首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
An analysis of internal packing defects or "cavities" (both empty and water-containing) within protein structures has been undertaken and includes 3 cavity classes: within domains, between domains, and between protein subunits. We confirm several basic features common to all cavity types but also find a number of new characteristics, including those that distinguish the classes. The total cavity volume remains only a small fraction of the total protein volume and yet increases with protein size. Water-filled "cavities" possess a more polar surface and are typically larger. Their constituent waters are necessary to satisfy the local hydrogen bonding potential. Cavity-surrounding atoms are observed to be, on average, less flexible than their environments. Intersubunit and interdomain cavities are on average larger than the intradomain cavities, occupy a larger fraction of their resident surfaces, and are more frequently water-filled. We observe increased cavity volume at domain-domain interfaces involved with shear type domain motions. The significance of interfacial cavities upon subunit and domain shape complementarity and the protein docking problem, as well as in their structural and functional role in oligomeric proteins, will be discussed. The results concerning cavity size, polarity, solvation, general abundance, and residue type constituency should provide useful guidelines for protein modeling and design.  相似文献   

3.
It is known that water molecules play an important role in the biological functioning of proteins. The members of the ribonuclease A (RNase A) family of proteins, which are sequentially and structurally similar, are known to carry out the obligatory function of cleaving RNA and individually perform other diverse biological functions. Our focus is on elucidating whether the sequence and structural similarity lead to common hydration patterns, what the common hydration sites are and what the differences are. Extensive molecular dynamics simulations followed by a detailed analysis of protein-water interactions have been carried out on two members of the ribonuclease A superfamily-RNase A and angiogenin. The water residence times are analyzed and their relationship with the characteristic properties of the protein polar atoms, such as their accessible surface area and mean hydration, is studied. The capacity of the polar atoms to form hydrogen bonds with water molecules and participate in protein-water networks are investigated. The locations of such networks are identified for both proteins.  相似文献   

4.
Luise A  Falconi M  Desideri A 《Proteins》2000,39(1):56-67
A system containing the globular protein azurin and 3,658 water molecules has been simulated to investigate the influence on water dynamics exerted by a protein surface. Evaluation of water mean residence time for elements having different secondary structure did not show any correlation. Identically, comparison of solvent residence time for atoms having different charge and polarity did not show any clear trend. The main factor influencing water residence time in proximity to a specific site was found to be its solvent accessibility. In detail for atoms belonging to lateral chains and having solvent-accessible surface lower than approximately 16 A(2)a relation is found for which charged and polar atoms are surrounded by water molecules characterized by residence times longer than the non polar ones. The involvement of the low accessible protein atom in an intraprotein hydrogen bond further modulates the length of the water residence time. On the other hand for surfaces having high solvent accessibility, all atoms, independently of their character, are surrounded by water molecules which rapidly exchange with the bulk solvent. Proteins 2000;39:56-67.  相似文献   

5.
Water-protein interactions from high-resolution protein crystallography   总被引:1,自引:0,他引:1  
To understand the role of water in life at molecular and atomic levels, structures and interactions at the protein-water interface have been investigated by cryogenic X-ray crystallography. The method enabled a much clearer visualization of definite hydration sites on the protein surface than at ambient temperature. Using the structural models of proteins, including several hydration water molecules, the characteristics in hydration structures were systematically analysed for the amount, the interaction geometries between water molecules and proteins, and the local and global distribution of water molecules on the surface of proteins. The tetrahedral hydrogen-bond geometry of water molecules in bulk solvent was retained at the interface and enabled the extension of a three-dimensional chain connection of a hydrogen-bond network among hydration water molecules and polar protein atoms over the entire surface of proteins. Networks of hydrogen bonds were quite flexible to accommodate and/or to regulate the conformational changes of proteins such as domain motions. The present experimental results may have profound implications in the understanding of the physico-chemical principles governing the dynamics of proteins in an aqueous environment and a discussion of why water is essential to life at a molecular level.  相似文献   

6.
We study the influence of surface functionalization of a silica surface on insulin adsorption using accelerated molecular dynamics simulation. Three different functional groups are studied, CH3, OH, and COOH. Due to the partial charges of these groups, the surface polarity of silica is strongly altered. We find that the adsorption energies of insulin change in agreement with the decreasing surface polarity. Conformational changes in the adsorbed protein and the magnitude of the molecular dipole moment in the adsorbed state are consistent with this result. We conclude that protein adsorption on functionalized polar surfaces is governed by the induced changes in surface polarity.  相似文献   

