首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systemic sclerosis is an autoimmune disease characterized by immunological and vascular abnormalities. Autoantibodies against intracellular antigens are associated with particular clinical features of the disease, whereas autoantibodies against cell surface antigens may be pathogenic by inducing endothelial cell damage, considered the primary event in the pathogenesis of the disease. Latent human cytomegalovirus infection may contribute to progression of systemic sclerosis through its ability to infect endothelial cells; however, direct links between human cytomegalovirus infection and systemic sclerosis are still lacking. Molecular mimicry is one of the mechanisms that account for the link between infection and autoimmunity. Here we have identified an immunodominant peptide using systemic sclerosis serum screening of a random peptide library; such peptide shares homology with autoantigens and with the human cytomegalovirus late protein UL94 (ref. 9). Immunoglobulin G antibodies against the peptide affinity-purified from the sera of patients with systemic sclerosis specifically recognized the viral product and autoantigens; moreover, such antibodies induced endothelial cell apoptosis through specific interaction with the cell surface integrin-NAG-2 protein complex. Our results provide evidence that antibodies against human cytomegalovirus cause apoptosis of endothelial cells, considered the initial pathogenic event of systemic sclerosis, and indicate a previously unknown mechanism for the etiological link between human cytomegalovirus infection and autoimmunity.  相似文献   

2.
Patients with systemic autoimmune diseases usually produce high levels of antibodies to self-antigens (autoantigens). The repertoire of common autoantigens is remarkably limited, yet no readily understandable shared thread links these apparently diverse proteins. Using computer prediction algorithms, we have found that most nuclear systemic autoantigens are predicted to contain long regions of extreme structural disorder. Such disordered regions would generally make poor B cell epitopes and are predicted to be under-represented as potential T cell epitopes. Consideration of the potential role of protein disorder may give novel insights into the possible role of molecular mimicry in the pathogenesis of autoimmunity. The recognition of extreme autoantigen protein disorder has led us to an explicit model of epitope spreading that explains many of the paradoxical aspects of autoimmunity – in particular, the difficulty in identifying autoantigen-specific helper T cells that might collaborate with the B cells activated in systemic autoimmunity. The model also explains the experimentally observed breakdown of major histocompatibility complex (MHC) class specificity in peptides associated with the MHC II proteins of activated autoimmune B cells, and sheds light on the selection of particular T cell epitopes in autoimmunity. Finally, the model helps to rationalize the relative rarity of clinically significant autoimmunity despite the prevalence of low specificity/low avidity autoantibodies in normal individuals.  相似文献   

3.
The etiology of alopecia areata (AA), a putative autoimmune disease characterized by sudden hair loss, has remained obscure. It is not understood, how the characteristic inflammatory infiltrate that selectively attacks anagen hair follicles in AA is generated. We hypothesize that this reflects an unexplored form of autoimmunity, a cytotoxic T cell attack on rhythmically synthesized autoantigens normally sequestered by a lack or very low level of MHC class I (MHC I)-expression, and suggest the following mechanism of AA pathogenesis: Microtrauma, neurogenic inflammation, or microbial antigens cause a localized breakdown of MHC I-"negativity" in the proximal anagen hair bulb via proinflammatory cytokines. This exposes autoantigens derived from melanogenesis-related proteins (MRP-DP), which are only generated during anagen, and triggers two successive waves of autoimmune responses: CD8+ cytotoxic T cells initiate AA after recognizing MRP-DP abnormally presented by MHC I molecules on hair matrix melanocytes and/or keratinocytes; a secondary attack, carried by CD4+ T cells and antigen presenting cells, is then mounted against MHC class II--presented additional autoantigens exposed by damaged melanocytes and keratinocytes. The latter causes most of the follicular damage, and extrafollicular disease, and depends greatly on the immunogenetic background of affected individuals. This unifying hypothesis explains the clinical heterogeneity and all salient features of AA, and argues that only the unlikely coincidence of multiple predisposing events triggers AA. The suppression of MHC I--expression and synthesis of MRP in the hair bulb, and the "tolerization" of MRP-DP autoreactive CD8+ T cells may be promising strategies for treating AA.  相似文献   

