首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are no published data on the reliability of competitive strength performance, even though it has a pronounced effect on athletes' medal prospects and the ability of coaches and athletes to identify factors that affect competitive performance. The purpose of this investigation was to analyze the reliability of elite olympic weightlifters over a series of international weightlifting meets. We obtained official results of international competitions over an 18-month period from 1999 until the 2000 Olympic Games at the International Weightlifting Federation website. The measure of reliability was the typical within-athlete variation, derived as the coefficient of variation (CV) by 2-way analysis of variance of log-transformed weights lifted for the snatch, clean and jerk, and total. The results of this analysis were (a) within-athlete variations were as follows: snatch, 2.7% (95% likely range, 2.4-3.2%); clean and jerk, 2.3% (1.7-3.6%); total weight lifted, 2.5% (2.2-2.9%); (b) men and women: the variation was higher for the women compared with the men in both snatch (ratio of CV, 1.4) and clean and jerk (ratio of CV, 1.5), and for the total weight lifted (ratio of CV, 1.3); and (c) the top 5 athletes were almost always more reliable than the bottom-half athletes. Recent work has shown that the smallest worthwhile performance is about half the within-athlete variation, so coaches and sport scientists should focus on enhancements of as little as 1.2% in total weight lifted for elite olympic weightlifters.  相似文献   

2.
The purpose of this investigation was to study the effects of an 11-week training period performed by female weightlifters. Two weeks before this investigation, baseline measures for total testosterone, cortisol, and testosterone:cortisol ratio were collected. The 11-week training program consisted of the core exercises (i.e., clean, clean and jerk, and snatch) and other supplemental exercises (i.e., clean pull, snatch pull, squat, and front squat). Hormonal, isometric, and dynamic middle thigh pull force-time curve characteristics were assessed biweekly throughout the duration of the investigation, whereas volume load and training intensity were assessed weekly throughout the investigation. The testosterone:cortisol ratio of the baseline (1.19 +/- 0.64) was significantly different from the ratio of weeks 1 (0.67 +/- 0.36) and 9 (0.94 +/- 0.66). When the week-to-week values were compared, week 1 (0.67 +/- 0.36) was significantly different (P < 0.05; eta = 0.84) from week 3 (1.06 +/- 0.54). A very strong correlation (r = -0.83; r = 0.69) was found between the percentage change of the testosterone:cortisol ratio and volume load from weeks 1 to 11. Moderate to very strong correlations were noted between the percentage change in volume load and isometric peak force, peak force during the 30% isometric peak force trial, and peak force during the 100-kg trial during the 11 weeks of training. The primary finding of this study was that alterations in training volume load can result in concomitant changes in the anabolic-to-catabolic balance, as indicated by the testosterone:cortisol ratio, and the ability to generate maximal forces.  相似文献   

3.
The present study aimed to examine the effect of pennation angle on the force per cross-sectional area for elbow extensor muscles in strength-trained athletes. A total of 52 male bodybuilders (n = 32) and Olympic weightlifters (n = 20) did maximal isometric elbow extension on an isokinetic dynamometer. Muscle cross-sectional area (CSA) and muscle-fiber pennation angle (PA) of the triceps brachii muscles were measured by ultrasonography. Bodybuilders had significantly greater isometric elbow extension force (F), CSA and PA than weightlifters. The ratio of force to CSA (F/CSA) of bodybuilders was significantly lower than that of weightlifters. A significant positive correlation was observed between CSA and PA in both groups (r = 0.832, P < 0.001, and r = 0.682, P < 0.001, for bodybuilders and weightlifters, respectively). The F/CSA was negatively correlated to PA both for bodybuilders (r = -0.408, P < 0.05) and weightlifters (r = -0.465, P < 0.05). Thus present study indicates that the larger pennation angle is associated with the lower force relative to muscle CSA in strength-trained athletes.  相似文献   