7.
T4溶菌酶晶体分子堆积的研究   总被引:1,自引:1,他引:0  
以不对称单位中只有一个分子的10种不同晶型的T4溶菌酶晶体为材料,对晶体中的分子堆积进行了研究,结果表明,在溶剂含量较高的晶型中,非极性基团在接触面积中所占的比例略高于溶剂含量较低的晶型,而其极性和带电荷基团在接触面积中所占的比例略低于溶剂含量较低的晶型。溶剂含量较高的晶型多含有晶体学二重轴,二重轴相关的分子间的接触与其他接触相比,含有较少的极性相互作用。这些结果说明溶剂含量的高低可能是由不同结晶  相似文献   

8.
Extensive molecular dynamics simulations have been performed on eosinophil cationic protein (ECP). The two structures found in the crystallographic dimer (ECPA and ECPB) have been independently simulated. A small difference in the pattern of the sidechain hydrogen bonds in the starting structure has resulted in interesting differences in the conformations accessed during the simulations. In one simulation (ECPB), a stable equilibrium conformation was obtained and in the other (ECPA), conformational transitions at the level of sidechain interactions were observed. The conformational transitions exhibit the involvement of the solvent (water) molecules with a pore-like construct in the equilibrium conformation and an opening for a large number of water molecules during the transition phase. The details of these transitions are examined in terms of intra-protein hydrogen bonds, protein-water networks and the residence times of water molecules on the polar atoms of the protein. These properties show some significant differences in the region between the N-terminal helix and the loop before the C-terminal strand as a function of different conformations accessed during the simulations. However, the stable hydrogen bonds, the protein-water networks, and the hydration patterns in most part of the protein including the active site are very much similar in both the simulations, indicating the fact that these are intrinsic properties of proteins.  相似文献   

9.
10.
The experimental determination of protein compressibility reflects both the protein intrinsic compressibility and the difference between the compressibility of water in the protein hydration shell and bulk water. We use molecular dynamics simulations to explore the dependence of the isothermal compressibility of the hydration shell surrounding globular proteins on differential contributions from charged, polar, and apolar protein-water interfaces. The compressibility of water in the protein hydration shell is accounted for by a linear combination of contributions from charged, polar, and apolar solvent-accessible surfaces. The results provide a formula for the deconvolution of experimental data into intrinsic and hydration contributions when a protein of known structure is investigated. The physical basis for the model is the variation in water density shown by the surface-specific radial distribution functions of water molecules around globular proteins. The compressibility of water hydrating charged atoms is lower than bulk water compressibility, the compressibility of water hydrating apolar atoms is somewhat larger than bulk water compressibility, and the compressibility of water around polar atoms is about the same as the compressibility of bulk water. We also assess whether hydration water compressibility determined from small compound data can be used to estimate the compressibility of hydration water surrounding proteins. The results, based on an analysis from four dipeptide solutions, indicate that small compound data cannot be used directly to estimate the compressibility of hydration water surrounding proteins.  相似文献   

11.
We propose that a necessary condition for a protein to be soluble is the absence of large hydrophobic patches on its solvent-accessible surface, which can cause aggregation to occur. We note that the polar nature of the backbone of all amino acids guarantees a minimum polar content and hence can interrupt such patches. As a result, a carefully conserved detailed atomic placement of residues on the protein surface is not necessary for solubility. In order to demonstrate this, we construct a measure based on the average hydrophobicity of a simply defined patch. We use this measurement to compare surfaces that exhibit a clear difference in their solubility properties, namely, a) the solvent accessible surfaces for a set of homo-dimers and the surfaces buried in their interfaces and b) for a set of monomers the surfaces of fragments of secondary structure which are solvent accessible/inaccessible. Having demonstrated a difference in the first set of distributions, we characterize the solvent accessible surfaces of monomeric proteins. To test if cooperative behavior occurs between the atoms for these surfaces, we construct a set of randomized surfaces, which obey a very simple stereochemical constraint. We find that the observed and randomized distributions are much more similar than the previous sets we examined. This implies that while surfaces of soluble proteins must have sufficient polar content, the relative placement of atoms of one amino acid with respect to the atoms of neighboring amino acid need not be finely tuned, which provides an innate robustness for protein design and folding.  相似文献   