4.
The immune system has evolved to eliminate or inactivate infectious organisms. An inappropriate response against self-components (autoantigens) can result in autoimmune disease. Here we examine the hypothesis that some evolutionarily conserved proteins, present in pathogenic and commensal organisms and their hosts, provide the stimulus that initiates autoimmune disease in susceptible individuals. We focus on seven autoantigens, of which at least four, glutamate decarboxylase, pyruvate dehydrogenase, histidyl-tRNA synthetase and alpha enolase, have orthologs in bacteria. Citrullinated alpha-enolase, a target for autoantibodies in 40% of patients with rheumatoid arthritis, is our main example. The major epitope is highly conserved, with over 90% identity to human in some bacteria. We propose that this reactivity of autoantibodies to shared sequences provides a model of autoimmunity in rheumatoid arthritis, which may well extend to other autoimmune disease in humans.  相似文献   

5.
The origins of autoimmunity in systemic lupus erythematosus (SLE) are thought to involve both genetic and environmental factors. To identify environmental agents that could potentially incite autoimmunity, we have traced the autoantibody response in human SLE back in time, prior to clinical disease onset, and identified the initial autoantigenic epitope for some lupus patients positive for antibodies to 60 kDa Ro. This initial epitope directly cross-reacts with a peptide from the latent viral protein Epstein-Barr virus nuclear antigen-1 (EBNA-1). Animals immunized with either the first epitope of 60 kDa Ro or the cross-reactive EBNA-1 epitope progressively develop autoantibodies binding multiple epitopes of Ro and spliceosomal autoantigens. They eventually acquire clinical symptoms of lupus such as leukopenia, thrombocytopenia and renal dysfunction. These data support the hypothesis that some humoral autoimmunity in human lupus arises through molecular mimicry between EBNA-1 and lupus autoantigens and provide further evidence to suspect an etiologic role for Epstein-Barr virus in SLE.  相似文献   

6.
The common marmoset (Callithrix jacchus jacchus) is a member of the Callithrichinae, a family of outbred New World primates with limited MHC polymorphisms and a propensity to develop spontaneous or experimentally induced autoimmunity. C. jacchus marmosets are susceptible to experimental allergic encephalomyelitis (EAE), and spontaneously develop autoimmune colitis and thyroiditis. Such disease models approximate the complexity of human autoimmune disorders, and allow an investigation of the respective roles of T-cell and antibody responses to self-antigens in outbred species. A key issue for further definition of the pathogenic antibody responses in human autoimmunity is to understand the diversity of the immunoglobulin repertoire in primate models. Here, we characterized the expressed immunoglobulin IGHV repertoire of the C. jacchus marmoset. Six IGHV subgroups were identified which show a high degree of sequence similarity to their human IGHV counterparts (IGHV1, IGHV3, IGHV4, IGHV5, IGHV6, and IGHV7). As in the expressed human IGHV repertoire, the framework regions are more conserved when compared to the complementarity-determining regions (CDRs), with the greatest degree of variability located in CDR3. Predicted structural features are highly conserved between C. jacchus and human IGHV. This information now provides a framework for studies of the antigen-specific repertoire of pathogenic antibodies in EAE and other immune-mediated diseases.  相似文献   

7.
Identification of a novel autoantigen UACA in patients with panuveitis   总被引:2,自引:0,他引:2  
To identify the target autoantigens in Vogt-Koyanagi-Harada disease, we made use of an immunoscreening of a bovine uveal cDNA expression library with serum samples obtained from patients with Vogt-Koyanagi-Harada disease. We identified a novel bovine antigen and homologous human autoantigen and designated it as UACA (uveal autoantigen with coiled coil domains and ankyrin repeats). mRNA of human UACA is expressed most abundantly in skeletal muscles and in various human tissues, including choroid, retina, and epidermal melanocytes. IgG autoantibodies were quantitated in an ELISA, using recombinant C-terminal 18.0% fragment of human UACA. The prevalence of IgG anti-UACA autoantibodies in patients with panuveitis (Vogt-Koyanagi-Harada disease, Beh?et's disease, sarcoidosis) was significantly higher than that in healthy controls (19.6-28.1% vs 0%, P < 0.05) indicating that autoimmunity directed against UACA is a common phenomenon in these diseases.  相似文献   

