首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The early effects of glucose and oxygen deprivation on the spontaneous acetylcholine output from the myenteric plexus - longitudinal muscle preparation of the guinea pig ileum were studied using an incubation chamber that permitted rapid sample collection in 2-min intervals. Glucose deprivation or hypoxia resulted in a gradual decline in rate of spontaneous acetylcholine collection in 2-min intervals. Glucose deprivation or hypoxia resulted in a gradual decline in rate of spontaneous acetylcholine output. However, glucose deprivation plus hypoxia caused an acceleration in acetylcholine output within 10-15 min, which attained a rate seven times greater than observed under normal conditions. Recovery of low resting rates was obtained by reintroduction of oxygen and glucose into the bath medium. Neither morphine (2.7 x 10(-5) M) nor tetrodotoxin (1.6 x 10(-6) M) prevented the increase in acetylcholine output induced by energy deprivation. The substitution of Ca2+ by Mg2+, in the presence of EGTA, greatly reduced the acetylcholine output induced by energy deprivation. However, a small transitory output of acetylcholine was observed under these conditions which was resistant to tetrodotoxin and ot affected by depolarizing amounts of K+. The transitory output was repeatable by reintroduction of glucose and oxygen to the Ca2+-free medium with subsequent return to conditions of hypoxia and glucose deprivation. These results suggest that energy deprivation initially stimulates normal acetylcholine secretion by (a) increasing Ca2+ influx across the plasma membrane and (b) mobilizing an intracellular Ca2+ poll. This implies that processes involved in maintenance of normal low transmitter release are more sensitive to energy lack than the neurosecretion process itself.  相似文献   

2.
Glutamate-stimulated, astrocyte-derived carbon monoxide (CO) causes cerebral arteriole dilation by activating smooth muscle cell large-conductance Ca(2+)-activated K(+) channels. Here, we examined the hypothesis that glutamate activates heme oxygenase (HO)-2 and CO production via the intracellular Ca(2+) concentration ([Ca(2+)](i))/Ca(2+)-calmodulin signaling pathway in newborn pig astrocytes. The major findings are: 1) glutamate stimulated Ca(2+) transients and increased steady-state [Ca(2+)](i) in cerebral cortical astrocytes in primary culture, 2) in astrocytes permeabilized with ionomycin, elevation of [Ca(2+)](i) concentration-dependently increased CO production, 3) glutamate did not affect CO production at any [Ca(2+)](i) when the [Ca(2+)](i) was held constant, 4) thapsigargin, a sarco/endoplasmic reticulum Ca(2+)-ATPase blocker, decreased basal CO production and blocked glutamate-induced increases in CO, and 5) calmidazolium, a calmodulin inhibitor, blocked CO production induced by glutamate and by [Ca(2+)](i) elevation. Taken together, our data are consistent with the hypothesis that glutamate elevates [Ca(2+)](i) in astrocytes, leading to Ca(2+)- and calmodulin-dependent HO-2 activation, and CO production.  相似文献   

3.
In the present study, we investigated the effect of the crude latex of Carica papaya L. (CPX) on isolated guinea pig ileal strips. CPX (0.5-512 microg/ml) caused concentration-dependent contraction of ileal strips suspended in Tyrode solution. The concentration of atropine (0.69 microM) that significantly blocked the contractile effect of acetylcholine on the isolated guinea pig ileum showed no significant effect on CPX- and histamine-induced contractions of the ileal strips. Mepyramine (87.6 nM) significantly blocked the contractile effect of histamine and CPX on the ileum. The same concentration of mepyramine, however, had no significant effect on acetylcholine-induced contraction of the isolated ileal strips. Removal of Ca2+ from the bathing medium abolished ileal contractions induced by acetylcholine, histamine and CPX. All the test substances were able to provoke ileal contractions after replacement of the Ca(2+)-free solution with Tyrode solution. Furthermore, 10(-5) M of nifedipine, a Ca(2+)-entry antagonist, reversibly inhibited the contractile effect of all the test substances on the ileal strips. Results of this study together appear to show that CPX-induced contraction of the isolated guinea pig ileum is mediated via H1-receptors and dependent on extracellular Ca2+ influx.  相似文献   

