL apoB to LDL exceeded that which appeared to pass through the measured IDL pools, suggesting that a fraction of the IDL was not directly observed. It was also found that a higher percentage of VLDL 131I-labeled apoB was converted to LDL apoB than was VLDL [3H]apoB. To evaluate possible causes of this apparent anomaly, simultaneous examination of all kinetic data was performed. This exercise resulted in the resolution of removal pathways from multiple compartments in the VLDL delipidation chain and the conversion of slowly metabolized VLDL to IDL and LDL. The wide spectrum of this loss pathway indicates that previous estimates of VLDL apoB production rate using the radioiodinated methodology probably represent lower bounds for the true physiologic variable. It is important to note that these direct losses were apparent only when the combination of endogenous and exogenous labeling was used.  相似文献   

10.
The assembly and secretion of very low density lipoproteins (VLDL) require microsomal triglyceride transfer protein (MTP). Recent evidence also suggests a role for the low density lipoprotein (LDL) receptor in this process. However, the relative importance of MTP in the two steps of VLDL assembly and the specific role of the LDL receptor still remain unclear. To further investigate the role of MTP and the LDL receptor in VLDL assembly, we bred mice harboring "floxed" Mttp alleles (Mttpflox/flox) and a Cre transgene on a low-density lipoprotein receptor-deficient background to generate mice with double deficiency in the liver (Ldlr-/- MttpDelta/Delta). In contrast to the plasma of Ldlr+/+ MttpDelta/Delta mice, the plasma of Ldlr-/- MttpDelta/Delta mice contained apoB100. Accordingly, Ldlr-/- MttpDelta/Delta but not Ldlr+/+ MttpDelta/Delta hepatocytes secreted apoB100-containing lipoprotein particles. The secreted lipoproteins were of LDL and HDL sizes but no VLDL-sized lipoproteins could be detected. These findings indicate that hepatic LDL receptors function as "gatekeepers" targeting dense apoB100-containing lipoproteins for degradation. In addition, these results suggest that very low levels of MTP are insufficient to mediate the second step but sufficient for the first step of VLDL assembly.  相似文献   

11.
The effect of apolipoprotein (apo) E genotype on apoB-100 metabolism was examined in three normolipidemic apoE2/E2, five type III hyperlipidemic apoE2/E2, and five hyperlipidemic apoE3/E2 subjects using simultaneous administration of 131I-VLDL and 125I-LDL, and multi-compartmental modeling. Compared with normolipidemic apoE2/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased plasma and VLDL cholesterol, plasma and VLDL triglycerides, and VLDL and intermediate density lipoprotein (IDL) apoB concentrations (P < 0.05). These abnormalities were chiefly a consequence of decreased VLDL and IDL apoB fractional catabolic rate (FCR). Compared with hyperlipidemic E3/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased IDL apoB concentration and decreased conversion of IDL to LDL particles (P < 0.05). In a pooled analysis, VLDL cholesterol was positively associated with VLDL and IDL apoB concentrations and the proportion of VLDL apoB in the slowly turning over VLDL pool, and was negatively associated with VLDL apoB FCR after adjusting for subject group. VLDL triglyceride was positively associated with VLDL apoB concentration and VLDL and IDL apoB production rates after adjusting for subject group. A defective apoE contributes to altered lipoprotein metabolism but is not sufficient to cause overt hyperlipidemia. Additional genetic mutations and environmental factors, including insulin resistance and obesity, may contribute to the development of type III hyperlipidemia.  相似文献   

12.
Apolipoprotein B metabolism in homozygous familial hypercholesterolemia   总被引:5,自引:0,他引:5  
This report describes the metabolism of apolipoprotein B-containing lipoproteins in seven familial hypercholesterolemic (FH) homozygotes and compares the results to the values obtained from five healthy control subjects. The concentration, composition, and metabolism of large, triglyceride-rich very low density lipoproteins (VLDL1, Sf 60-400) were the same in the control and FH groups, indicating that this component of the VLDL delipidation cascade ws unaffected by the absence of receptors. In contrast, familial hypercholesterolemic small VLDL2 (Sf 20-60) was enriched with cholesterol and depleted in triglyceride. Moreover, its plasma concentration was elevated as a result of an increase in its synthesis and a defect in the removal of a remnant population within this density interval. The latter accounted for up to 50% of the total mass of the fraction. Onward transfer of apolipoprotein B (apoB) from small VLDL through intermediate density lipoprotein (IDL) to low density lipoprotein (LDL) was retarded, suggesting that receptors were involved in this supposedly lipase-mediated event. IDL and LDL concentrations increased up to fourfold above normal in the plasma of the FH patients due partly to the delay in maturation and partly to defective direct catabolism. We conclude that the LDL receptor plays multiple and important roles in the metabolism and transformation of apoB-containing particles in the Sf 0-400 flotation interval.  相似文献   