8.
Cross-presentation of self Ags by APCs is key to the initiation of organ-specific autoimmunity. As MHC class I molecules are essential for the initiation of diabetes in nonobese diabetic (NOD) mice, we sought to determine whether the initial insult that allows cross-presentation of beta cell autoantigens in diabetes is caused by cognate interactions between naive CD8(+) T cells and beta cells. Naive splenic CD8(+) T cells from transgenic NOD mice expressing a diabetogenic TCR killed peptide-pulsed targets in the absence of APCs. To ascertain the role of CD8(+) T cell-induced beta cell lysis in the initiation of diabetes, we expressed a rat insulin promoter (RIP)-driven adenovirus E19 transgene in NOD mice. RIP-E19 expression inhibited MHC class I transport exclusively in beta cells and rendered these cells resistant to lysis by CD8(+) (but not CD4(+)) T cells, both in vitro and in vivo. Surprisingly, RIP-E19 expression impaired the accumulation of CD8(+) T cells in islets and delayed the onset of islet inflammation, without affecting the timing or magnitude of T cell cross-priming in the pancreatic lymph nodes, which is the earliest known event in diabetogenesis. These results suggest that access of beta cell autoantigens to the cross-presentation pathway in diabetes is T cell independent, and reveal a previously unrecognized function of MHC class I molecules on target cells in autoimmunity: local retention of disease-initiating clonotypes.  相似文献   

9.
TLR-dependent T cell activation in autoimmunity   总被引:1,自引:0,他引:1  
Autoimmune disease can develop as a result of a breakdown in immunological tolerance, leading to the activation of self-reactive T cells. There is an established link between infection and human autoimmune diseases. Furthermore, experimental autoimmune diseases can be induced by autoantigens that are administered together with complete Freund's adjuvant, which contains killed Mycobacterium tuberculosis; in some cases, these bacteria can be replaced by individual pathogen-associated molecular patterns (PAMPs). Exogenous PAMPs and endogenous danger signals from necrotic cells bind to pattern recognition receptors (including Toll-like receptors) and activate signalling pathways in innate immune cells and in T cells. This leads to pro-inflammatory cytokine production and T cell activation, which are now considered to be major factors in the development of autoimmunity.  相似文献   

10.
Rheumatoid arthritis is characterized by synovial joint infiltration of activated CD4(+) T cells and MHC class II(+) APC, and is linked to specific HLA-DR alleles. Candidate autoantigens in synovial fluid and cartilage include type II collagen (CII) and cartilage gp39 (HCgp39). Using preparations of native Ag and T cells derived from Ag-immunized DR4-transgenic mice, we determined that human ex vivo differentiated DR4(+) dendritic cells (DC) and macrophages (Mphi) can mediate MHC class II presentation of CII or HCgp39 epitopes. The form of the Ag (soluble, partially degraded, or particulate) delivered to the APC influenced its presentation by DC and Mphi. DC efficiently presented partially degraded, but not native CII alpha-chains, while Mphi presentation was most efficient after phagocytosis of bead-conjugated CII. Both DC and Mphi presented soluble HCgp39, and activated Mphi from some donors presented epitopes derived from endogenously synthesized HCgp39. When synovial fluid from rheumatoid arthritis patients was used as a source of Ag, DC presentation of HCgp39 and CII epitopes was efficient, indicating that synovial fluid contains soluble forms of CII and HCgp39 amenable to internalization, processing, and presentation. These data support the hypothesis that CII and HCgp39 are autoantigens and that their class II-mediated presentation by DC and Mphi to T cells in vivo has a critical role in the pathogenesis of human rheumatoid arthritis.  相似文献   