12.
The contribution of hydrogen bonds to protein-solvent interactions and their impact on structural flexibility and dynamics of myoglobin are discussed. The shift of vibrational peak frequencies with the temperature of myoglobin in sucrose/water and glycerol/water solutions is used to probe the expansion of the hydrogen bond network. We observe a characteristic change in the temperature slope of the O–H stretching frequency at the glass transition which correlates with the discontinuity of the thermal expansion coefficient. The temperature-difference spectra of the amide bands show the same tendency, indicating that stronger hydrogen bonding in the bulk affects the main-chain solvent interactions in parallel. However, the hydrogen bond strength decreases relative to the bulk solvent with increasing cosolvent concentration near the protein surface, which suggests preferential hydration. Weaker and/or fewer hydrogen bonds are observed at low degrees of hydration. The central O–H stretching frequency of protein hydration water is red-shifted by 40 cm–1 relative to the bulk. The shift increases towards lower temperatures, consistent with contraction and increasing strength of the protein-water bonds. The temperature slope shows a discontinuity near 180 K. The contraction of the network has reached a critical limit which leads to frozen-in structures. This effect may represent the molecular mechanism underlying the dynamic transition observed for the mean square displacements of the protein atoms and the heme iron of myoglobin. Received: 10 July 1996 / Accepted: 10 April 1997  相似文献   

13.
A reduced point charge distribution is used to model Ubiquitin and two complexes, Vps27 UIM-1–Ubiquitin and Barnase–Barstar. It is designed from local extrema in charge density distributions obtained from the Poisson equation applied to smoothed molecular electrostatic potentials. A variant distribution is built by locating point charges on atoms. Various charge fitting conditions are selected, i.e. from either electrostatic Amber99 (Assisted Model Building with Energy Refinement) Coulomb potential or forces, considering reference grid points located within various distances from the protein atoms, with or without separate treatment of main and side chain charges. The program GROMACS (Groningen Machine for Chemical Simulations) is used to generate Amber99SB molecular dynamics (MD) trajectories of the solvated proteins modelled using the various reduced point charge models (RPCMs) so obtained. Point charges that are not located on atoms are considered as virtual sites. Some RPCMs lead to stable MD trajectories. They, however, involve a partial loss in the protein secondary structure and lead to a less-structured solute solvation shell. The model built by fitting charges on Coulomb forces calculated at grid points ranging between 1.4 and 2.0 times the van der Waals radius of the atoms, with a separate treatment of main chain and side chain charges, appears to best approximate all-atom MD trajectories.  相似文献   

14.
H-bonding in protein hydration revisited   总被引:1,自引:0,他引:1  
H-bonding between protein surface polar/charged groups and water is one of the key factors of protein hydration. Here, we introduce an Accessible Surface Area (ASA) model for computationally efficient estimation of a free energy of water-protein H-bonding at any given protein conformation. The free energy of water-protein H-bonds is estimated using empirical formulas describing probabilities of hydrogen bond formation that were derived from molecular dynamics simulations of water molecules at the surface of a small protein, Crambin, from the Abyssinian cabbage (Crambe abyssinica) seed. The results suggest that atomic solvation parameters (ASP) widely used in continuum hydration models might be dependent on ASA for polar/charged atoms under consideration. The predictions of the model are found to be in qualitative agreement with the available experimental data on model compounds. This model combines the computational speed of ASA potential, with the high resolution of more sophisticated solvation methods.  相似文献   

15.
The solvent structure and behavior around a protein were examined by analyzing a trajectory of molecular dynamics simulation of thetrp-holorepressor in a periodic box of water. The calculated selfdiffusion coefficient indicated that the solvent within 10 Å of the protein had lower mobility. Examination of the solvent diffusion around different atoms of different kinds of residues showed no general tendency. Thisfact suggested that the solvent mobility is not influenced significantly bythe kind of the atom or residue they solvated. Distribution analysis aroundthe protein revealed two peaks of water oxygen: a sharp one at 2.8 Å around polar and charged atoms and a broad one at ~3.4 Å aroundapolar atoms. The former was stabilized by water–protein hydrogen bonds, and the latter was stabilized by water-lwater hydrogen bonds, suggesting the existence of a hydrophobic shell. An analysis of protein atom–water radial distribution functions confirmed these shell structures around polar or charged atoms and apolar ones. © 1993 Wiley-Liss, Inc.  相似文献   