4.
A strong linkage between adrenergic and glutamatergic systems exists in the CNS but it is still unclear whether the excessive release of noradrenaline under ischemic conditions is modulated by excitatory amino acids. We studied the effect of selective glutamate receptor antagonists on the release of [3H]noradrenaline evoked by glucose and oxygen deprivation in hippocampal CA1, CA3 and dentate gyrus subregions. The release of glutamate, aspartate and GABA was measured by HPLC. Omission of oxygen and glucose increased the release of [3H]noradrenaline as well as the release of amino acids. Maximum effect on noradrenaline release was observed in CA1 region. The relative increase of the release after 30 min energy deprivation (R(2)) versus the basal release under normal conditions (R(1)), i.e. the R(2)/R(1) ratio was 7.1+/-1.0, 3.87+/-0.4 and 3.26+/-0.27 for CA1, CA3 and dentate gyrus, respectively. The [3H]noradrenaline outflow in response to glucose and oxygen deprivation was abolished at low temperature, but not by Ca(2+) removal, suggesting a cytoplasmic release process. In CA1 and CA3 [3H]noradrenaline release was significantly attenuated by MK-801, an NMDA receptor antagonist. The AMPA receptor antagonist GYKI-53784 had no effect in CA3, but partly reduced noradrenaline release in CA1.Our results suggest that ionotropic glutamate receptors seem to be implicated in the massive cytoplasmic release of noradrenaline in CA1 what may contribute to its selective vulnerability.  相似文献   

5.
Phosphatidylserine synthesis was studied in glioma C6 cells with [14C]serine and in the presence or absence of agents which increase the level of [Ca2+]i. It was found that glutamate and acetylcholine inhibited this synthesis by up to 40%, whereas thapsigargin and the ionophore A23187 inhibited by up to 70%. The inhibitory effect of thapsigargin and the A23187 was observed in Ca(2+)-free medium. The data show that the inhibition of this synthesis is caused by the Ca(2+)-depletion from endoplasmic reticulum, suggesting that the synthesis of phosphatidylserine occurs on the luminal side of these structures and can be regulated by transmembrane signaling systems.  相似文献   

6.
We examined glutamate-mediated neurotoxicity in cortical cell cultures pretreated with 1-5 micrograms/ml tetanus toxin to attenuate the Ca(2+)-dependent release of neurotransmitters. Efficacy of the tetanus toxin pretreatment was suggested by blockade of electrical burst activity induced by Mg2+ removal and by reduction of glutamate efflux induced by high K+. Tetanus toxin reduced neuronal injury produced by brief exposure to elevated extracellular K+ or to glutamate, situations in which release of endogenous excitatory neurotransmitter is likely to play a role. Furthermore, although glutamate efflux evoked by anoxic conditions may occur largely via Ca(2+)-independent transport, tetanus toxin attenuated both glutamate efflux and neuronal injury following combined oxygen and glucose deprivation. With prolonged exposure periods, the neuroprotective efficacy of tetanus toxin was comparable to that of NMDA receptor antagonists. Presynaptic inhibition of Ca(2+)-dependent glutamate release may be a valuable approach to attenuating hypoxic-ischemic brain injury.  相似文献   

7.
8.
We have studied the Ca(2+) leak pathways in the endoplasmic reticulum of pancreatic acinar cells by directly measuring Ca(2+) in the endoplasmic reticulum ([Ca(2+)](ER)). Cytosolic Ca(2+) ([Ca(2+)](C)) was clamped to the resting level by a BAPTA-Ca(2+) mixture. Administration of cholecystokinin within the physiological concentration range caused a graded decrease of [Ca(2+)](ER), and the rate of Ca(2+) release generated by 10 pm cholecystokinin is at least 3x as fast as the basal Ca(2+) leak revealed by inhibition of the endoplasmic reticulum Ca(2+)-ATPase. Acetylcholine also evokes a dose-dependent decrease of [Ca(2+)](ER), with an EC(50) of 0.98 +/- 0.06 microm. Inhibition of receptors for inositol 1,4,5-trisphosphate (IP(3)) by heparin or flunarizine blocks the effect of acetylcholine but only partly blocks the effect of cholecystokinin. 8-NH(2) cyclic ADP-ribose (20 microm) inhibits the action of cholecystokinin, but not of acetylcholine(.) The basal Ca(2+) leak from the endoplasmic reticulum is not blocked by antagonists of the IP(3) receptor, the ryanodine receptor, or the receptor for nicotinic acid adenine dinucleotide phosphate. However, treatment with puromycin (0.1-1 mm) to remove nascent polypeptides from ribosomes increases Ca(2+) leak from the endoplasmic reticulum by a mechanism independent of the endoplasmic reticulum Ca(2+) pumps and of the receptors for IP(3) or ryanodine.  相似文献   