11.
Tandem mass spectrometry was used to identify naturally processed peptides bound to major histocompatibility complex (MHC) I and MHC II molecules in central nervous system (CNS) of eight patients with multiple sclerosis (MS). MHC molecules were purified from autopsy CNS material by immunoaffinity chromatography with monoclonal antibody directed against HLA-A, -B, -C, and -DR. Subsequently peptides were separated by reversed-phase HPLC and analyzed by mass spectrometry. Database searches revealed 118 amino acid sequences from self-proteins eluted from MHC I molecules and 191 from MHC II molecules, corresponding to 174 identified source proteins. These sequences define previously known and potentially novel autoantigens in MS possibly involved in disease induction and antigen spreading. Taken together, we have initiated the characterization of the CNS-expressed MHC ligandome in CNS diseases and were able to demonstrate the presentation of naturally processed myelin basic protein peptides in the brain of MS patients.T cells recognize antigen bound to MHC1 molecules (1). CD4 as well as CD8 T cells have been shown to play a pathogenic role in various autoimmune diseases (2). Pathogenic T cells infiltrate the target organs and locally secrete proinflammatory cytokines and chemokines leading to tissue inflammation and possibly subsequent tissue destruction (35). Local presentation of autoantigens by MHC molecules in the target tissue of the autoimmune attack, i.e. the central nervous system (CNS) in multiple sclerosis (MS) or the pancreas in diabetes, is therefore a prerequisite for local immune amplification (6). MS is an inflammatory and neurodegenerative disease of the CNS leading to myelin and axonal loss (7). There are different disease courses, i.e. relapsing-remitting, secondary chronic progressive, and primary progressive disease. Potential autoantigens in MS include myelin basic protein (MBP), proteolipid protein (PLP), and myelin oligodendrocyte glycoprotein (MOG). It is thought that T cells enter the CNS from the systemic circulation and that they are subsequently reactivated in the CNS on MHC I and MHC II molecules expressed on local antigen-presenting cells (APC) (8).To date, naturally presented HLA-bound peptides from patients with MS thus far have not been isolated and identified. So far, only circumstantial evidence exists for the local presentation of autoantigens such as MBP on MHC molecules in CNS (9). The aim of this study consisted of the characterization of the MHC-bound peptide repertoire derived from brains of patients with MS. Cutting edge technology combining HPLC and tandem mass spectrometry has recently allowed us to define peptides presented on APC from bronchoalveolar lavage from lungs of sarcoidosis patients (10). Applying a similar method on autopsy material of MS patients, for the first time we demonstrated local presentation of previously known and potential novel autoantigens in MS.  相似文献   

12.
The ABCs of MHC     
The major histocompatibility complex (MHC) contains the most diverse genes known in vertebrates. These genes encode cell‐surface molecules that play a central role in controlling immunological activity and, as a consequence, in tissue rejection, autoimmunity, and immune responses to infectious diseases. In vertebrates, there are many different MHC genes, most with many alleles. This is true for all primates studied thus far. Multiple loci and alleles allow for an increased peptide‐binding repertoire; their variety has a profound impact on an organism's ability to battle constantly evolving pathogens. The argument that infectious disease is a driving force for MHC variability is supported by observations that most of the allelic variation centers on the amino acid residues that directly interact with foreign peptides. However, while MHC diversity could be maintained through heterozygote advantage, frequency‐dependent selection, or both, the direct evidence that natural selection enhances diversity is limited. Indeed, it is not wholly clear whether selection operates only with respect to disease resistance or if behavioral and biological mechanisms also contribute to the extreme variation that has been observed for many species. Furthermore, reproductive behavior and biology may also help to maintain genetic variability at MHC loci.  相似文献   

13.
Gene map of the extended human MHC   总被引:12,自引:0,他引:12  
The major histocompatibility complex (MHC) is the most important region in the vertebrate genome with respect to infection and autoimmunity, and is crucial in adaptive and innate immunity. Decades of biomedical research have revealed many MHC genes that are duplicated, polymorphic and associated with more diseases than any other region of the human genome. The recent completion of several large-scale studies offers the opportunity to assimilate the latest data into an integrated gene map of the extended human MHC. Here, we present this map and review its content in relation to paralogy, polymorphism, immune function and disease.  相似文献   

14.
Animal models of autoimmune liver disease   总被引:17,自引:0,他引:17  
Autoimmune liver diseases in humans are characterized by chronic active hepatitis with serum autoantibodies, hypergammaglobulinemia and liver pathology showing necroinflammatory disease and fibrosis. There are an increasing number of autoantigens believed to be associated with various autoimmune liver diseases. This review will briefly outline human autoimmune hepatitis and the immunology of the liver. Various murine models of liver inflammation will be discussed, including transgenic and non-transgenic models, with emphasis on how these models aid in our knowledge of the mechanisms of disease development and chronicity. There are limitations with all of the models, including a preponderance of T-cell-focused responses. Murine models do not easily develop fibrosis, a hallmark of autoimmune hepatitis in humans. Different experimental models may not reach the same conclusions with differences between immune responses. However, this multiplicity of responses does not necessarily imply that these models are inappropriate for the study of liver immunology and autoimmune liver diseases, as different autoantigens may induce different liver responses. Knowledge of how the liver differs from other immune organs is essential to further our understanding of liver-specific autoimmunity. The plethora of antigens implicated in autoimmune hepatitis in humans predicts that multiple mechanisms may play a role in precipitating disease in the susceptible individual.  相似文献   

