首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this case study was to examine the effects of repeated creatine administration on muscle phosphocreatine, plasma creatine, and urine creatine. One male subject (age, 32 years; body mass, 78.4 kg; height, 160 cm; resistance training experience, 15 years) ingested creatine (20 g.d(-1) for 5 days) during 2 bouts separated by a 30-day washout period. Muscle phosphocreatine was measured before and after supplementation. On day 1 of supplementation, blood samples were taken immediately before and hourly for 5 hours following ingestion of 5 g of creatine, and a pharmacokinetic analysis of plasma creatine was conducted. Twenty-four-hour urine collections were conducted before and for 5 days during supplementation. Muscle phosphocreatine increased 45% following the first supplementation bout, decreased 22% during the 30-day washout period, and increased 25% following the second bout. There were no meaningful differences in plasma creatine pharmacokinetic parameters between bouts 1 and 2. Total urine creatine losses during supplementation were 63.2 and 63.4 g during bouts 1 and 2, respectively. The major findings were that (a) a 30-day washout period is insufficient time for muscle phosphocreatine to return to baseline following creatine supplementation but is sufficient time for plasma and urine creatine levels to return to presupplementation values; (b) postsupplementation muscle phosphocreatine levels were similar following bouts 1 and 2 despite 23% higher presupplementation muscle phosphocreatine before bout 2; and (c) the increased muscle phosphocreatine that persisted throughout the 30-day washout period corresponded with maintenance of increased body mass (+2.0 kg). Athletes should be aware that the washout period for muscle creatine to return to baseline levels may be longer than 30 days in some individuals, and this may be accompanied by a persistent increase in body mass.  相似文献   

2.
This study's objective was to determine whether 14 days of dietary creatine supplementation preceding an injurious bout of eccentric contractions affect the in vivo strength loss of mouse anterior crural muscles. Three groups of nine mice each were fed a meal diet for 14 days, one group at each of three levels of creatine supplementation (i.e., 0, 0.5, and 1% creatine). Electrically stimulated concentric, isometric, and eccentric contraction torques produced about the ankle were measured both before and after a bout of 150 eccentric contractions. Tibialis anterior muscle creatine concentration was significantly increased by the supplementation, being 12% higher in the mice fed the 1% creatine diet compared with control mice. After the bout of eccentric contractions, the reductions in torque (i.e., 46-58%) were similar for the isometric contraction, all eccentric contractions, and the slow (i.e., /= 0.62). In conclusion, a moderate increase in muscle creatine concentration induced by dietary supplementation in mice does not affect the strength loss after eccentric contractions.  相似文献   

3.
To examine the efficacy of a low-dose, short-duration creatine monohydrate supplement, 40 physically active men were randomly assigned to either a placebo or creatine supplementation group (6 g of creatine monohydrate per day). Testing occurred before and at the end of 6 days of supplementation. During each testing session, subjects performed three 15-second Wingate anaerobic power tests. No significant (p > 0.05) group or time differences were observed in body mass, peak power, mean power, or total work. In addition, no significant (p > 0.05) differences were observed in peak power, mean power, or total work. However, the change in the rate of fatigue of total work was significantly (p < 0.05) lower in the creatine supplementation group than in the placebo group, indicating a reduced fatigue rate in subjects supplementing with creatine compared with the placebo. Although the results of this study demonstrated reduced fatigue rates in patients during high-intensity sprint intervals, further research is necessary in examining the efficacy of low-dose, short-term creatine supplementation.  相似文献   

4.
Twenty-nine (17 men, 12 women) collegiate track and field athletes were randomly divided into a creatine monohydrate (CM, n = 10) group, creatine monohydrate and glutamine (CG, n = 10) group, or placebo (P, n = 9) group. The CM group received 0.3 g creatine.kg body mass per day for 1 week, followed by 0.03 g creatine.kg body mass per day for 7 weeks. The CG group received the same creatine dosage scheme as the CM group plus 4 g glutamine.day(-1). All 3 treatment groups participated in an identical periodized strength and conditioning program during preseason training. Body composition, vertical jump, and cycle performances were tested before (T1) and after (T2) the 8-week supplementation period. Body mass and lean body mass (LBM) increased at a greater rate for the CM and CG groups, compared with the P treatment. Additionally, the CM and CG groups exhibited significantly greater improvement in initial rate of power production, compared with the placebo treatment. These results suggest CM and CG significantly increase body mass, LBM, and initial rate of power production during multiple cycle ergometer bouts.  相似文献   