13.
Microsomal triglyceride transfer protein (MTP) transfers lipids to apolipoprotein B (apoB) within the endoplasmic reticulum, a process that involves direct interactions between apoB and the large subunit of MTP. Recent studies with heterozygous MTP knockout mice have suggested that half-normal levels of MTP in the liver reduce apoB secretion. We hypothesized that reduced apoB secretion in the setting of half-normal MTP levels might be caused by a reduced MTP:apoB ratio in the endoplasmic reticulum, which would reduce the number of apoB-MTP interactions. If this hypothesis were true, half-normal levels of MTP might have little impact on lipoprotein secretion in the setting of half-normal levels of apoB synthesis (since the ratio of MTP to apoB would not be abnormally low) and might cause an exaggerated reduction in lipoprotein secretion in the setting of apoB overexpression (since the MTP:apoB ratio would be even lower). To test this hypothesis, we examined the effects of heterozygous MTP deficiency on apoB metabolism in the setting of normal levels of apoB synthesis, half-normal levels of apoB synthesis (heterozygous Apob deficiency), and increased levels of apoB synthesis (transgenic overexpression of human apoB). Contrary to our expectations, half-normal levels of MTP reduced the plasma apoB100 levels to the same extent ( approximately 25-35%) at each level of apoB synthesis. In addition, apoB secretion from primary hepatocytes was reduced to a comparable extent at each level of apoB synthesis. Thus, these results indicate that the concentration of MTP within the endoplasmic reticulum rather than the MTP:apoB ratio is the critical determinant of lipoprotein secretion. Finally, we found that heterozygosity for an apoB knockout mutation lowered plasma apoB100 levels more than heterozygosity for an MTP knockout allele. Consistent with that result, hepatic triglyceride accumulation was greater in heterozygous apoB knockout mice than in heterozygous MTP knockout mice.  相似文献   

14.
Low density lipoprotein receptor (LDLR)-deficient mice fed a chow diet have a mild hypercholesterolemia caused by the abnormal accumulation in the plasma of apolipoprotein B (apoB)-100- and apoB-48-carrying intermediate density lipoproteins (IDL) and low density lipoproteins (LDL). Treatment of LDLR-deficient mice with ciprofibrate caused a marked decrease in plasma apoB-48-carrying IDL and LDL but at the same time caused a large accumulation of triglyceride-depleted apoB-100-carrying IDL and LDL, resulting in a significant increase in plasma cholesterol levels. These plasma lipoprotein changes were associated with an increase in the hepatic secretion of apoB-100-carrying very low density lipoproteins (VLDL) and a decrease in the secretion of apoB-48-carrying VLDL, accompanied by a significant decrease in hepatic apoB mRNA editing. Hepatic apobec-1 complementation factor mRNA and protein abundance were significantly decreased, whereas apobec-1 mRNA and protein abundance remained unchanged. No changes in apoB mRNA editing occurred in the intestine of the treated animals. After 150 days of treatment with ciprofibrate, consistent with the increased plasma accumulation of apoB-100-carrying IDL and LDL, the LDLR-deficient mice displayed severe atherosclerotic lesions in the aorta. These findings demonstrate that ciprofibrate treatment decreases hepatic apoB mRNA editing and alters the pattern of hepatic lipoprotein secretion toward apoB-100-associated VLDL, changes that in turn lead to increased atherosclerosis.  相似文献   