9.
Cerebral endothelial cells in the rat, pig, and, most recently, human have been shown to express several types of receptors specific for glutamate. High levels of glutamate disrupt the cerebral endothelial barrier via activation of N-methyl-d-aspartate (NMDA) receptors. We have previously suggested that this glutamate-induced barrier dysfunction was oxidant dependent. Here, we provide evidence that human cerebral endothelial cells respond to glutamate by generating an intracellular oxidant stress via NMDA receptor activation. Cerebral endothelial cells loaded with the oxidant-sensitive probe dihydrorhodamine were used to measure intracellular reactive oxygen species (ROS) formation in response to glutamate receptor agonists, antagonists, and second message blockers. Glutamate (1 mM) significantly increased ROS formation compared with sham controls (30 min). This ROS response was significantly reduced by 1) MK-801, a noncompetitive NMDA receptor antagonist; 2) 8-(N,N-diethylamino)-n-octyl-3,4,5-trimethoxybenzoate, an intracellular Ca(2+) antagonist; 3) LaCl(3), an extracellular Ca(2+) channel blocker; 4) diphenyleiodonium, a heme-ferryl-containing protein inhibitor; 5) itraconazole, a cytochrome P-450 3A4 inhibitor; and 6) cyclosporine A, which prevents mitochondrial membrane pore transition required for mitochondrial-dependent ROS generation. Our results suggest that the cerebral endothelial barrier dysfunction seen in response to glutamate is Ca(2+) dependent and may require several intracellular signaling events mediated by oxidants derived from reduced nicotinamide adenine dinucleotide oxidase, cytochrome P-450, and the mitochondria.  相似文献   

10.
Immunophilins are receptors for immunosuppressive drugs such as the macrolides cyclosporin A (CsA) and FK506; correspondingly these immunophilins are referred to as cyclophilins and FK506-binding proteins (FKBPs). In particular, CsA targets cyclophilin D (CypD), which can modulate mitochondrial Ca(2+) dynamics. Since mitochondria have been implicated in the regulation of astrocytic cytosolic Ca(2+) (Ca(cyt)(2+)) dynamics and consequential Ca(2+)-dependent exocytotic release of glutamate, we investigated the role of CypD in this process. Cortical astrocytes isolated from CypD deficient mice Ppif(-/-) displayed reduced mechanically induced Ca(cyt)(2+) increases, even though these cells showed augmented exocytotic release of glutamate, when compared to responses obtained from astrocytes isolated from wild-type mice. Furthermore, acute treatment with CsA to inhibit CypD modulation of mitochondrial Ca(2+) buffering, or with FK506 to inhibit FKBP12 interaction with inositol-trisphosphate receptor of the endoplasmic reticulum, led to similar reductive effects on astrocytic Ca(cyt)(2+) dynamics, but also to an enhanced Ca(2+)-dependent exocytotic release of glutamate in wild-type astrocytes. These findings point to a possible role of immunophilin signal transduction pathways in astrocytic modulation of neuronal activity at the tripartite synapse.  相似文献   

