首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure of the ciliary apparatus of multiciliated epidermal cells in larval and adult sipunculids is described and the phylogenetic implications discussed. The pelagosphera of Apionsoma misakianum has a dense cover of epidermal cilia on the head region. The cilia have a long, narrow distal part and two long ciliary rootlets, one rostrally and one vertically orientated. The adult Phascolion strombus has cilia on the nuchal organ and on the oral side of the tentacles. These cilia have a narrow distal part as in the A. misakianum larva, but the ciliary rootlets have a different structure. The first rootlet on the anterior face of the basal body is very short and small. The second, vertically orientated rootlet is long and relatively thick. The two ciliary rootlets present in the larval A. misakianum are similar to the basal metazoan type of ciliary apparatus of epidermal multiciliated cells and thus likely represent the plesiomorphic state. The minute first rootlet in the adult P. strombus is viewed as a consequence of a secondary reduction. No possible synapomorphic character with the phylogenetically troublesome Xenoturbella was found.  相似文献   

2.
The epidermis of Xenoturbella bocki Westblad was studied by scanning and transmission electron microscopy. Two cell types predominate in the epidermis: multiciliated epidermal cells and non-ciliated or monociliated gland cells. A conspicuous feature is the dense ciliary coverage and the numerous gland cell openings. Xenoturbella has a characteristic pattern of axonemal filament termination in the distal tips of their cilia. Each epidermal cilium has the typical 9 + 2 patten through the major part of its shaft. Near the tip there is a shelf at which doublets 4–7 terminate. Doublets 1, 2, 3, 8 and 9 continue into the thinner distal part of the cilium. A similar shelf in cilia is known only from the turbellarian orders Nemertodermatida and Acoela, and hence may be an apomorphic feature which indicates a close relationship between Xenoturbellida, Nemertoder-matida and Acoela. The basal body is provided with a so-called basal foot which has a cross-striated appearance and an expanded distal plate that seems to act as a microtubule organizing center. Approximately 15–25 microtubuli radiate from the endplate of the basal foot to the basal bodies caudally. The arrangement of basal foot and ciliary rootlets in Xenoturbella differs from that of Acoela and related orders in that there are two striated rootlets only (an anterior and a posterior one), rather than one main rootlet and two lateral rootlets.  相似文献   

3.
Two kinds of cilia have been observed in the pharynx of Glossobalanus minutus Kowalewsky. From the present study, a ciliary specialization can be found in order to move a determinate substance, i.e. mucus or water. Mucus-moving cilia (type I cilia) have a single basal centriole and poorly developed ciliary rootlets. Their tips are rounded, bearing an inner, asymmetrical cap attached to some tubules. Water-moving cilia (type II cilia) are exclusively located at lateral epithelia of branchial bars, giving rise to the water current through the gills. They have two basal centrioles, proximal and distal, and a complex system of ciliary rootlets made up of a principal rootlet, a secondary or accessory rootlet and a 'fan' rootlet. The tips of type II cilia have a long process with some tubules inside. All basal structures are precisely orientated in order to assure a good coordination of ciliary beat. The possible functional significance of ciliary substructure is also discussed. From these observations a model for mucus and water currents through gill slits is postulated.  相似文献   

4.
Abstract. SEM studies of 21 species of marine bryozoans demonstrated that the abfrontal side of the tentacles bears a row of mono- or multiciliated cells, which are presumably sensory. In stenolaemates, the abfrontal cells, as well as the cells at the tentacle tips and the laterofrontal cells, are monociliated. In the 17 gymnolaemate species studied, each tentacle tip bears at least 3 multiciliated cells, each with a tuft of 5–7 stiff cilia of various lengths. On the abfrontal tentacle surface, mono- and multiciliated cells alternate, but all species studied have multiciliated cells at the base and the tip of each tentacle. In live animals, single cilia perform occasional flicks, whereas the tufts of 7–15 cilia on the multiciliated cells are immotile. Length and number of abfrontal cilia vary between species. Two types of multiciliated, putative sensory organs were found on the introvert of some gymnolaemates. One has an apical knob surrounded by a ring of cilia; the other has an apical tuft of cilia. The ultrastructure of the sensory cells of tentacles and introvert was studied in Rhamphostomella ovata . Our observations on both fixed and living material all suggest that these cells are primitive mechanoreceptors. The few species lacking ciliary structures on the introvert have long proximal ciliary tufts on the abfrontal tentacle surface.  相似文献   