15.
The kinetics of apolipoproteins B and C were studied in 14 normal and hyperlipoproteinemic subjects after injection of exogenously (125)I-labeled very low density lipoprotein (VLDL) particles. Plasma radioactivities of apoB and apoC were determined over a period of 4 days in VLDL (d < 1.006) and total radioactivity in intermediate (IDL) (1.006 < d < 1.019), low (LDL) (1.019 < d < 1.063), and high (HDL) (1.063 < d < 1.21) density lipoproteins. The data were analyzed by the use of a model, developed mostly from these data, with the following results. The VLDL particle undergoes a series of incremental density changes, most likely due to a number of delipidation steps, during which apoB stays with the particle until the density reaches the IDL range. There is, however, a loss of apoC associated with these delipidation steps. In our normal subjects, all IDL apoB eventually becomes LDL. In our hyperlipemic subjects some of the apoB on IDL is also degraded directly. The apoC lost by VLDL and IDL recycles to HDL, and most of it is picked up again by newly synthesized VLDL. There is a slowdown of the stepwise delipidation process in all hyperlipemic individuals studied. Three additional features became apparent in the type III subjects. First, there is a significant increase (a factor of 2 compared to normal) in the apoB synthesis rate by way of VLDL; second, there is an induced direct apoB synthesis pathway by way of IDL (and/or LDL); third, a bypass of the regular stepwise VLDL delipidation pathway is induced by which VLDL particles lose apoC but none of their apoB, thereby forming a new particle with metabolic properties similar to LDL, but with a density still in the VLDL density range. Two type III patients treated with nicotinic acid and clofibrate showed a sharp decrease in their VLDL apoB synthesis rates. This was somewhat compensated by an increased IDL apoB synthesis rate. A type I patient on a medium chain triglyceride diet also showed a number of metabolic changes, including reduced VLDL apoB synthesis and the induction of considerable IDL and/or LDL apoB synthesis.  相似文献   

16.
The contribution of very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) to various low density lipoprotein (LDL) subfractions was examined in three normal subjects and two with familial combined hyperlipidemia. Autologous VLDL + IDL (d less than 1.019 g/ml) or VLDL only (d less than 1.006 g/ml; one subject only) were isolated by sequential ultracentrifugation, iodinated, and injected into each subject. The appearance, distribution, and subsequent disappearance of radioactivity into LDL density subpopulations was characterized using density gradient ultracentrifugation. These techniques help determine the contribution of precursors to various LDL subpopulations defined uniquely for each subject. The results from these studies have suggested: 1) it took up to several days of intravascular processing of precursor-derived LDL before it resembled the distribution of the 'steady-state' plasma LDL protein; 2) plasma VLDL and IDL precursors contributed rapidly to a broad density range of LDL; 3) the radiolabeled plasma precursors did not always contribute to all LDL density subfractions within an individual in proportion to their relative LDL protein mass as determined by density gradient ultracentrifugation; 4) with time, the distribution of the precursor-derived LDL became more buoyant or more dense than distribution of the LDL protein mass; and 5) the kinetic characteristics of precursor-derived particles within LDL changed within a relatively narrow density range and were not always related to the LDL density heterogeneity of each subject. These studies emphasize the complexities of apoB metabolism and the need to design studies to carefully examine the production of various LDL subpopulations, the kinetic fate and interconversions among the subpopulations, and ultimately, their relationship to the development of atherosclerosis.  相似文献   

17.
Apolipoprotein E (APOE) polymorphism is a predictor of interindividual variability in plasma levels of lipids and lipoproteins and a predictor of risk of coronary artery disease (CAD). We studied the relationship between APOE polymorphism and lipid profiles and risk of CAD in Omani dyslipidemic patients. This retrospective study included 244 dyslipidemic patients, of whom 67 had CAD. Fasting blood glucose, lipids, and plasma lipoprotein levels were measured using standard methods, and APOE genotypes were detected by PCR-RFLP. The dyslipidemic patients had the following APOE allele frequencies: APOE*2, 0.030; APOE*3, 0.894; and APOE*4, 0.076. APOE allele frequencies between patients with and without CAD showed no significant differences. Compared to APOE*3/*3 homozygotes, APOE*4 allele patients had higher mean levels of low-density lipoprotein (LDL) cholesterol (p = 0.014), apoB (p = 0.031), lower mean levels of apoA1 (p = 0.043), and a trend of higher mean level of total cholesterol (p = 0.084). Thirty-one percent of patients with CAD had the APOE*4 allele compared to 26% with the APOE*3 allele, but this difference was not significant. Compared with APOE*3/*3 homozygotes, patients with the APOE*4 allele had 1.3 times higher risk for CAD after ignoring dyslipidemia, but this risk was modified after adjusting for dyslipidemia. In conclusion, among dyslipidemic patients, carriers of APOE*4 compared to homozygous carriers of APOE*3 had significantly higher levels of LDL cholesterol and apoB, but no relationship with CAD was found.  相似文献   