4.
This study examined the effects of training volume and competition on the salivary cortisol (Sal-C) concentrations of Olympic weightlifters. Male (n = 5) and female (n = 4) Olympic weightlifters provided saliva samples across a 5-week experimental = period. The first aim was to assess the weekly effects of high (≥ 200 sets) and low (≤ 100 sets) training volume on Sal-C. The second aim was to compare Sal-C concentrations and 1 repetition maximum (1RM) performance during 2 simulated and 2 actual competitions. Performance was assessed using the snatch, clean and jerk, and the Olympic total lift. Data from each competition setting were pooled before analysis. There were no significant weekly changes in Sal-C levels (p > 0.05). The actual competitions produced higher (128-130%) Sal-C concentrations (p < 0.001) and superior 1RM lifts (1.9-2.6%) for the clean and jerk, and the Olympic total, than the simulated competitions (p < 0.05). Individual Sal-C concentrations before the simulated competitions were positively correlated to all of the 1RM lifts (r = 0.48-0.49, p < 0.05). In conclusion, actual competitions produced greater Sal-C responses than simulated competitions, and this appeared to benefit the 1RM performance of Olympic weightlifters. Individuals with higher Sal-C concentrations also tended to exhibit superior 1RM lifts during the simulated competitions. Given these findings, greater emphasis should be placed upon the monitoring of C to establish normative values, training standards and to assist with performance prediction.  相似文献   

5.
The majority of the research to date on weightlifting has focused on men competitors. This study attempted to bridge the sex-based gap evident in the scientific literature. The performances of 10 women weightlifters competing in the 1999 United States national championships were analyzed. The performance of the athletes competing in the 69-kg class was recorded and analyzed using a Peak5 2D Motion Analysis system. The purpose of this study was 3-fold: (a) analyze the horizontal bar displacement of women weightlifters, (b) analyze key kinematic variables related to performance, and (c) compare the power outputs of the first, second, and total pulls in the snatch. Less than half (<50%) of the snatch attempts demonstrated by the women weightlifters in this study displayed the optimal toward-away-toward horizontal bar trajectory reported elsewhere. The women in this study demonstrated greater drop displacement and drop under times than those previously reported for men weightlifters. They also demonstrated lesser maximal vertically velocities of the barbell than those reported for world class women weightlifters. These women weightlifters demonstrated statistically significant differences (p < 0.05) during each phase of the snatch, and total power output values were comparable to values previously reported. The results of this study suggest that women demonstrate performance characteristics that differ subtly from those reported in men weightlifters. Knowledge of performance measures during the snatch may help coaches and athletes more fully refine the training leading to competition.  相似文献   

6.
The objectives of this study were to determine the mechanical work, the power output, and the angular kinematics of the lower limb and the linear kinematics of the barbell during the first and second pulls in the snatch lift event of the 2010 Women's World Weightlifting Championship, an Olympic qualifying competition, and to compare the snatch performances of the women weightlifters to those reported in the literature. The heaviest successful snatch lifts of 7 female weightlifters who won gold medals were analyzed. The snatch lifts were recorded using 2 Super-Video Home System cameras (50 fields·s), and points on the body and the barbell were manually digitized using the Ariel Performance Analysis System. The results revealed that the duration of the first pull was significantly greater than the duration of the transition phase, the second pull, and the turnover under the barbell (p < 0.05). The maximum extension velocities of the lower limb in the second pull were significantly greater than the maximum extension velocities in the first pull. The fastest extensions were observed at the knee joint during the first pull and at the hip joint during the second pull (p < 0.05). The barbell trajectories for the heaviest snatch lifts of these elite female weightlifters were similar to those of men. The maximum vertical velocity of the barbell was greater during the second pull than in the first pull (p < 0.05). The mechanical work performed in the first pull was greater than the second pull, and the power output during the second pull was greater than that of the first pull (p < 0.05). Although the magnitudes of the barbell's linear kinematics, the angular kinematics of the lower limb, and other energy characteristics did not exactly reflect those reported in the literature, the snatch lift patterns of the elite women weightlifters were similar to those of male weightlifters.  相似文献   