5.
Creatine monohydrate (CrM) supplementation during resistance exercise training results in a greater increase in strength and fat-free mass than placebo. Whether this is solely due to an increase in intracellular water or whether there may be alterations in protein turnover is not clear at this point. We examined the effects of CrM supplementation on indexes of protein metabolism in young healthy men (n = 13) and women (n = 14). Subjects were randomly allocated to CrM (20 g/day for 5 days followed by 5 g/day for 3-4 days) or placebo (glucose polymers) and tested before and after the supplementation period under rigorous dietary and exercise controls. Muscle phosphocreatine, creatine, and total creatine were measured before and after supplementation. A primed-continuous intravenous infusion of L-[1-(13)C]leucine and mass spectrometry were used to measure mixed-muscle protein fractional synthetic rate and indexes of whole body leucine metabolism (nonoxidative leucine disposal), leucine oxidation, and plasma leucine rate of appearance. CrM supplementation increased muscle total creatine (+13.1%, P < 0.05) with a trend toward an increase in phosphocreatine (+8.8%, P = 0.09). CrM supplementation did not increase muscle fractional synthetic rate but reduced leucine oxidation (-19.6%) and plasma leucine rate of appearance (-7.5%, P < 0.05) in men, but not in women. CrM did not increase total body mass or fat-free mass. We conclude that short-term CrM supplementation may have anticatabolic actions in some proteins (in men), but CrM does not increase whole body or mixed-muscle protein synthesis.  相似文献   

6.
We aimed to investigate the role of betaine supplementation on muscle phosphorylcreatine (PCr) content and strength performance in untrained subjects. Additionally, we compared the ergogenic and physiological responses to betaine versus creatine supplementation. Finally, we also tested the possible additive effects of creatine and betaine supplementation. This was a double-blind, randomized, placebo-controlled study. Subjects were assigned to receive betaine (BET; 2?g/day), creatine (CR; 20?g/day), betaine plus creatine (BET?+?CR; 2?+?20?g/day, respectively) or placebo (PL). At baseline and after 10?days of supplementation, we assessed muscle strength and power, muscle PCr content, and body composition. The CR and BET?+?CR groups presented greater increase in muscle PCr content than PL (p?=?0.004 and p?=?0.006, respectively). PCr content was comparable between BET versus PL (p?=?0.78) and CR versus BET?+?CR (p?=?0.99). CR and BET?+?CR presented greater muscle power output than PL in the squat exercise following supplementation (p?=?0.003 and p?=?0.041, respectively). Similarly, bench press average power was significantly greater for the CR-supplemented groups. CR and BET?+?CR groups also showed significant pre- to post-test increase in 1-RM squat and bench press (CR: p?=?0.027 and p?<?0.0001; BET?+?CR: p?=?0.03 and p?<?0.0001 for upper- and lower-body assessments, respectively) No significant differences for 1-RM strength and power were observed between BET versus PL and CR versus BET?+?CR. Body composition did not differ between the groups. In conclusion, we reported that betaine supplementation does not augment muscle PCr content. Furthermore, we showed that betaine supplementation combined or not with creatine supplementation does not affect strength and power performance in untrained subjects.  相似文献   