5.
Summary The rootlets of the kinetic cilia form patterns of different types in the different turbellarian subgroups (cf. Rieger 1981). In the Acoela a rather complex system of ciliary rootlets is found in the epidermis (Dorey 1965; Hendelberg & Hedlund 1973; Bedini & Papi 1974). In the acoel Childia groenlandica (Levinsen) the four rootlets of each cilium make contact with those of adjacent cilia at two levels (Hendelberg & Hedlund 1974). Distinct granules are found in the interior of the main rootlets (Hendelberg & Hedlund 1974; Bedini & Papi 1974, Fig. 16) and basal bodies (Silveira 1972; Hendelberg & Hedlund 1974) of the epidermal kinetic cilia of acoels. Similar granules, probably of identical structure, can be seen in nemertodermatids, in the same positions (Tyler & Rieger 1977, Figs. 3 & 6). Such granules were studied in C. groenlandica with histochemical methods adapted for electron microscopy. Like Silveira (1972) I found the granules of the basal bodies to be Thiéry-positive, and thus evidently to be made up of or at least to contain polysaccharide material. The granules of the main rootlets were also found to be Thiéry-positive (Hendelberg 1976). Digestion experiments (Hendelberg & Hellmén 1978 and unpublished results) strongly support the concept that the granules are glycogen beta-particles.We know that cilia can function as kinetic organelles without any rootlets. But we are still uncertain about the function of the rootlets when occurring. Most probably they form an anchorage, a function which may be favoured by branching rootlets making contact with each other. Another function which has been discussed is the transmittance of impulses regulating the ciliary beat. Glycogen granules represent an energy deposit. The functional implication of these granules in the interior of the ciliary rootlets and basal bodies is not clear. However, the observations raise the question of how energy is transmitted to the cilia. Are the ciliary rootlets, when occurring, involved? This question will be further discussed, with references, in a future full report on the digestion experiments (to be published elsewhere).  相似文献   

6.
Summary The ultrastructure of the apical plate of the free-swimming pilidium larva of Lineus bilineatus (Renier 1804) is described with particular reference to the multiciliated collar cells. In the multiciliary collar cells there are several, up to 12, cilia surrounded by a collar of about 20 microvilli extending from the cells' apical surface. The cilia have the typical 9+2 axoneme arrangement and are equipped with striated caudal rootlets extending from the basal bodies. No accessary centriole or rostral rootlet were observed. Microvilli surrounding the cilia are joined in a cylindrical manner by a mucus-like substance to form a collar. In comparison with many sensory receptor cells built on a collar cell plan the multiciliary collar cells of the pilidium larva apical plate are rather simple and unspecialized. In other pilidium larvae monociliated collar cells are found in the apical plate. The possible function and phylogenetic implications of multiciliated collar cells in Nemertini are briefly discussed.List of Abbreviations a axoneme - b basal body - c cilia or flagella - d desmosome - G Golgi apparatus - m mitochondria - mf microfilaments - mu mucus - mv microvilli - n nucleus - nt neurotubules - pm plasma membrane - r rootlet - ri ribosomes - v secretory vesicles  相似文献   