11.
The nucleus of the solitary tract (NTS) is the principal integrating relay in the processing of visceral sensory information. Functional nicotinic acetylcholine receptors (nAChRs) have been found on presynaptic glutamatergic terminals in subsets of caudal NTS neurons. Activation of these receptors has been shown to enhance synaptic release of glutamate and thus may modulate autonomic sensory-motor integration and visceral reflexes. However, the mechanisms of nAChR-mediated facilitation of synaptic glutamate release in the caudal NTS remain elusive. This study uses rat horizontal brainstem slices, patch-clamp electrophysiology, and fluorescent Ca(2+) imaging to test the hypothesis that a direct Ca(2+) entrance into glutamatergic terminals through active presynaptic non-α7- or α7-nAChR-mediated ion channels is sufficient to trigger synaptic glutamate release in subsets of caudal NTS neurons. The results of this study demonstrate that, in the continuous presence of 0.3 μM tetrodotoxin, a selective blocker of voltage-activated Na(+) ion channels, facilitation of synaptic glutamate release by activation of presynaptic nAChRs (detected as an increase in the frequency of miniature excitatory postsynaptic currents) requires external Ca(2+) but does not require activation of presynaptic Ca(2+) stores and presynaptic high- and low-threshold voltage-activated Ca(2+) ion channels. Expanding the knowledge of mechanisms and pharmacology of nAChRs in the caudal NTS should benefit therapeutic approaches aimed at restoring impaired autonomic homeostasis.  相似文献   

12.
To begin to understand the modulatory role of glutamate in the inner retina, we examined the mechanisms underlying metabotropic glutamate receptor 5 (mGluR5)-dependent Ca(2+) elevations in cultured GABAergic amacrine cells. A partial sequence of chicken retinal mGluR5 encompassing intracellular loops 2 and 3 suggests that it can couple to both G(q) and G(s). Selective activation of mGluR5 stimulated Ca(2+) elevations that varied in waveform from cell to cell. Experiments using high external K(+) revealed that the mGluR5-dependent Ca(2+) elevations are distinctive in amplitude and time course from those engendered by depolarization. Experiments with a Ca(2+) -free external solution demonstrated that the variability in the time course of mGluR5-dependent Ca(2+) elevations is largely due to the influx of extracellular Ca(2+). The sensitivity of the initial phase of the Ca(2+) elevation to thapsigargin indicates that this phase of the response is due to the release of Ca(2+) from the endoplasmic reticulum. Pharmacological evidence indicates that mGluR5-mediated Ca(2+) elevations are dependent upon the activation of phospholipase C. We rule out a role for L-type Ca(2+) channels and cAMP-gated channels as pathways for Ca(2+) entry, but provide evidence of transient receptor potential (TRP) channel-like immunoreactivity, suggesting that Ca(2+) influx may occur through TRP channels. These results indicate that GABAergic amacrine cells express an avian version of mGluR5 that is linked to phospholipase C-dependent Ca(2+) release and Ca(2+) influx, possibly through TRP channels.  相似文献   

13.
Astrocytes can exocytotically release the gliotransmitter glutamate from vesicular compartments. Increased cytosolic Ca(2+) concentration is necessary and sufficient for this process. The predominant source of Ca(2+) for exocytosis in astrocytes resides within the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate and ryanodine receptors of the ER provide a conduit for the release of Ca(2+) to the cytosol. The ER store is (re)filled by the store-specific Ca(2+)-ATPase. Ultimately, the depleted ER is replenished by Ca(2+) which enters from the extracellular space to the cytosol via store-operated Ca(2+) entry; the TRPC1 protein has been implicated in this part of the astrocytic exocytotic process. Voltage-gated Ca(2+) channels and plasma membrane Na(+)/Ca(2+) exchangers are additional means for cytosolic Ca(2+) entry. Cytosolic Ca(2+) levels can be modulated by mitochondria, which can take up cytosolic Ca(2+) via the Ca(2+) uniporter and release Ca(2+) into cytosol via the mitochondrial Na(+)/Ca(2+) exchanger, as well as by the formation of the mitochondrial permeability transition pore. The interplay between various Ca(2+) sources generates cytosolic Ca(2+) dynamics that can drive Ca(2+)-dependent exocytotic release of glutamate from astrocytes. An understanding of this process in vivo will reveal some of the astrocytic functions in health and disease of the brain. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