18.
The purpose of this study was to determine the relationship between insulin resistance and apoB100 metabolism in African American males. Fifteen subjects, 33 +/- 7.6 years old, were divided into two groups, insulin-resistant (IR) or insulin-sensitive (IS), based on the sum of the plasma insulin concentrations during an oral glucose tolerance test. The IR group (n = 8) differed significantly from the IS group (n = 7) with respect to body mass index (BMI) (30.1 vs 23.1 kg/m2; P = 0.0003), fasting triglycerides, (118 vs 54 mg/dl, P = 0. 013), and total plasma apolipoprotein B100 (80 vs 59 mg/dl, P = 0.014). Significantly elevated apoB100 levels in the IR group were seen in very low density lipoprotein (VLDL) (5.1 vs 3.4 mg/dl, P = 0.045) and intermediate density lipoprotein (IDL) (18 vs 12 mg/dl, P = 0.017) but not in low density lipoprotein (LDL) (57 vs 46 mg/dl, P = 0.19). Total cholesterol, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apolipoprotein A-I, and blood pressure were not significantly different between the two groups. There was a high correlation between the sum of insulins during the oral glucose tolerance test and the BMI (rho = 0.88, P = 0.0001). In five IR and five IS subjects, apoB100 kinetics were determined in the fasting state using a bolus dose of deuteroleucine and multicompartmental modeling. IR subjects had significantly lower fractional catabolic rates (FCR) in the larger VLDL1 (-70%), the smaller VLDL2 (-71%), and the IDL (-53%) fractions. No significant differences in production rates were observed for any lipoprotein class. There was a significant correlation between the sum of insulins and the FCR of the apoB100 of VLDL1 (rho = -0.65, P = 0.05) and of IDL (rho = -0.85, P = 0.004). The correlation coefficient of the sum of insulins and the FCR of VLDL2 was -0.61 with P = 0.067. We conclude that in this population of African American males, IR is correlated with a decreased FCR of apoB100 in VLDL and IDL and elevated plasma levels of apoB and triglycerides (TG). These changes might be explained by decreased clearance of the TG-rich lipoproteins. We postulate that this may reflect decreased lipoprotein and/or hepatic lipase activity related to insulin resistance and its association with obesity.  相似文献   

19.
The conversion of very low density (VLDL) to low density lipoproteins (LDL) is a two-step process. The first step is mediated by lipoprotein lipase, but the mechanism responsible for the second is obscure. In this study we examined the possible involvement of receptors at this stage. Apolipoprotein B (apoB)-containing lipoproteins were separated into three fractions, VLDL (Sf 100-400), an intermediate fraction IDL (Sf 12-100), and LDL (Sf 0-12). Autologous 125I-labeled VLDL and 131I-labeled 1,2-cyclohexanedione-modified VLDL were injected into the plasma of four normal subjects and the rate of transfer of apoB radioactivity was followed through IDL to LDL. Modification did not affect VLDL to IDL conversion. Thereafter, however, the catabolism of modified apoB in IDL was retarded and its appearance in LDL was delayed. Hence, functional arginine residues (and by implication, receptors) are required in this process. Confirmation of this was obtained by injecting 125I-labeled IDL and 131I-labeled cyclohexanedione-treated IDL into two additional subjects. Again, IDL metabolism was delayed by approximately 50% as a result of the modification. These data are consistent with the view that receptors are involved in the metabolism of intermediate density lipoprotein.  相似文献   

20.
We investigated the metabolism of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) apolipoprotein B (apoB) in seven patients with combined hyperlipidemia (CHL), using 125I-labeled VLDL and 131I-labeled LDL and compartmental modeling, before and during lovastatin treatment. Lovastatin therapy significantly reduced plasma levels of LDL cholesterol (142 vs 93 mg/dl, P less than 0.0005) and apoB (1328 vs 797 micrograms/ml, P less than 0.001). Before treatment, CHL patients had high production rates (PR) of LDL apoB. Three-fourths of this LDL apoB flux was derived from sources other than circulating VLDL and was, therefore, defined as "cold" LDL apoB flux. Compared to baseline, treatment with lovastatin was associated with a significant reduction in the total rate of entry of apoB-containing lipoproteins into plasma in all seven CHL subjects (40.7 vs. 25.7 mg/kg.day, P less than 0.003). This reduction was associated with a fall in total LDL apoB PR and in "cold" LDL apoB PR in six out of seven CHL subjects. VLDL apoB PR fell in five out of seven CHL subjects. Treatment with lovastatin did not significantly alter VLDL apoB conversion to LDL apoB or LDL apoB fractional catabolic rate (FCR) in CHL patients. In three patients with familial hypercholesterolemia who were studied for comparison, lovastatin treatment increased LDL apoB FCR but did not consistently alter LDL apoB PR. We conclude that lovastatin lowers LDL cholesterol and apoB concentrations in CHL patients by reducing the rate of entry of apoB-containing lipoproteins into plasma, either as VLDL or as directly secreted LDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号