7.
The purpose of this investigation was to determine the relationship between countermovement vertical jump (CMJ) performance and various methods used to assess isometric and dynamic multijoint strength. Twelve NCAA Division I-AA male football and track and field athletes (age, 19.83 +/- 1.40 years; height, 179.10 +/- 4.56 cm; mass, 90.08 +/- 14.81 kg; percentage of body fat, 11.85 +/- 5.47%) participated in 2 testing sessions. The first session involved 1 repetition maximum (1RM) (kg) testing in the squat and power clean. During the second session, peak force (N), relative peak force (N x kg(-1)), peak power (W), relative peak power (W x kg(-1)), peak velocity (m x s(-1)), and jump height (meters) in a CMJ, and peak force and rate of force development (RFD) (N x s(-1)) in a maximal isometric squat (ISO squat) and maximal isometric mid-thigh pull (ISO mid-thigh) were assessed. Significant correlations (P < or = 0.05) were found when comparing relative 1RMs (1RM/body mass), in both the squat and power clean, to relative CMJ peak power, CMJ peak velocity, and CMJ height. No significant correlations existed between the 4 measures of absolute strength, which did not account for body mass (squat 1RM, power clean 1RM, ISO squat peak force, and ISO mid-thigh peak force) when compared to CMJ peak velocity and CMJ height. In conclusion, multijoint dynamic tests of strength (squat 1RM and power clean 1RM), expressed relative to body mass, are most closely correlated with CMJ performance. These results suggest that increasing maximal strength relative to body mass can improve performance in explosive lower body movements. The squat and power clean, used in a concurrent strength and power training program, are recommended for optimizing lower body power.  相似文献   

8.
Eight male collegiate weightlifters (age: 21.2 +/- 0.9 years; height: 177.6 +/- 2.3 cm; and body mass: 85.1 +/- 3.3 kg) participated in this study to compare isometric to dynamic force-time dependent variables. Subjects performed the isometric and dynamic mid-thigh clean pulls at 30-120% of their one repetition maximum (1RM) power clean (118.4 +/- 5.5 kg) on a 61 x 121.9-cm AMTI forceplate. Variables such as peak force (PF) and peak rate of force development (PRFD) were calculated and were compared between isometric and dynamic conditions. The relationships between force-time dependent variables and vertical jump performances also were examined. The data indicate that the isometric PF had no significant correlations with the dynamic PF against light loads. On the one hand, there was a general trend toward stronger relationships between the isometric and dynamic PF as the external load increased for dynamic muscle actions. On the other hand, the isometric and dynamic PRFD had no significant correlations regardless of the external load used for dynamic testing. In addition, the isometric PF and dynamic PRFD were shown to be strongly correlated with vertical jump performances, whereas the isometric PRFD and dynamic PF had no significant correlations with vertical jump performances. In conclusion, it appears that the isometric and dynamic measures of force-time curve characteristics represent relatively specific qualities, especially when dynamic testing involves small external loads. Additionally, the results suggest that athletes who possess greater isometric maximum strength and dynamic explosive strength tend to be able to jump higher.  相似文献   

9.
The purpose of the current research was the comparison of the snatch technique between elite male and female weightlifters. Two S-VHS cameras operating at 60 fields per second were used to record the snatch lifts of 6 male and 6 female Greek weightlifters under competitive conditions. The spatial coordinates of selected points on the body and the barbell were calculated using the direct linear transformation procedure, and the raw data were digitally filtered with a cutoff frequency of 4 Hz. Analyses of variance for dependent and independent samples were used to compare the selected variables in men with the corresponding variables in women. The results revealed that women flexed their knees significantly less and slower than men did during the transition phase (p < 0.05). Women also dropped under the barbell during the turnover and catch phases significantly less and slower than men did (p < 0.05). Moreover, the external mechanical work for the vertical displacement of the barbell in men was significantly greater in the first pull than in the second pull (p < 0.05). In contrast, women showed similar work outputs in the 2 phases. These differences between the 2 sexes might be because of the lower skill level of women in comparison with men, which is partly because of the recent participation of women in weightlifting.  相似文献   