14.
The effect of chloroform soluble fraction (F-A) of twigs of Sarcostemma brevistigma on contractions induced by KCl, histamine, and acetylcholine in the isolated guinea pig ileum and taenia coli smooth muscles has been evaluated. F-A (19.5 microg/ml) significantly inhibited the contraction induced by 40 mM KCl to the extent of 87.6% in the isolated guinea pig ileum. In the isolated guinea pig ileum, F-A (64.3 and 59.2 microg/ml) significantly inhibited the contractions induced by acetylcholine and histamine to the extent of 85 and 83% respectively. In the isolated guinea pig taenia coli, F-A (65.2 microg/ml) significantly inhibited the contraction induced by 40 mM KCl to the extent of 96.0%. The inhibitory effect of F-A (40 microg/ml) on the isolated guinea pig taenia coli was reduced by Bay K 8644 (10(-6) M) to the extent of 61.6 from 73.6%. These results suggest that the F-A may exhibit smooth muscle relaxant activity by blocking the Ca2+ channels.  相似文献   

15.
The aim of the study was to test whether the source of intracellular calcium (Ca2+) is a determinant of beta cell function. We hypothesized that elevations in cytosolic Ca2+ caused by the release of Ca2+ from the endoplasmic reticulum (ER) have little physiologic impact on oxygen consumption and insulin secretion. Ca2+ release from the ER was induced in isolated rat islets by acetylcholine and response of oxygen consumption rate (OCR), NAD(P)H, cytosolic Ca2+, and insulin secretory rate (ISR) were measured. Glucose increased all four parameters, and thereafter acetylcholine further increased cytosolic Ca2+, OCR, and ISR. To assess the contribution of Ca2+ release from the ER in mediating the effects of acetylcholine, ER Ca2+ stores were first emptied by inhibiting the sarcoendoplasmic reticulum Ca2+-ATPase, which subsequently reduced the effect of acetylcholine on cytosolic Ca2+ but not its effects on OCR or ISR. As predicted, OCR and ISR were acutely sensitive to changes in L-type Ca2+ channel activity; nimodipine completely inhibited glucose-stimulated ISR and suppressed OCR by 36%, despite only inhibiting cytosolic Ca2+ by 46%. Moreover, in the presence of nimodipine and high glucose, acetylcholine still elevated cytosolic Ca2+ levels above those observed in the presence of high glucose alone but did not significantly stimulate ISR. In conclusion, Ca2+ flux through L-type Ca2+ channels was tightly coupled to changes in OCR and ISR. In contrast, the results obtained support the notion that Ca2+ release from the ER has little or no access to the intracellular machinery that regulates OCR and ISR.  相似文献   

16.
Cerebral ischaemia is associated with brain damage and inhibition of neuronal protein synthesis. A deficit in neuronal metabolism and altered excitatory amino acid release may both contribute to those phenomena. In the present study, we demonstrate that both NMDA and metabolic impairment by 2-deoxyglucose or inhibitors of mitochondrial respiration inhibit protein synthesis in cortical neurons through the phosphorylation of eukaryotic elongation factor (eEF-2), without any change in phosphorylation of initiation factor eIF-2alpha. eEF-2 kinase may be activated both by Ca(2+)-independent AMP kinase or by an increase in cytosolic Ca2+. Although NMDA decreases ATP levels in neurons, only the effects of 2-deoxyglucose on protein synthesis and phosphorylation of elongation factor eEF-2 were reversed by Na(+) pyruvate. Protein synthesis inhibition by 2-deoxyglucose was not as a result of a secondary release of glutamate from cortical neurons as it was not prevented by the NMDA receptor antagonist 5-methyl-10,11-dihydro-5H-dibenzo-(a,d)-cyclohepten-5,10-imine hydrogen maleate (MK 801), nor to an increase in cytosolic-free Ca2+. Conversely, 2-deoxyglucose likely activates eEF-2 kinase through a process involving phosphorylation by AMP kinase. In conclusion, we provide evidence that protein synthesis can be inhibited by NMDA and metabolic deprivation by two distinct mechanisms involving, respectively, Ca(2+)-dependent and Ca(2+)-independent eEF-2 phosphorylation.  相似文献   