7.
To determine whether creatine monohydrate supplementation would improve performance during a submaximal treadmill run interspersed with high-intensity intervals, 15 college soccer players (8 women, 7 men) received either creatine or a maltodextrin placebo at 0.3 g.kg body mass per day for 6 days. The speed of the treadmill was constant at 160.8 m.min, and every 2 minutes the grade was elevated to 15%. Each hill segment was 1 minute long. At the end of the 20-minute protocol, the treadmill was again elevated to 15% and held there until volitional exhaustion occurred. There was a significant treatment effect of creatine supplementation on body mass (p < 0.05) in the men; however, no significant differences were observed in the women (p > 0.05). There were no treatment effects (p > 0.05) on time to exhaustion, ratings of perceived exertion, or blood lactate concentration. There was a tendency for blood lactate levels to be lower after short-term creatine supplementation in the women, but this was not statistically significant. Based on these results, it appears that creatine supplementation does not improve performance in submaximal running interspersed with high-intensity intervals.  相似文献   

8.
We have evaluated the effect of a creatine supplementation protocol upon inflammatory and muscle soreness markers: creatine kinase (CK), lactate dehydrogenase (LDH), prostaglandin E2) (PGE2) and tumor necrosis factor-alpha (TNF-alpha) after running 30km. Runners with previously experience in running marathons, with their personal best between 2.5-3h were supplemented for 5 days prior to the 30km race with 4 doses of 5g of creatine and 15g of maltodextrine per day while the control group received the same amount of maltodextrine. Pre-race blood samples were collected immediately before running the 30km, and 24h after the end of the test (the post-race samples). After the test, athletes from the control group presented an increase in plasma CK (4.4-fold), LDH (43%), PGE2 6.6-fold) and TNF-alpha (2.34-fold) concentrations, indicating a high level of cell injury and inflammation. Creatine supplementation attenuated the changes observed for CK (by 19%), PGE2 and TNF-alpha (by 60.9% and 33.7%, respectively, p<0.05) and abolished the increase in LDH plasma concentration observed after running 30km, The athletes did not present any side effects such as cramping, dehydration or diarrhea, neither during the period of supplementation, nor during the 30km race. All the athletes finished the race in a time equivalent to their personal best +/- 5.8%. These results indicate that creatine supplementation reduced cell damage and inflammation after an exhaustive intense race.  相似文献   

9.
To determine the effect of dietary protein level on experimental hyperhomocysteinemia, rats were fed 10% casein (10C) and 40% casein (40C) diets with or without 0.5% guanidinoacetic acid (GAA) for 14 d. In addition, rats were fed 10C + 0.75% methionine (10CM) and 40C + 0.75% methionine (40CM) diets with or without 2.5% serine for 14 d to determine the relationship between the dietary protein level and intensity of the hypohomocysteinemic effect of serine. GAA supplementation markedly increased the plasma homocysteine concentration in rats fed with the 10C diet, whereas it did not increase the plasma homocysteine concentration in rats fed with the 40C diet. Although serine supplementation significantly suppressed the methionine-induced enhancement of plasma homocysteine concentration, the decreased plasma homocysteine concentration was significantly lower in rats fed with the 40CM diet than in rats fed with the 10CM diet. The hepatic cystathionine β-synthase and betaine-homocysteine S-methyltransferase activities were significantly higher in rats fed with the 40C or 40CM diet than in rats fed with the 10C or 10CM diet, irrespective of supplementation with GAA and serine. These results indicate that the high-casein diet was effective for both suppressing GAA-induced hyperhomocysteinemia and potentiating the hypohomocysteinemic effect of serine, probably through the enhanced activity of homocysteine-metabolizing enzymes.  相似文献   

10.
This study examined the effect of simultaneous supplementation of creatine and sodium bicarbonate on consecutive maximal swims. Sixteen competitive male and female swimmers completed, in a randomized order, 2 different treatments (placebo and a combination of creatine and sodium bicarbonate) with 30 days of washout period between treatments in a double-blind crossover procedure. Both treatments consisted of placebo or creatine supplementation (20 g per day) in 6 days. In the morning of the seventh day, there was placebo or sodium bicarbonate supplementation (0.3 g per kg body weight) during 2 hours before a warm-up for 2 maximal 100-m freestyle swims that were performed with a passive recovery of 10 minutes in between. The first swims were similar, but the increase in time of the second versus the first 100-m swimming time was 0.9 seconds less (p < 0.05) in the combination group than in placebo. Mean blood pH was higher (p < 0.01-0.001) in the combination group than in placebo after supplementation on the test day. Mean blood pH decreased (p < 0.05) similarly during the swims in both groups. Mean blood lactate increased (p < 0.001) during the swims, but there were no differences in peak blood lactate between the combination group (14.9 +/- 0.9 mmol.L(-1)) and placebo (13.4 +/- 1.0 mmol.L(-1)). The data indicate that simultaneous supplementation of creatine and sodium bicarbonate enhances performance in consecutive maximal swims.  相似文献   