7.
Cytoskeletal elements in arthropod sensilla and mammalian photoreceptors.   总被引:1,自引:0,他引:1  
Ciliary receptor cells, typified by cilia or modified cilia, are very common in the animal kingdom. In addition to the cytoskeleton of their ciliary processes these receptors possess other specific prominent cytoskeletal elements. Two representative systems are presented: i) scolopidia, mechanosensitive sensilla of various arthropod species; and ii) photoreceptor cells of the retina of the bovine eye. Two cytoskeletal structures are characteristic for arthropod scolopidia: a scolopale typifies the innermost auxiliary cell, and long ciliary rootlets are extending well into the sensory cells. The latter element is also characteristic for the inner segment of the photoreceptor cells in bovine. The scolopale of scolopidia is mainly composed of actin filaments. In the absence of myosin, the uniform polarity of the actin filaments and their association with tropomyosin all indicate a stabilizing role of the filament bundles within the scolopale. This function and a certain elasticity of actin filament bundles may be important during stimulation of the sensilla. The ciliary rootlets of both systems originate at the basal bodies at the ciliary base of the sensory cells and project proximally. These rootlets are composed of longitudinally oriented, fine filaments forming a characteristic regular cross-striation. An alpha-actinin immunoreactivity was detected within the ciliary rootlets of scolopidia. In addition, antibodies to centrin react with the rootlets of both types of receptors. Since centrin is largely responsible for the contraction of the flagellar rootlets in green algae, contraction may also occur in the ciliary rootlets of insect sensilla and vertebrate photoreceptors. In both systems, contraction or relaxation of the ciliary rootlets could serve in sensory transduction or adaptation.  相似文献   

8.
Actin microfilaments were localized in quail oviduct ciliated cells using decoration with myosin subfragment S1 and immunogold labeling. These polarized epithelial cells show a well developed cytoskeleton due to the presence of numerous cilia and microvilli at their apical pole. Most S1-decorated microfilaments extend from the microvilli downward towards the upper part of the ciliary striated rootlets with which they are connected. From the microvillous roots, a few microfilaments connect the proximal part of the basal body or the basal foot associated with the basal body. Microfilament polarity is shown by S1 arrowheads pointing away from the microvillous tip to the cell body. Furthermore, short microfilaments are attached to the plasma membrane at the anchoring sites of basal bodies and run along the basal body. The polarity of these short microfilaments is directed from the basal body anchoring fibers downward to the cytoplasm. At the cell periphery, microfilaments from microvillous roots and ciliary apparatus are connected with those of the circumferential actin belt which is associated with the apical zonula adhaerens. Together with the other cytoskeletal elements, the microfilaments increase ciliary anchorage and could be involved in the coordination of ciliary beating. Moreover, microvilli surrounding the cilia probably modify ciliary beating by offering resistance to cilium bending. The presence of microvilli could explain the fact that mainly the upper part of the cilia appanars to be involved in the axonemal bending in metazoan ciliated cells.  相似文献   

9.
Development of cilia in embryos of the turbellarian Macrostomum   总被引:3,自引:3,他引:0  
Seth Tyler 《Hydrobiologia》1981,84(1):231-239
Electron microscopy of Macrostomum hystricinum raised in culture shows that ciliogenesis in the worm's epidermal blastomeres begins in embryos 39–41 h old with kinetosomal and de novo genesis of presumptive basal bodies, which are morphologically distinguishable from centrioles of the mitotic apparatus, and proceeds by the migration of basal bodies to the apical plasma membrane of the cells and their production there of ciliary axonemes by an age of 51–53 h when the bastomeres emerge between yolk cells on the embryo's surface. Ciliogenesis continues throughout development with the addition of cilia virtually one by one to the expanding epidermal cells' surfaces. At no time in ciliogenesis are stages seen that might show derivation of these multiciliated cells from the primitive monociliated cell type presumably present in the ancestors of the Turbellaria.  相似文献   

