首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae.  相似文献   

2.
生物燃料系统分析模型   总被引:2,自引:1,他引:1  
定量化系统分析模型是生物燃料潜力预测、影响分析及制定技术路线图和政策目标的重要工具。生物燃料供应链涉及很多行业,需要进行基于农 (林) 业、能源、经济和环境等多学科领域的综合分析。以下从生物燃料系统分析所需解决的问题出发,梳理了国内外生物燃料系统分析的一般方法,重点对农 (林) 业系统模型、能源系统模型、综合评价模型、微观成本、能耗和排放分析模型以及生物燃料专项宏观分析模型的主要优缺点和适用性进行了分析,给出了相应的应用实例,并强调根据特定的研究问题,选择具有不同适用性的模型和研究路线。有助于研究人员和政策制定者更好地了解生物燃料系统分析方法,也为我国学术研究机构建立生物燃料分析模型提供了参考。  相似文献   

3.
This study investigates the dynamic linkages between biofuels production and sustainable indicators in the panel of 17 developed and developing countries, over the period of 2000–2012. The study emphasized the role of biofuels production in the sustainable development of the region. For this purpose, the study utilized four main sustainable indicators including carbon dioxide emissions, energy intensity, renewable energy generation, and total population that have a significant impact on the biofuels production. The study used dynamic heterogeneous panel econometric technique – Generalized Method of Moments and found that carbon dioxide emissions increase along with the increase in biofuels production. Therefore, the caution should be applied when burning the biofuels during the production process. In addition, renewable electricity generation also increases the biofuels production in the region. The results of robust least square regression confirmed that all of the sustainable indicators have a significant association with the biofuels production, as total primary energy consumption increases the biofuels production, while total population significantly decreases the biofuels production in the region. The results derived to the conclusion that for sustainable development in the region, the policymakers should have to formulate carbon free policies that coupled with the renewable energy sources for emphasizing the life cycle of bioenergy during the production process.  相似文献   

4.
The rapid development and adoption of biofuels has been driven by a wide range of targets and other policy instruments, but first‐generation biofuels have been widely criticized. In light of the development of new biofuel technologies that aim to avoid the problems of the past, the Nuffield Council on Bioethics conducted an 18‐month inquiry on the ethical, social and policy issues raised by both current and future biofuels. The Council concludes that many biofuels policies fail to take consideration of important ethical principles, such as protecting human rights, environmental sustainability, climate change mitigation, just reward, and equitable distribution of costs and benefits. It proposes an overarching ethical standard for biofuels, enforced by a certification scheme for all biofuels produced in and imported into Europe and ideally worldwide.  相似文献   

5.
Beleaguered by criticisms, and abused by politicians for ecological target-setting, biofuels are in their darkest hour. But their bringing to trial should remind us - yet again - of something else: the highly questionable sustainability of most of modern agriculture. Is this the end of biofuels? Probably not, but it is certainly the end of a cheap solution to the problem of sustainable portable fuels. Part one of this two-part article focuses on the political and agricultural dimensions of the topic.  相似文献   

6.
Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels.  相似文献   

7.
航空生物燃料制备技术及其应用研究进展   总被引:2,自引:0,他引:2  
随着各国对温室气体排放要求的日益严格,以及化石能源的日益枯竭,近些年来航空生物燃料得到了快速发展.文中综述了航空生物燃料的发展背景、制备工艺、实际应用现状及存在的问题,重点介绍了合成气经费托合成、生物质油经催化加氢和催化裂解制备航空生物燃料的工艺路线,以及航空生物燃料的试飞和商业运营状况,论述了航空生物燃料存在的问题,并对发展航空生物燃料提出了建议.  相似文献   

8.
The microbial production of biofuels is a promising avenue for the development of viable processes for the generation of fuels from sustainable resources. In order to become cost and energy effective, these processes must utilize organisms that can be optimized to efficiently produce candidate fuels from a variety of feedstocks. Escherichia coli has become a promising host organism for the microbial production of biofuels in part due to the ease at which this organism can be manipulated. Advancements in metabolic engineering and synthetic biology have led to the ability to efficiently engineer E. coli as a biocatalyst for the production of a wide variety of potential biofuels from several biomass constituents. This review focuses on recent efforts devoted to engineering E. coli for the production of biofuels, with emphasis on the key aspects of both the utilization of a variety of substrates as well as the synthesis of several promising biofuels. Strategies for the efficient utilization of carbohydrates, carbohydrate mixtures, and noncarbohydrate carbon sources will be discussed along with engineering efforts for the exploitation of both fermentative and nonfermentative pathways for the production of candidate biofuels such as alcohols and higher carbon biofuels derived from fatty acid and isoprenoid pathways. Continued advancements in metabolic engineering and synthetic biology will help improve not only the titers, yields, and productivities of biofuels discussed herein, but also increase the potential range of compounds that can be produced.  相似文献   