10.
There is considerable conflict within the literature regarding the relevance of isometric testing for the assessment of neuromuscular function within dynamic sports. The aim of this study was to determine the relationship between isometric measures of force development and dynamic performance. Thirty-nine professional rugby league players participated in this study. Forty-eight hours after trial familiarization, participants performed a maximal isometric midthigh pull, with ~120-130° bend at the knee, countermovement jump (CMJ), and a 10-m sprint. Force-time data were processed for peak force (PF), force at 100 milliseconds (F100ms), and peak rate of force development (PRFD). Analysis was carried out using Pearson's product moment correlation with significance set at p < 0.05. The PF was not related to dynamic performance; however, when expressed relative to body weight, it was significantly correlated with both 10-m time and CMJ height (r = -0.37 and 0.45, respectively, p < 0.05). The F100ms was inversely related to 10-m time (r = -0.54, p < 0.01); moreover, when expressed relative to body weight, it was significantly related to both 10-m time and CMJ height (r = -0.68 and 0.43, p < 0.01). In addition, significant correlations were found between PRFD and 10-m time (r = -0.66, p < 0.01) and CMJ height (r = 0.387, p < 0.01). In conclusion, this study provides evidence that measures of maximal strength and explosiveness from isometric force-time curves are related to jump and sprint acceleration performance in professional rugby league players.  相似文献   

11.
ABSTRACT: Leary, BK, Statler, J, Hopkins, B, Fitzwater, R, Kesling, T, Lyon, J, Phillips, B, Bryner, RW, Cormie, P, and Haff, GG. The relationship between isometric force-time curve characteristics and club head speed in recreational golfers. J Strength Cond Res 26(10): 2685-2697, 2012-The primary purpose of the present investigation was to examine the relationships between club head speed, isometric midthigh pull performance, and vertical jump performance in a cohort of recreational golfers. Twelve recreational golfers (age, 20.4 ± 1.0 years; weight, 77.0 ± 9.8 kg; height, 177.8 ± 6.3 cm; body fat, 17.1 ± 7.6%; handicap, 14.5 ± 7.3; experience, 8.9 ± 3.6 years) completed 3 testing sessions: (a) familiarization session and body composition measurements; (b) measurement of force-time curves in the isometric midthigh pull, countermovement, and static vertical jump (SJ); and (c) measurement of club head speed. During sessions 1 and 2, subjects performed 5 countermovement jumps, 5 SJ, and 2 isometric midthigh pulls. Isometric peak force was measured at 30, 50, 90, 100, 200, and 250 milliseconds. Rate of force development was measured among 0-30, 0-50, 0-90, 0-100, 0-200, and 0-250 milliseconds. Peak rate of force development was determined as the highest value in a 10-millisecond sampling windows. During session 3, subjects performed 10 maximal golf swings with a driver to measure club head speed; peak and average club head speed were analyzed across the 10 swings. Golf handicap was moderately correlated with average (r = -0.52, p = 0.04) and maximal club head speed (r = -0.45, p = 0.07). Force at 150 milliseconds during the isomeric midthigh pull test was moderately correlated with average (r = 0.46, p = 0.07) and maximal club head speed (r = 0.47, p = 0.06). Moderate correlations were also found between the rate of force development from 0 to 150 milliseconds and average (r = 0.38, p = 0.11) and maximal club head speed (r = 0.36, p = 0.12). The present findings suggest that the ability to exhibit high ground reaction forces in time frames <200 milliseconds are related to high club head speeds.  相似文献   