10.
M C Holley 《Tissue & cell》1984,16(2):287-310
The basal apparatuses which anchor the gill cilia in Branchiostoma lanceolatum (Pallas) and the actinopharynx cilia in Calliactis parasitica (Couch) are similar in structure. In C. parasitica the pharynx epithelium and the basal apparatuses are flexible. The basal apparatuses, however, bend in only one direction. This mechanism may permit epithelial flexibility whilst maintaining a similar basal orientation between cilia. In B. lanceolatum the ciliated gill epithelia are mechanically stable but the epithelial surfaces are curved. The basal apparatuses may correct for this curvature, with short rootlets between the distal centrioles (basal bodies) and the cell membranes, so that their cilia also share a common orientation. A common basal orientation between cilia is important for their coordination. The degree of coordination depends upon the function of the cilia; water-propelling cilia are more precisely coordinated than mucus-propelling cilia. Much of the structural diversity of ciliary basal apparatuses in Metazoa may be due to variation in the demands of anchoring functionally different cilia to epithelia which have different structural and mechanical properties.  相似文献   

11.
Solitary cilia have been observed on rabbit oviductal epithelial cells. In tissue cultures of fimbrial epithelium of 3- and 4-day-old animals observed by phase microscopy, most of these single cilia exhibited a vortical or funnel-type movement while others had the usual to-and-fro motility. Primary cilia are usually considered immotile. Transmission electron microscopy of specifically identified single cilia revealed differences between the ciliary shafts and basal bodies of the single cilia as compared to those of mature oviductal ciliated cells. The basal body of the solitary cilium often had at least two triangular, striated, basal foot processes, lacked electron-dense satellite material around its basal end, and occasionally had striated rootlets. In contrast, the cilia of mature ciliated cells had only one basal foot, exhibited much electron-dense satellite material, and lacked rootlets. Cross sections of the single cilia showed patterns of microtubules different from the usual 9 + 2 axonemal complexes of normal cilia and included 9 + 0, 10 + 2 singlets, 7 + 2 doublets, and 8 + 1 doublet and 2 singlets; one did have the usual 9 + 2 arrangement. We postulate that the presence of more than one basal foot process may be responsible for the vortical motility observed. The primary cilia are shorter than normal cilia; the longest one measured was 1.86 micron in length, 0.28 micron in width at its base, and 0.14 micron at its tip. Based on the light-microscopic, scanning-electron-microscopic and transmission-electron-microscopic observations, such solitary cilia were observed more frequently in the oviductal tissues of the 3- to 4-day postnatal rabbits grown in tissue culture and in ovariectomized and ovariectomized/progesterone-treated adult animals than in estrous, ovulatory, or ovariectomized/estradiol-treated rabbits.  相似文献   

12.
ASPECTS OF CILIARY FINE STRUCTURE IN EUPLOTES PATELLA   总被引:9,自引:8,他引:1       下载免费PDF全文
1. The functional unity of cirri and membranelles can result structurally only from extensions of the ciliary membrane. 2. The pellicle is composed of an outer pellicular membrane and an inner cytoplasmic membrane. 3. The ciliary rootlets are composed of numerous filaments 120 A in diameter with central areas of low density. They have no periodic structure. 4. The ciliary membrane is a double-layered structure continuous with the pellicular membrane. The cilia show the typical arrangement of nine double, peripheral and two single, central fibrils. All fibrils pass into the basal region, the peripheral ones joining with the rootlet filaments, while the central fibrils from the extreme proximal position of the basal region turn back toward the pellicle and appear to unite just beneath the cytoplasmic membrane. 5. The cilia (300 mµ diameter) taper at their tips to a diameter at least as small as 50 mµ. At a diameter of about 150 mµ, the fibrils begin to show a reduction in number. 6. The central ciliary fibrils may determine the possible directions of ciliary beat. These fibrils show an intrafibrillar structure in their basal portion, which involves regularly spaced 40 A granules. 7. These observations on Euplotes, together with the other evidence cited, are consistent with the hypothesis that ciliary motion is produced by the contraction of the peripheral fibrils, while the central fibrils perhaps determine the plane in which the cilia can bend.  相似文献   