16.
During the characterization of mutants and covalently inhibited complexes of Fusarium solani cutinase, nine different crystal forms have been obtained so far. Protein mutants with a different surface charge distribution form new intermolecular salt bridges or long-range electrostatic interactions that are accompanied by a change in the crystal packing. The whole protein surface is involved in the packing contacts and the hydrophobicities of the protein surfaces in mutual contact turned out to be noncorrelated, which indicates that the packing interactions are nonspecific. In the case of the hydrophobic variants, the packing contacts showed some specificity, as the protein in the crystal tends to form either crystallographic or noncrystallographic dimers, which shield the hydrophobic surface from the solvent. The likelihood of surface atoms to be involved in a crystal contact is the same for both polar and nonpolar atoms. However, when taking areas in the 200–600 Å2 range, instead of individual atoms, the either highly hydrophobic or highly polar surface regions were found to have an increased probability of establishing crystal lattice contacts. The protein surface surrounding the active-site crevice of cutinase constitutes a large hydrophobic area that is involved in packing contacts in all the various crystalline contexts. Proteins 31:320–333, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Coleman RG  Burr MA  Souvaine DL  Cheng AC 《Proteins》2005,61(4):1068-1074
A natural way to measure protein surface curvature is to generate the least squares fitted (LSF) sphere to a surface patch and use the radius as the curvature measure. While the concept is simple, the sphere-fitting problem is not trivial and known means of protein surface curvature measurement use alternative schemes that are arguably less straightforward to interpret. We have developed an approach to solve the LSF sphere problem by turning the sphere-fitting problem into a solvable plane-fitting problem using a transformation known as geometric inversion. The approach works on any arbitrary surface patch, and returns a radius of curvature that has direct physical interpretation. Additionally, it is flexible in its ability to find the curvature of an arbitrary surface patch, and the "resolution" can be adjusted to highlight atomic features or larger features such as peptide binding sites. We include examples of applying the method to visualization of peptide recognition pockets and protein conformational change, as well as a comparison with a commonly used solid-angle curvature method showing that the LSF method produces more pronounced curvature results.  相似文献   

18.
Standard volumes for atoms in double-stranded B-DNA are derived using high resolution crystal structures from the Nucleic Acid Database (NDB) and compared with corresponding values derived from crystal structures of small organic compounds in the Cambridge Structural Database (CSD). Two different methods are used to compute these volumes: the classical Voronoi method, which does not depend on the size of atoms, and the related Radical Planes method which does. Results show that atomic groups buried in the interior of double-stranded DNA are, on average, more tightly packed than in related small molecules in the CSD. The packing efficiency of DNA atoms at the interfaces of 25 high resolution protein-DNA complexes is determined by computing the ratios between the volumes of interfacial DNA atoms and the corresponding standard volumes. These ratios are found to be close to unity, indicating that the DNA atoms at protein-DNA interfaces are as closely packed as in crystals of B-DNA. Analogous volume ratios, computed for buried protein atoms, are also near unity, confirming our earlier conclusions that the packing efficiency of these atoms is similar to that in the protein interior. In addition, we examine the number, volume and solvent occupation of cavities located at the protein-DNA interfaces and compared them with those in the protein interior. Cavities are found to be ubiquitous in the interfaces as well as inside the protein moieties. The frequency of solvent occupation of cavities is however higher in the interfaces, indicating that those are more hydrated than protein interiors. Lastly, we compare our results with those obtained using two different measures of shape complementarity of the analysed interfaces, and find that the correlation between our volume ratios and these measures, as well as between the measures themselves, is weak. Our results indicate that a tightly packed environment made up of DNA, protein and solvent atoms plays a significant role in protein-DNA recognition.  相似文献   

19.
In macromolecular crystallography, three-dimensional contour surfaces are useful for interactive computer graphics displays of the protein electron density but are less effective for presenting static images of large volumes of solvent density. A raster-based computer graphics program which displays depth-cued projections of continuous density distributions has been developed to analyze the distribution of solvent atoms in macromolecular crystals. Maps of the water distribution in the cubic insulin crystal show some well-ordered waters, which are bound to surrounding protein atoms by multiple hydrogen bonds, and an ill-defined solvent structure at a greater distance from the protein surface. Molecular dynamics calculations were used to assist in the interpretation of the time-varying solvent structure within two enclosed cavities in the crystal. Two water molecules that ligate a sodium ion were almost immobile during the simulation but the majority of water molecules were found to move rapidly between the density maxima identified from the crystallographic refinement.  相似文献   

20.
The impact of an extensive, uniform and hydrophobic protein surface on the behavior of the surrounding solvent is investigated. In particular, focus is placed on the possible enhancement of the structure of water at the interface, one model for the hydrophobic effect. Solvent residence times and radial distribution functions are analyzed around three types of atomic sites (methyl, polar, and positively charged sites) in 1 ns molecular dynamics simulations of the α-helical polypeptide SP-C in water, in methanol and in chloroform. For comparison, water residence times at positively and negatively charged sites are obtained from a simulation of a highly charged α-helical polypeptide from the protein titin in water. In the simulations the structure of water is not enhanced at the hydrophobic protein surface, but instead is disrupted and devoid of positional correlation beyond the first solvation sphere. Comparing solvents of different polarity, no clear trend toward the most polar solvent being more ordered is found. In addition, comparison of the water residence times at nonpolar, polar, positively charged, or negatively charged sites on the surface of SP-C or titin does not reveal pronounced or definite differences. It is shown, however, that the local environment may considerably affect solvent residence times. The implications of this work for the interpretation of the hydrophobic effect are discussed. Proteins 27:395–404, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号