15.
Nuclear autoantigens in systemic lupus erythematosus are thought to derive primarily from apoptotic cells, yet there is no direct evidence that interfering with apoptosis impairs the generation of lupus autoantibodies. Here we use a mouse model that lacks the endonuclease caspase-activated DNase (CAD), resulting in an absence of chromatin and nuclear fragmentation during apoptotic cell death. We show that in this mouse, production and release into circulation of chromatin is impaired after exposure to several apoptotic triggers, but that the absence of CAD does not interfere with upstream steps of apoptosis or immune system function. Finally we show that in CAD-mutant mice, impaired lupus autoimmunity is skewed toward known cytoplasmic components, and autoimmunity toward membrane autoantigens is preserved, while autoimmunity toward chromatin and other lupus nuclear targets is severely impaired or absent. We also show, as control, that the induction of experimental autoimmune encephalomyelitis is not affected by the absence of CAD. Thus, our work in vivo strongly suggests that apoptotic molecular steps during cell death generate nuclear autoantigens to sustain the specific autoimmune response in systemic lupus erythematosus.  相似文献   

16.
Autoimmune diseases affect approximately 6% of the population and are characterised by a pathogenic immune response that targets self-antigens. Well known diseases of this nature include type 1 diabetes, systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. Treatment is often restricted to replacement therapy or immunosuppressive regimes and to date there are no cures. The strategy of utilising autologous or allogeneic haematopoietic stem cell transplantation to treat autoimmunity and induce immunological tolerance has been trailed with various levels of success. A major issue is disease relapse as the autoimmune response is reinitiated. Cells of the immune system originate from bone marrow and have a central role in the induction of immunological tolerance. The ability to isolate and genetically manipulate bone marrow haematopoietic stem cells therefore makes these cells a suitable vehicle for driving ectopic expression of defined autoantigens and induction of immunological tolerance.  相似文献   

17.
Primary biliary cirrhosis (PBC) is an autoimmune disease of the liver, characterized by lymphocytic infiltrates in portal tracts, selective destruction of biliary epithelial cells, and anti-mitochondrial Abs (AMAs). The elucidation of early events in the induction of tissue inflammation and autoimmunity in PBC has been hampered by the cryptic onset of the disease, the practical limitations in accessing the target tissue, and the lack of a suitable animal model. We demonstrate in this study that a mouse transgenic for directed expression of a dominant-negative form of TGF-beta receptor type II (dnTGFbetaRII), under the direction of the CD4 promoter, mimics several key phenotypic features of human PBC, including spontaneous production of AMAs directed to the same mitochondrial autoantigens, namely PDC-E2, BCOADC-E2, and OGDC-E2. The murine AMAs also inhibit PDC-E2 activity. Moreover, there is lymphocytic liver infiltration with periportal inflammation analogous to the histological profile in human PBC. Additionally, the serum cytokine profile of affected mice mimics data in human PBC. The concomitant presence of these immunopathological features in the transgenic mice suggests that the TGF-betaRII pathway is implicated in the pathogenesis of PBC. Finally, these data point away from initiation of autoimmunity by mechanisms such as molecular mimicry and more toward activation of an intrinsically self-reactive T cell repertoire in which necessary regulatory T cell influences are lacking.  相似文献   