12.
This work compares the specific effects of 3 mo of moderate, isometric, or dynamic voluntary exercises on the contractile properties of human adductor pollicis muscle. Isometric training consisted of 10 daily contractions of 5-s duration at the frequency of one contraction per minute. Dynamic training consisted of 10 daily series of 10 fast contractions (less than 0.5-s duration) moving a load of one-third of the maximal muscle strength at a frequency of one series per minute. Both training programs produced a concomitant increase in maximal tetanic tension and in peak rate of tension development (Ro). A larger increase (P less than 0.05) was found after isometric training (20 vs. 11% after dynamic exercises), whereas Ro augmented more (P less than 0.05) after dynamic contractions (31 vs. 18% after isometric training). Enhancements of twitch force (Pt), rates of twitch tension development (Rt), and of relaxation (St) were, respectively, 20, 20, and 12% after isometric training. There was no modification of contraction time and time of half relaxation (T 1/2R). Conversely, dynamic training produced increases of Rt (25%) and St (16%), associated with an apparently paradoxical decrease of Pt (10%) and reductions of contraction time (11%) and T 1/2R (9%). Maximal shortening velocity was only increased after dynamic training (21%), whereas the maximal muscle power presented a large increase (P less than 0.05) after isometric exercises (51 vs. 19% after dynamic exercises) and a shift of its optimal peak toward heavier loads. This study suggests that human muscle adapts differently to isometric or to dynamic training programs and provides evidence that its contractile kinetics can be altered by exercises performed in physiological conditions.  相似文献   

13.
Presently the degree to which peak force influences power production or explosive performance such as strength training movements or throwing (shot-put and weight-throw) is unclear. This study describes the relationships between a measure of maximum strength, isometric peak force (IPF), dynamic peak force (PF), peak power (PP), the 1-repetition movement power snatch (SN), and throwing ability over an 8-week training period. Five male and 6 female (n = 11) well-trained collegiate throwers participated. PF was measured using an AMTI force plate; PP was measured using an infrared-ultrasonic tracking device (V-Scope, Lipman Electronics). Clean pulls from the midthigh position were assessed isometrically and dynamically at a constant load, 30% and 60% of IPF. Specific explosive strength was evaluated using an SN and using the shot-put (SP) and weight-throw (WGT) measured under meet conditions. Variables (PF, PP, SN) were assessed 3 times at 0 weeks, 4 weeks, and 8 weeks. Each measurement period preceded a field meet by 3 days. Peak force, peak rate of force development, and PP increased over the 8 weeks. Correlation coefficients (r) indicate that IPF is strongly related to dynamic PF and PP 30%, 60% of the IPF. Furthermore, strong correlations were found for the SN and the distance for the SP and WGT, and these relationships tended to increase over time. Results suggest that maximum strength (i.e., IPF) is strongly associated with dynamic PF. In addition, maximum strength is strongly associated with PP even at relatively light loads such as those associated with sport-specific dynamic explosiveness (i.e., SN, SP, WGT).  相似文献   

14.
To determine differences in anthropometric, body composition, physiological and neuromuscular markers between elite and amateur female wrestlers, 35 female wrestlers were assigned into 4 groups according to their body mass (light and middle weight) and their competitive level (elite and amateur): light weight (between 49 and 58 kg) in elite (n = 6) and amateur (n = 12) levels, and middle weight (between 58 and 67 kg) in elite (n = 7) and amateur (n = 10) levels. A binary logistic regression analysis was performed to identify which variables better predict female wrestling success. Elite female wrestlers were older (8-10%), had more training experience (27-29%), fat-free mass (3%), maximum strength in absolute and allometrically scaled values (13-33%), maximal muscle power (16-34%), mean and peak power during an arm crank Wingate testing in absolute and allometrically scaled values (17-23%), jumping height (2-9%) and grip (5-13%), and back isometric strength (10-13%) compared with amateur wrestlers (p < 0.05). When the results of the present research and those of a recent study performed in our laboratory with elite male wrestlers were compared, elite women presented lower (p < 0.05) maximum isometric and dynamic strength, muscle power output, and anaerobic metabolism values even when these data were normalized using allometric methods.  相似文献   