13.
Cilia and associated structures on the gill lamellae on the ctenidum of Chaetoderma nitidulum were studied. The gill cilia are very long and have a whip-like narrow portion distally, where only three microtubule doublets continue to the distal tip. In the transition zone between the cilium and the centriolar triplet section of the basal body there is a dense plate, an aggregation of granules and a ciliary necklace with four strands. Further down there is a short cross-striated basal foot and two conical cross-striated ciliary rootlets. The first rootlet is flattened and directed forward. It connects distally with the basal feet of other adjacent cilia. The second rootlet is rounded in cross-section and vertically directed. The epithelial structures of Chaetoderma show similarities with other Mollusca. We found no structural characters that could support the current hypothesis of a close relationship of Xenoturbella to the Mollusca.  相似文献   

14.
Epidermal cilia of the oncomiracidium of Neoheterocotyle rhinobatidis (Monogenea, Monopisthocotylea, Monocotylidae) have long cross-striated vertical rootlets that are not extensions of the basal bodies as are the vertical rootlets in all catenulid and rhabditophoran turbellarians examined to date. Instead, they originate in the basal part of the horizontal rootlet a short distance from the basal bodies. In Monocotyle spiremae (Monocotylidae), the vertical rootlets are less distinct, with no apparent cross-striation, but they also originate from the basal part of the horizontal rootlets. Epidermal cilia of the oncomiracidium of Zeuxapta seriolae (Monogenea, Polyopisthocotylea, Axinidae) lack vertical rootlets like all other neodermatans examined, but bundles of fibres extend from the basal bodies a short distance into the cytoplasm of the epidermal cells. Monopisthocotylean Monogenea would be intermediate between rhabditophorans and the other neodermatans (in having weakly developed vertical rootles), if these structures were homologous in the two groups. However, in view of the different origin of vertical rootlets in turbellarians and monopisthocolylean oncomiracidia, it is suggested that they are not homologous, and vertical rootlets in the Monopisthocotylea are therefore named “false vertical rootlets”.  相似文献   

15.
A cephalic organ of presumed sensory function is described in nauplii and copepodids of the ascidicolous copepod Doropygus seclusus Illg. The receptor, located bilaterally in the anterodorsal head region, is composed of dendrites of extra optic protocerebral origin which have ciliary protrusions with basal bodies, no rootlets, and a basal infrastructure of the 9 + 0 type. The cilia do not branch and their distal terminations contain only one to four microtubules. In nauplii and free-living copepodids, a large epidermal supporting cell encapsulates the end of one dendrite and its cilia in a sac. Other dendrites and their cilia pass through the supporting cell and, terminally, the cilia escape to form a whorled fascicle which contacts the anterolateral cephalic cuticle. The latter end organ reaches its greatest development in the second copepodid stage — the stage which infects the ascidian. All of the symbiotic stages of the copepod have only a proportionately smaller end organ of the saccular type and apparently lack the end organ consisting of whorls of ciliary ends. The function of the receptor is unknown, but it is suggested that the end organ which disappears in the symbiotic stages functions in second copepodids in host recognition.  相似文献   

16.
Summary The cerebral and epidermal ocelli of the Müller's larva and the cerebral and tentacular eyes of the adult turbellarian Pseudoceros canadensis were studied by electron microscopy. The right cerebral ocellus of the larva consists of one cup-shaped pigmented cell and three sensory cells that bear microvilli. The left cerebral eye of the larva has the above named cells plus a sensory cell with many cilia. Evolutionary significance is attributed to the presence of both ciliary and microvillar photoreceptors in an eye of a flatworm. The one epidermal ocellus of the larva is composed of two cells: a cup-shaped pigmented one bearing flattened cilia, the presumed photoreceptors, and a cell above the cup that adds a few nonciliary lamellae to the stack of ciliary ones from the pigmented cell. The adult eyes contain only microvillar receptors; cilia were not observed.  相似文献   