9.
美国先进生物燃料技术政策与态势分析   总被引:2,自引:0,他引:2  
美国是生物燃料大国,更是先进生物燃料研发强国。美国制定了宏大的生物燃料发展目标,采取了有力的政策支持措施,组织实施了生物质计划,将纤维素乙醇作为目前先进生物燃料研究、开发和示范的焦点,并已着手第三代生物燃料的研发。美国政府十分重视生物燃料的规划分析和部际协调工作,在立足于基础研究和应用研究前沿的基础上,大力推进技术示范与商业化,正努力加速向先进生物燃料转变。  相似文献   

10.
Marine Biotechnology - Microalgae including diatoms are of interest for environmentally friendly manufacturing such as production of biofuels, chemicals, and materials. The highly oil-accumulating...  相似文献   

11.
The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.  相似文献   

12.
Bioprocess and Biosystems Engineering - Microalgae could be of importance for future biodiesel production as an alternative for a third generation of biofuels. To select the most appropriate strain...  相似文献   

13.
Applied Microbiology and Biotechnology - With the increasing production of ethanol for biofuels, a by-product of corn-based ethanol fermentation, dried distillers grains with solubles (DDGS) is...  相似文献   

14.
Biofuels from developing countries The pressure for reducing greenhouse gas emissions, rising oil prices, but also the lobbying by the agricultural sector and the automotive industry have induced the recent boom on biofuels. Due to limited land availability, competition with food production and high overall environmental impacts, the sustainability market potential for biofuels is assumed to be significantly smaller than 10% of global fuel consumption. Nevertheless, niches for the sustainable production and use of biofuels exist especially in developing countries. It is often more sustainable to use biomass feedstock for local supply of electricity and heat than producing biofuels for export.  相似文献   

15.
Bioprocess and Biosystems Engineering - Wheat straw is a low-cost feedstock for the production of biofuel. Pretreatment process is an important stage in producing biofuels since it makes the fibers...  相似文献   

16.
Brown macroalgae are renewable and sustainable biomass resources for the production of biofuels and chemicals, owing to their high levels of carbohydrates and low levels of lignin. To increase the biological usage of brown macroalgae, it is necessary to depolymerize the polysaccharides that generate macroalgal monomeric sugars or sugar derivatives and to convert them into fermentable sugars for the production of biofuels and chemicals. In this review, we discuss the chemical and enzymatic saccharification of the major carbohydrates found in brown macroalgae and the use of the resulting constituents in the production of biofuels and chemicals, as well as high-value health-benefiting functional oligosaccharides and sugars. We also discuss recently reported experimental results, novel enzymes, and technological breakthroughs that are related to polysaccharide depolymerization, fermentable sugar production, and the biological conversion of non-favorable sugars for fermentation using industrial microorganisms. This review provides a comprehensive perspective of the efficient utilization of brown macroalgae as renewable resources for the production of biofuels and chemicals.  相似文献   

17.
生物燃料最新发展态势分析   总被引:7,自引:1,他引:6  
第一代生物燃料的生产工艺已经较为成熟,美国、欧盟和巴西等一些国家已经形成了较完善的产业链。以纤维素乙醇为代表的第二代生物燃料是更有希望的替代燃料,但目前还未获得关键性的技术突破,其大规模的商业化生产还有待时日。目前生物燃料正处于由第一代向第二代发展过渡的初期。各国纷纷将发展第二代生物燃料定为国策,为此制订了长期的发展规划与目标,并为生物燃料发展提供了良好的政策环境和大力的经费支持。各相关研究机构与企业也积极行动,力图解决生物燃料发展的各个关键问题。在此过程中,一些与生物燃料可持续发展有关的重要问题也引起了人们的关注。  相似文献   

18.
Applied Microbiology and Biotechnology - Cyanobacteria, which perform oxygenic photosynthesis, have drawn attention as hosts for the direct production of biofuels and commodity chemicals from CO2...  相似文献   

19.
Applied Microbiology and Biotechnology - Saccharomyces cerevisiae is a work horse for production of valuable biofuels and biochemicals including 2,3-butanediol (2,3-BDO), a platform chemical with...  相似文献   

20.
In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号