15.
The effects of a 1 year training period on 13 elite weight-lifters were investigated by periodical tests of electromyographic, muscle fibre and force production characteristics. A statistically non-significant increase of 3.5% in maximal isometric strength of the leg extensors, from 4841 +/- 1104 to 5010 +/- 1012 N, occurred over the year. Individual changes in the high force portions of the force-velocity curve correlated (p less than 0.05-0.01) with changes in weight-lifting performance. Training months 5-8 were characterized by the lowest average training intensity (77.1 +/- 2.0%), and this resulted in a significant (p less than 0.05) decrease in maximal neural activation (IEMG) of the muscles, while the last four month period, with only a slightly higher average training intensity (79.1 +/- 3.0%), led to a significant (p less than 0.01) increase in maximum IEMG. Individual increases in training intensity between these two training periods correlated with individual increases both in muscular strength (p less than 0.05) and in the weight lifted in the clean & jerk (p less than 0.05). A non-significant increase of 3.9% in total mean muscle fibre area occurred over the year. The present findings demonstrate the limited potential for strength development in elite strength athletes, and suggest that the magnitudes and time courses of neural and hypertrophic adaptations in the neuromuscular system during their training may differ from those reported for previously untrained subjects. The findings additionally indicate the importance of training intensity for modifying training responses in elite strength athletes.  相似文献   

16.
Currently, the degree to which sleep loss influences weightlifting performance is unknown. This study compared the effects of 24 hours of sleep loss on weightlifting performance and subjective ratings of psychological states pre-exercise and postexercise in national-caliber male collegiate weightlifters. Nine males performed a maximal weightlifting protocol following 24 hours of sleep loss and a night of normal sleep. The subjects participated in a randomized, counterbalanced design with each sleep condition separated by 7 days. Testosterone and cortisol levels were quantified prior to, immediately after, and 1 hour after the resistance training session. Additionally, profile of mood states and subjective sleepiness were evaluated at the same time points. The resistance training protocol consisted of several sets of snatches, clean and jerks, and front squats. Performance was evaluated as individual exercise volume load, training intensity and overall workout volume load, and training intensity. During each training session the maximum weight lifted for the snatch, clean and jerk, and front squat were noted. No significant differences were found for any of the performance variables. A significant decrease following the sleep condition was noted for cortisol concentration immediately after and 1 hour postexercise. Vigor, fatigue, confusion, total mood disturbance, and sleepiness were all significantly altered by sleep loss. These data suggest that 24 hours of sleep loss has no adverse effects on weightlifting performance. If an athlete is in an acute period of sleep loss, as noticed by negative mood disturbances, it may be more beneficial to focus on the psychological (motivation) rather than the physiological aspect of the sport.  相似文献   

17.
Stretch-induced force enhancement has been observed in a variety of muscle preparations and on structural levels ranging from single fibers to in vivo human muscles. It is a well-accepted property of skeletal muscle. However, the mechanism causing force enhancement has not been elucidated, although the sarcomere-length non-uniformity theory has received wide support. The purpose of this paper was to re-investigate stretch-induced force enhancement in frog single fibers by testing specific hypotheses arising from the sarcomere-length non-uniformity theory. Single fibers dissected from frog tibialis anterior (TA) and lumbricals (n=12 and 22, respectively) were mounted in an experimental chamber with physiological Ringer's solution (pH=7.5) between a force transducer and a servomotor length controller. The tetantic force-length relationship was determined. Isometric reference forces were determined at optimum length (corresponding to the maximal, active, isometric force), and at the initial and final lengths of the stretch experiments. Stretch experiments were performed on the descending limb of the force-length relationship after maximal tetanic force was reached. Stretches of 2.5-10% (TA) and 5-15% lumbricals of fiber length were performed at 0.1-1.5 fiber lengths/s. The stretch-induced, steady-state, active isometric force was always equal or greater than the purely isometric force at the muscle length from which the stretch was initiated. Moreover, for stretches of 5% fiber length or greater, and initiated near the optimum length of the fiber, the stretch-enhanced active force always exceeded the maximal active isometric force at optimum length. Finally, we observed a stretch-induced enhancement of passive force. We conclude from these results that the sarcomere length non-uniformity theory alone cannot explain the observed force enhancement, and that part of the force enhancement is associated with a passive force that is substantially greater after active compared to passive muscle stretch.  相似文献   