11.
The intracellular creatine concentration is an important bioenergetic parameter in cardiac muscle. Although creatine uptake is known to be via a NaCl-dependent creatine transporter (CrT), its localization and regulation are poorly understood. We investigated CrT kinetics in isolated perfused hearts and, by using cardiomyocytes, measured CrT content at the plasma membrane or in total lysates. Rats were fed control diet or diet supplemented with creatine or the creatine analog beta-guanidinopropionic acid (beta-GPA). Creatine transport in control hearts followed saturation kinetics with a K(m) of 70 +/- 13 mM and a V(max) of 3.7 +/- 0.07 nmol x min(-1) x g wet wt(-1). Creatine supplementation significantly decreased the V(max) of the CrT (2.7 +/- 0.17 nmol x min(-1) x g wet wt(-1)). This was matched by an approximately 35% decrease in the plasma membrane CrT; the total CrT pool was unchanged. Rats fed beta-GPA exhibited a >80% decrease in tissue creatine and increase in beta-GPA(total). The V(max) of the CrT was increased (6.0 +/- 0.25 nmol x min(-1) x g wet wt(-1)) and the K(m) decreased (39.8 +/- 3.0 mM). The plasma membrane CrT increased about fivefold, whereas the total CrT pool remained unchanged. We conclude that, in heart, creatine transport is determined by the content of a plasma membrane isoform of the CrT but not by the total cellular CrT pool.  相似文献   

12.
Creatine is a nutritional supplement with major application as ergogenic and neuroprotective substrate. Varying supplementation protocols differing in dosage and duration have been applied but systematic studies of total creatine (creatine and phosphocreatine) content in the various organs of interest are lacking. We investigated changes of total creatine concentrations in brain, muscle, heart, kidney, liver, lung and venous/portal plasma of guinea pigs, mice and rats in response to 2-8 weeks oral creatine-monohydrate supplementation (1.3-2 g/kg/d; 1.4-2.8% of dietary intake). Analysis of creatine and phosphocreatine content was performed by high performance liquid chromatography. Total creatine was determined as the sum of creatine and phosphocreatine. Presupplementation total creatine concentrations were high in brain, skeletal and heart muscle (10-22 micromol/g wet weight), and low in liver, kidney and lung (5-8 micromol/g wet weight). During creatine supplementation, the relative increase of total creatine was low (15-55% of presupplementation values) in organs with high presupplementation concentrations, and high (260-500% of presupplementation values) in organs with low presupplementation concentrations. The increase of total creatine concentrations was most pronounced after 4 weeks of supplementation. In muscle, brain, kidney and lungs, an additional increase (p<0.01) was observed between 2-4 and 2-8 weeks of supplementation. Absolute concentrations of phosphocreatine increased, but there was no increase of the relative (percentual) proportion of phosphocreatine (14-45%) during supplementation. Statistical comparison of total creatine concentrations across the species revealed no systematically differences in organ distribution and in time points of supplementation. Results suggest that in organs with low presupplementation creatine levels (liver, kidney), a major determinant of creatine uptake is an extra-intracellular concentration gradient. In organs with high presupplementation total creatine levels like brain, skeletal and heart muscle, the maximum capacity of creatine accumulation is low compared to other organs. A supplementation period of 2 to 4 weeks is necessary for significant augmentation of the creatine pool in these organs.  相似文献   