17.
ATP is the most important factor in glucose-induced insulin secretion in pancreatic beta-cells, but examination of intracellular differences in ATP concentration is difficult because ATP production and consumption occur simultaneously. In the present study, we measured the ATP concentration under the condition of a reduced ATP requirement by omitting extracellular Ca(2+) and inhibiting Na-K ATPase. The ATP concentration in islets incubated with 16.7 mM glucose in the absence of Ca(2+) for 30 min was increased by about 1. 9-fold more than in the presence of Ca(2+). The increment was extracellular Ca(2+)-dependent, and was completely abolished by the metabolic inhibitors dinitrophenol and iodoacetic acid. The Ca channel blockers including nitrendipine and Ni(2+) did not affect the ATP concentration in islets incubated with 16.7 mM glucose in the presence of Ca(2+). However, when thapsigargin and suramin, inhibitors of Ca-ATPase at the endoplasmic reticulum, were added to Ca channel blockers in the presence of ambient Ca(2+), the intraislet ATP content was increased, similarly to that under Ca-free conditions. But thapsigargin did not further augment the ATP concentration in the islet with 16.7 mM glucose in the absence of Ca(2+). On the other hand, the suppression of Na-K ATPase by ouabain rather reduced the ATP concentration augmented by omission of extracellular Ca(2+). In addition, vanadate, a blocker of Ca-ATPase at the plasma membrane, failed to increase the ATP concentration in the islets. These data suggest that the increment of ATP concentration in the absence of Ca(2+) is attributable to the reduced ATP requirement due to stopping of the Ca-ATPase activity at the endoplasmic reticulum, and that the intracellular ATP concentration is differently regulated by Na-K ATPase at plasma membrane and by Ca-ATPase at endoplasmic reticulum.  相似文献   

18.
Ho R  Fan D  Somlyo AV  Somlyo AP 《Cell calcium》2003,33(4):247-256
We quantitated subcellular elemental concentrations in stimulated and resting guinea pig myocardium to determine whether species-specific properties of guinea pigs or the subcellular localization of mitochondria accounted for reports of higher mitochondrial Ca in guinea pigs than in other species. Small papillary muscles or trabeculae isolated from guinea pig ventricles were stimulated to raise cytosolic [Ca(2+)](i) by two methods: (1). tetanizing by rapid pacing preparations in which Ca(2+) uptake by the sarcoplasmic reticulum was inhibited with cyclopiazonic acid or (2). freeze trapping paced muscles near-peak systole. Electron probe X-ray microanalysis showed no significant difference between the (low, approximately 0.4 mmol/kg dry weight) mitochondrial Ca content of stimulated guinea pig hearts, compared to mitochondria of other species, such as rat and hamsters, and the Ca contents of peripheral and central mitochondria were also not significantly different.  相似文献   

19.
Activities of Ca(2+) -ATPase of sarcoplasmic reticulum (SERCA) and Na(+)/Ca(2+) exchanger (NCX) involved in cellular Ca(2+) turnover greatly change in hypertrophied and failing hearts. Unfortunately, contribution of these proteins as well as of the sarcolemmal Ca(2+)-ATPase (PMCA) to cellular Ca(2+) turnover has been investigated almost exclusively at room temperature. PMCA is of particular interest since it may affect activity of calcineurin and nNOS. Therefore the objective of this study was to reinvestigate contribution of SERCA, NCX and PMCA to cell relaxation and the effect of PMCA on cell contraction at 37 degrees C. Myocytes isolated from the ventricles of guinea pig and rat hearts and incubated with Indo-1 were field stimulated at the rate of 60/min. Contribution of SERCA, NCX and PMCA was calculated from the rate constants of the decaying components of electrically stimulated Ca(2+) transients or of the transients initiated by caffeine dissolved in normal Tyrode or in 0Na, 0Ca Tyrode. Increase in temperature from 24 to 37 degrees C increased the relative contribution of NCX from 6.1% to 7.5% in rat and from 21.3 to 51.9% in guinea pig at the expense of SERCA. The contribution of the PMCA to relaxation in both species increased upon rise in temperature from 24% to 37 degrees C from negligible values to 3.7%. In both species amplitude of Ca(2+) transients was at 24 degrees C nearly twice as high as at 37 degrees C. It was nearly doubled by carboxyeosine (CE), a PMCA blocker at 37 degrees C but was hardly affected at 24 degrees C. The effects of CE were concentration-dependent and conformed with the degree of inhibition of activity of PMCA. Conclusions: PMCA plays an important role in regulation of myocardial contraction despite its small contribution to relaxation. In guinea pig but not in rat relative contribution of SERCA and NCX to relaxation is highly temperature dependent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号