18.
Haemophilus parasuis is the cause of Glässer''s disease in swine, which is characterized by systemic infection resulting in polyserositis, meningitis, and arthritis. Investigation of this animal disease is complicated by the enormous differences in the severity of disease caused by H. parasuis strains, ranging from lethal systemic disease to subclinical carriage. To identify differences in genotype that could account for virulence phenotypes, we established the virulence of, and performed whole genome sequence analysis on, 11 H. parasuis strains. Virulence was assessed by evaluating morbidity and mortality following intranasal challenge of Caesarean-derived, colostrum-deprived (CDCD) pigs. Genomic DNA from strains Nagasaki (serotype 5), 12939 (serotype 1), SW140 (serotype 2), 29755 (serotype 5), MN-H (serotype 13), 84-15995 (serotype 15), SW114 (serotype 3), H465 (serotype 11), D74 (serotype 9), and 174 (serotype 7) was used to generate Illumina paired-end libraries for genomic sequencing and de novo assembly. H. parasuis strains Nagasaki, 12939, SH0165 (serotype 5), SW140, 29755, and MN-H exhibited a high level of virulence. Despite minor differences in expression of disease among these groups, all pigs challenged with these strains developed clinical signs consistent with Glässer''s disease between 1–7 days post-challenge. H. parasuis strains 84-15995 and SW114 were moderately virulent, in that approximately half of the pigs infected with each developed Glässer''s disease. H. parasuis strains H465, D74, and 174 were minimally virulent or avirulent in the CDCD pig model. Comparative genomic analysis among strains identified several noteworthy differences in coding regions. These coding regions include predicted outer membrane, metabolism, and pilin or adhesin related genes, some of which likely contributed to the differences in virulence and systemic disease observed following challenge. These data will be useful for identifying H. parasuis virulence factors and vaccine targets.  相似文献   

19.
CD8(+) T cells play an important role in the initiation of insulitis and in the destructive stage leading to insulin-dependent diabetes mellitus. A string of recent studies has led to the identification of numerous HLA-A2-restricted epitopes derived from pancreatic beta cell Ags. It is hoped that assays detecting responses of patient PBMC to such epitopes might be instrumental for early diagnosis of beta cell-directed autoimmunity and for monitoring trials of immunointervention. However, it remains unclear whether the results of assays studying PBMC reflect responses of islet-infiltrating lymphocytes, and to what extent they correlate with disease risk and/or activity. We have used female and male humanized NOD mice expressing HLA-A2 in addition to murine MHC class I molecules to study spontaneous responses of islet-infiltrating blood, spleen, and lymph node lymphocytes of various age groups to a panel of 16 epitopes. Twelve of these are restricted by HLA-A2, have previously been shown to be recognized by patient CTL, and have identical sequences in human and murine autoantigens. Using an IFN-gamma ELISPOT assay, we find highly similar hierarchies of epitope immunodominance in the different T cell compartments, including peripheral blood and pancreatic islets. Moreover, we demonstrate that most of the epitopes eliciting dominant responses in humans display similar status in the mouse model. These results emphasize the potential of humanized mice as tools for studying spontaneous autoimmune CTL responses, and they provide a strong rationale for the development and use of assays monitoring responses of CD8(+) PBMC in human type 1 diabetes.  相似文献   

20.
Chronic allograft vasculopathy (CAV) contributes to heart transplant failure, yet its pathogenesis is incompletely understood. Although cellular and humoral alloimmunity are accepted pathogenic mediators, animal models suggest that T cells and Abs reactive to graft-expressed autoantigens, including cardiac myosin (CM), could participate. To test the relationship between CAV and anti-CM autoimmunity in humans, we performed a cross-sectional study of 72 heart transplant recipients: 40 with CAV and 32 without. Sera from 65% of patients with CAV contained anti-CM Abs, whereas <10% contained Abs to other autoantigens (p < 0.05), and only 18% contained anti-HLA Abs (p < 0.05 versus anti-CM). In contrast, 13% of sera from patients without CAV contained anti-CM Abs (p < 0.05; odds ratio [OR], associating CAV with anti-CM Ab = 13, 95% confidence interval [CI] 3.79-44.6). Multivariable analysis confirmed the association to be independent of time posttransplant and the presence of anti-HLA Abs (OR = 28, 95% CI 5.77-133.56). PBMCs from patients with CAV responded more frequently to, and to a broader array of, CM-derived peptides than those without CAV (p = 0.01). Detection of either CM-peptide-reactive T cells or anti-CM Abs was highly and independently indicative of CAV (OR = 45, 95% CI 4.04-500.69). Our data suggest detection of anti-CM immunity could be used as a biomarker for outcome in heart transplantation recipients and support the need for further studies to assess whether anti-CM immunity is a pathogenic mediator of CAV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号