13.
Recent findings have indicated that creatine supplementation may affect glucose metabolism. This study aimed to examine the effects of creatine supplementation, combined with aerobic training, on glucose tolerance in sedentary healthy male. Subjects (n = 22) were randomly divided in two groups and were allocated to receive treatment with either creatine (CT) ( approximately 10 g . day over three months) or placebo (PT) (dextrose). Administration of treatments was double blind. Both groups underwent moderate aerobic training. An oral glucose tolerance test (OGTT) was performed and both fasting plasma insulin and the homeostasis model assessment (HOMA) index were assessed at the start, and after four, eight and twelve weeks. CT demonstrated significant decrease in OGTT area under the curve compared to PT (P = 0.034). There were no differences between groups or over time in fasting insulin or HOMA. The results suggest that creatine supplementation, combined with aerobic training, can improve glucose tolerance but does not affect insulin sensitivity, and may warrant further investigation with diabetic subjects.  相似文献   

14.
Dietary supplementation with beetroot juice (BR) has been shown to reduce resting blood pressure and the O(2) cost of submaximal exercise and to increase tolerance to high-intensity cycling. We tested the hypothesis that the physiological effects of BR were consequent to its high NO(3)(-) content per se, and not the presence of other potentially bioactive compounds. We investigated changes in blood pressure, mitochondrial oxidative capacity (Q(max)), and physiological responses to walking and moderate- and severe-intensity running following dietary supplementation with BR and NO(3)(-)-depleted BR [placebo (PL)]. After control (nonsupplemented) tests, nine healthy, physically active male subjects were assigned in a randomized, double-blind, crossover design to receive BR (0.5 l/day, containing ~6.2 mmol of NO(3)(-)) and PL (0.5 l/day, containing ~0.003 mmol of NO(3)(-)) for 6 days. Subjects completed treadmill exercise tests on days 4 and 5 and knee-extension exercise tests for estimation of Q(max) (using (31)P-magnetic resonance spectroscopy) on day 6 of the supplementation periods. Relative to PL, BR elevated plasma NO(2)(-) concentration (183 ± 119 vs. 373 ± 211 nM, P < 0.05) and reduced systolic blood pressure (129 ± 9 vs. 124 ± 10 mmHg, P < 0.01). Q(max) was not different between PL and BR (0.93 ± 0.05 and 1.05 ± 0.22 mM/s, respectively). The O(2) cost of walking (0.87 ± 0.12 and 0.70 ± 0.10 l/min in PL and BR, respectively, P < 0.01), moderate-intensity running (2.26 ± 0.27 and 2.10 ± 0.28 l/min in PL and BR, respectively, P < 0.01), and severe-intensity running (end-exercise O(2) uptake = 3.77 ± 0.57 and 3.50 ± 0.62 l/min in PL and BL, respectively, P < 0.01) was reduced by BR, and time to exhaustion during severe-intensity running was increased by 15% (7.6 ± 1.5 and 8.7 ± 1.8 min in PL and BR, respectively, P < 0.01). In contrast, relative to control, PL supplementation did not alter plasma NO(2)(-) concentration, blood pressure, or the physiological responses to exercise. These results indicate that the positive effects of 6 days of BR supplementation on the physiological responses to exercise can be ascribed to the high NO(3)(-) content per se.  相似文献   

15.
effect of oral creatine supplementation (CR; 5 g/day) in conjunction with exercise training on physical fitness was investigated in men between 55 and 75 yr of age (n = 46). A double-blind randomized placebo-controlled (PL) trial was performed over a 6-mo period. Furthermore, a subgroup (n = 20) completed a 1-yr follow-up. The training program consisted of cardiorespiratory endurance training as well as moderate resistance training (2-3 sessions/wk). Endurance capacity was evaluated during a maximal incremental bicycle ergometer test, maximal isometric strength of the knee-extensor muscles was assessed by an isokinetic dynamometer, and body composition was assessed by hydrostatic weighing. Furthermore, in a subgroup (PL: n = 13; CR: n = 12) biopsies were taken from m. vastus lateralis to determine total creatine (TCr) content. In PL, 6 mo of training increased peak oxygen uptake rate (+16%; P < 0.05). Fat-free mass slightly increased (+0.3 kg; P < 0.05), whereas percent body fat slightly decreased (-1.2%; P < 0.05). The training intervention did not significantly change either maximal isometric strength or body weight. The responses were independent of CR. Still, compared with PL, TCr was increased by approximately 5% in CR, and this increase was closely correlated with initial muscle creatine content (r = -0.78; P < 0.05). After a 1-yr follow-up, muscle TCr was not higher in CR than in PL. Furthermore, the other measurements were not affected by CR. It is concluded that long-term creatine intake (5 g/day) in conjunction with exercise training does not beneficially impact physical fitness in men between 55 and 75 yr of age.  相似文献   