17.
HW Ko 《BMB reports》2012,45(8):427-432
Primary cilia, single hair-like appendage on the surface of the most mammalian cells, were once considered to be vestigial cellular organelles for a past century because of their tiny structure and unknown function. Although they lack ancestral motility function of cilia or flagella, they share common ground with multiciliated motile cilia and flagella on internal structure such as microtubule based nine outer doublets nucleated from the base of mother centrioles called basal body. Making cilia, ciliogenesis, in cells depends on the cell cycle stage due to reuse of centrioles for cell division forming mitotic spindle pole (M phase) and assembling cilia from basal body (starting G1 phase and maintaining most of interphase). Ciliary assembly required two conflicting processes such as assembly and disassembly and balance between these two processes determines the length of cilia. Both process required highly conserved transport system to supply needed substance to grow tip of cilia and bring ciliary turnover product back to the base of cilia using motor protein, kinesin and dynein, and transport protein complex, IFT particles. Disruption of ciliary structure or function causes multiple human disorder called ciliopathies affecting disease of diverse ciliated tissues ranging from eye, kidney, respiratory tract and brain. Recent explosion of research on the primary cilia and their involvement on animal development and disease attracts scientific interest on how extensively the function of cilia related to specific cell physiology and signaling pathway. In this review, I introduce general features of primary cilia and recent progress in understanding of the ciliary length control and signaling pathways transduced through primary cilia in vertebrates. [BMB Reports 2012; 45(8): 427-432].  相似文献   

18.
The ciliary rootlet maintains long-term stability of sensory cilia   总被引:3,自引:0,他引:3       下载免费PDF全文
The striated ciliary rootlet is a prominent cytoskeleton originating from basal bodies of ciliated cells. Although a familiar structure in cell biology, its function has remained unresolved. In this study, we carried out targeted disruption in mice of the gene for rootletin, a component of the rootlet. In the mutant, ciliated cells are devoid of rootlets. Phototransduction and ciliary beating in sensory and motile cilia initially exhibit no apparent functional deficits. However, photoreceptors degenerate over time, and mutant lungs appear prone to pathological changes consistent with insufficient mucociliary clearance. Further analyses revealed a striking fragility at the ciliary base in photoreceptors lacking rootlets. In vitro assays suggest that the rootlet is among the least dynamic of all cytoskeletons and interacts with actin filaments. Thus, a primary function of the rootlet is to provide structural support for the cilium. Inasmuch as photoreceptors elaborate an exceptionally enlarged sensory cilium, they are especially dependent on the rootlet for structural integrity and long-term survival.  相似文献   

19.
In Notocaryoturbella bigermaria, Otoplana truncaspina and Paroto-planella heterorhabditica three types of epidermal receptors are recognized. Type I: with a single cilium running in a duct, piercing the distal dendrite process of the receptor. The internal wall of the dendrite process has eight ridges with longitudinal filaments lying inside them. The ciliary basal body lacks a longitudinal rootlet but is encircled by a thin annular formation. Type II: with a single (A) or several (B) cilia which protrude from the outer epithelial surface and are provided with a large and striped rootlet. Both types are considered as mechanoreceptors. Type III: with two or more short and stumpy cilia devoid of rootlets and displaying the usual 9 + 2 pattern in the proximal part only. They are considered as chemoreceptors.  相似文献   

20.
Abstract. The epidermis of the free-living typhloplanids Mesostoma viaregginum and M. productum (Mesostominae) is described. In both species, the epidermis has polarized cells with nuclei located at the basal part of the cell, whereas mitochondria are in the apical one. The epidermis is entirely covered by microvilli and locomotory cilia anchored in the cytoplasm by vertical and horizontal rootlets. Rootlets exhibit distinct length and periodic structure in the two species. Furthermore, in each species vertical and horizontal rootlets possess different periodic structure. The pattern of termination of microtubules in epidermal cilia is described for the first time in the Typhloplanida; central microtubules shift along one axonemal side, doublets 1 and 6–9 lose their microtubule B, and gradually peripheral doublets become singlets. Finally, an electron-dense material caps the tip of the cilia. This pattern of termination closely resembles that of Temnocephalida, Kalytorhynchia, and Dalyelliida examined so far, but differences exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号