18.
The aim of this study was to investigate the effects of two different frequencies of whole-body vibration (WBV) training on knee extensors muscle strength in healthy young volunteers. Twenty-two eligible healthy untrained young women aged 22-31 years were allocated randomly to the 30-Hz (n=11) and 50-Hz (n=11) groups. They participated in a supervised WBV training program that consisted of 24 sessions on a synchronous vertical vibration platform (peak-to-peak displacement: 2-4 mm; type of exercises: semi-squat, one-legged squat, and lunge positions on right leg; set numbers: 2-24) three times per week for 8 weeks. Isometric and dynamic strength of the knee extensors were measured prior to and at the end of the 8-week training. In the 30-Hz group, there was a significant increase in the maximal voluntary isometric contraction (p=0.039) and the concentric peak torque (p=0.018) of knee extensors and these changes were significant (p<0.05) compared with the 50-Hz group. In addition, the eccentric peak torque of knee extensors was increased significantly in both groups (p<0.05); however, there was no significant difference between the two groups (p=0.873). We concluded that 8 weeks WBV training in 30 Hz was more effective than 50 Hz to increase the isometric contraction and dynamic strength of knee extensors as measured using peak concentric torque and equally effective with 50 Hz in improving eccentric torque of knee extensors in healthy young untrained women.  相似文献   

19.
Bar trajectory during weightlifting movements is related to the position of the body during the lift and the displacement of the feet during the drop-under phase. The purpose of this study was to examine anterior-posterior foot displacement and its relationship with performance in the snatch of collegiate weightlifters. Snatch attempts of men weightlifters from the 1998 U.S.A. Weightlifting Collegiate National Championships were analyzed for horizontal displacement of the feet by video analysis. Lifts were analyzed under 2 conditions: all lifts combined and the heaviest successful attempt for each lifter. Lifts (n = 74) were placed into 4 groups: forward displacement (FD, >2.5 cm); no displacement (ND, +/-2.5 cm); rearward displacement (RD, >2.5 cm); and those that showed asymmetric (AS, >7 cm difference in right and left foot) displacement of the feet. Chi-square revealed no significant difference in success rate between groups for all attempts. No statistically significant differences were noted between groups in body mass to bar mass ratio or Sinclair formula for heaviest successful attempts. Results indicate that foot displacement did not significantly affect snatch success or lifting ability in collegiate national level lifters.  相似文献   

20.
The purpose of this study was to investigate the effects of increased barbell loads on barbell and body kinematics of the snatch lifts at 60, 80, and 100% of 1 repetition maximum and to evaluate the biomechanics of snatch technique. The study was performed on 7 elite male weightlifters of the Turkish national team. Four cameras operating at 50 fields per second were used to record the lifts. For 3D kinematic analysis of center of gravity (CG) and barbell movement, the points on the body and the barbell were digitized by using an Ariel Performance Analysis System. There were significant differences between the vertical work values (p < 0.05). The power values of the 3 snatch lifts were also found to be significantly different (p < 0.05). Another significant difference (p < 0.05) was observed between maximum vertical displacement of the barbell, maximum vertical velocity of the barbell, maximum vertical displacement of CG, the vertical velocity of CG during the turnover under the barbell. The results demonstrated that vertical and horizontal kinematics of the barbell and body decreased at the pull phase of the snatch technique as the barbell load increased. The power output during the second pull increased although the work done did not change, whereas work and power output increased during the first pull phase depending on the increase in the barbell weight. The finding of this study suggested that weightlifters had to perform the turnover under the barbell and the catch phase faster, because when the barbell weight was increased at snatch lift, vertical kinematics of the barbell decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号