16.
The purpose of the present investigation was to examine the effects of 28 days of polyethylene glycosylated creatine (PEG-creatine) supplementation on 1-repetition maximum bench press (1RMBP) and leg extension (1RMLE), mean power (MP), and peak power (PP) from the Wingate Anaerobic test and body weight (BW). This study used a randomized, double-blind, placebo-controlled, parallel design. Twenty-two untrained men (mean age ± SD = 22.1 ± 2.1 years) were randomly assigned to either a Creatine (n = 10) or Placebo (n = 12) group. The Creatine group ingested PEG-creatine (5 g·d), whereas the Placebo group ingested maltodextrin powder (5 g·d). All subjects performed bench press and bilateral leg extension exercises to determine their 1RM values, and 2 consecutive Wingate Anaerobic Tests (separated by 7 minutes) on a cycle ergometer to determine MP and PP before supplementation (day 0) and after 7 (day 7) and 28 (day 28) days of supplementation. The results indicated that there was a significant (p < 0.05) increase in 1RMBP between days 0 and 28 for the Creatine group but not for the Placebo group. There were no significant changes, however, in 1RMLE, MP, PP, or BW for the Creatine or Placebo group. These findings indicated that 28 days of PEG-creatine supplementation without resistance training increased upper body strength but not lower body strength or muscular power. These findings supported the use of the PEG-creatine supplement for increasing 1RMBP strength in untrained individuals.  相似文献   

17.
This study examined the effects of supplementation with either creatine monohydrate powder in solution (CP) or a widely available creatine serum (CS) on performance in a repeated maximal sprint cycling test (10 x 6 seconds, 24-second passive rest between sprints). Using a randomized, double-blind, crossover design, 11 competitive male athletes supplemented with creatine in 2 forms according to the manufacturer's recommendations on 2 separate occasions. The 2 supplementation protocols were (a) 20 g.day(-1) x 6 days of creatine powder in solution plus a placebo serum (CP) or (b) 5 ml.day(-1) x 6 days of creatine serum plus a placebo powder (CS). Subjects completed 2 familiarization trials before the 6-day supplementation period. A repeated maximal sprint cycling test was performed prior to and immediately postsupplementation. A 7-week washout period separated the 2 supplementation protocols. Subjects' total work (9.6%) and peak power (3.4%) in the cycle sprint improved significantly (p < 0.05) after loading with CP, but there was little change after loading with CS. The present data support previous research findings showing an ergogenic effect of CP supplementation but indicate that supplementation with CS does not affect sprint cycling performance. Although the levels of creatine in each formulation were not determined, a substantial conversion of creatine into creatinine has been reported in many formulations and may explain the present findings.  相似文献   

18.
Effects of creatine supplementation on performance and training adaptations   总被引:7,自引:0,他引:7  
Creatine has become a popular nutritional supplement among athletes. Recent research has also suggested that there may be a number of potential therapeutic uses of creatine. This paper reviews the available research that has examined the potential ergogenic value of creatine supplementation on exercise performance and training adaptations. Review of the literature indicates that over 500 research studies have evaluated the effects of creatine supplementation on muscle physiology and/or exercise capacity in healthy, trained, and various diseased populations. Short-term creatine supplementation (e.g. 20 g/day for 5–7 days) has typically been reported to increase total creatine content by 10–30% and phosphocreatine stores by 10–40%. Of the approximately 300 studies that have evaluated the potential ergogenic value of creatine supplementation, about 70% of these studies report statistically significant results while remaining studies generally report non-significant gains in performance. No study reports a statistically significant ergolytic effect. For example, short-term creatine supplementation has been reported to improve maximal power/strength (5–15%), work performed during sets of maximal effort muscle contractions (5–15%), single-effort sprint performance (1–5%), and work performed during repetitive sprint performance (5–15%). Moreover, creatine supplementation during training has been reported to promote significantly greater gains in strength, fat free mass, and performance primarily of high intensity exercise tasks. Although not all studies report significant results, the preponderance of scientific evidence indicates that creatine supplementation appears to be a generally effective nutritional ergogenic aid for a variety of exercise tasks in a number of athletic and clinical populations.  相似文献   

19.
Rawson ES  Venezia AC 《Amino acids》2011,40(5):1349-1362
The ingestion of the dietary supplement creatine (about 20 g/day for 5 days or about 2 g/day for 30 days) results in increased skeletal muscle creatine and phosphocreatine. Subsequently, the performance of high-intensity exercise tasks, which rely heavily on the creatine-phosphocreatine energy system, is enhanced. The well documented benefits of creatine supplementation in young adults, including increased lean body mass, increased strength, and enhanced fatigue resistance are particularly important to older adults. With aging and reduced physical activity, there are decreases in muscle creatine, muscle mass, bone density, and strength. However, there is evidence that creatine ingestion may reverse these changes, and subsequently improve activities of daily living. Several groups have demonstrated that in older adults, short-term high-dose creatine supplementation, independent of exercise training, increases body mass, enhances fatigue resistance, increases muscle strength, and improves the performance of activities of daily living. Similarly, in older adults, concurrent creatine supplementation and resistance training increase lean body mass, enhance fatigue resistance, increase muscle strength, and improve performance of activities of daily living to a greater extent than resistance training alone. Additionally, creatine supplementation plus resistance training results in a greater increase in bone mineral density than resistance training alone. Higher brain creatine is associated with improved neuropsychological performance, and recently, creatine supplementation has been shown to increase brain creatine and phosphocreatine. Subsequent studies have demonstrated that cognitive processing, that is either experimentally (following sleep deprivation) or naturally (due to aging) impaired, can be improved with creatine supplementation. Creatine is an inexpensive and safe dietary supplement that has both peripheral and central effects. The benefits afforded to older adults through creatine ingestion are substantial, can improve quality of life, and ultimately may reduce the disease burden associated with sarcopenia and cognitive dysfunction.  相似文献   

20.
To determine if 6 weeks of supplementation with vitamins E and C could alleviate exercise-induced lipid peroxidation and inflammation, we studied 22 runners during a 50 km ultramarathon. Subjects were randomly assigned to one of two groups: (1) placebos (PL) or (2) antioxidants (AO: 1000 mg vitamin C and 300 mg RRR-alpha-tocopheryl acetate). Blood samples were obtained prior to supplementation (baseline), after 3 weeks of supplementation, 1 h pre-, mid-, and postrace, 2 h postrace and for 6 days postrace. Plasma levels of alpha-tocopherol (alpha-TOH), ascorbic acid (AA), uric acid (UA), F2-isoprostanes (F2-IsoPs), tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and C-reactive protein (CRP) were measured. With supplementation, plasma alpha-TOH and AA increased in the AO but not the PL group. Although F2-IsoP levels were similar between groups at baseline, 28 +/- 2 (PL) and 27 +/- 3 pg/ml (AO), F2-IsoPs increased during the run only in the PL group (41 +/- 3 pg/ml). In PL women, F2-IsoPs were elevated postrace (p <.01), but returned to prerace concentrations by 2 h postrace. In PL men, F2-IsoP concentrations were higher postrace, 2 h postrace, and 1, 2, 3, 4, and 6 days postrace (PL vs. AO group, each p <.03). Markers of inflammation were increased dramatically in response to the run regardless of treatment group. Thus, AO supplementation prevented endurance exercise-induced lipid peroxidation but had no effect on inflammatory markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号