首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Stochastic model of leukocyte chemosensory movement   总被引:3,自引:0,他引:3  
Journal of Mathematical Biology - We propose a hypothesis for a unified understanding of the persistent and biased random walk behavior of leukocytes exhibiting random motility and chemotaxis,...  相似文献   

2.
3.
A Monte Carlo algorithm, which can accurately simulate the dynamics of entire heterogeneous cell populations, was developed. The algorithm takes into account the random nature of cell division as well as unequal partitioning of cellular material at cell division. Moreover, it is general in the sense that it can accommodate a variety of single-cell, deterministic reaction kinetics as well as various stochastic division and partitioning mechanisms. The validity of the algorithm was assessed through comparison of its results with those of the corresponding deterministic cell population balance model in cases where stochastic behavior is expected to be quantitatively negligible. Both algorithms were applied to study: (a) linear intracellular kinetics and (b) the expression dynamics of a genetic network with positive feedback architecture, such as the lac operon. The effects of stochastic division as well as those of different division and partitioning mechanisms were assessed in these systems, while the comparison of the stochastic model with a continuum model elucidated the significance of cell population heterogeneity even in cases where only the prediction of average properties is of primary interest.  相似文献   

4.
Liver cell aggregates may be grown in vitro by co-culturing hepatocytes with stellate cells. This method results in more rapid aggregation than hepatocyte-only culture, and appears to enhance cell viability and the expression of markers of liver-specific functions. We consider the early stages of aggregate formation, and develop a new mathematical model to investigate two alternative hypotheses (based on evidence in the experimental literature) for the role of stellate cells in promoting aggregate formation. Under Hypothesis 1, each population produces a chemical signal which affects the other, and enhanced aggregation is due to chemotaxis. Hypothesis 2 asserts that the interaction between the two cell types is by direct physical contact: the stellates extend long cellular processes which pull the hepatocytes into the aggregates. Under both hypotheses, hepatocytes are attracted to a chemical they themselves produce, and the cells can experience repulsive forces due to overcrowding. We formulate non-local (integro-partial differential) equations to describe the densities of cells, which are coupled to reaction-diffusion equations for the chemical concentrations. The behaviour of the model under each hypothesis is studied using a combination of linear stability analysis and numerical simulations. Our results show how the initial rate of aggregation depends upon the cell seeding ratio, and how the distribution of cells within aggregates depends on the relative strengths of attraction and repulsion between the cell types. Guided by our results, we suggest experiments which could be performed to distinguish between the two hypotheses.  相似文献   

5.
Stochastic resonance emergence from a minimalistic behavioral rule   总被引:1,自引:0,他引:1  
Stochastic resonance (SR) is a phenomenon occurring in nonlinear systems by which the ability to process information, for instance the detection of weak signals is statistically enhanced by a non-zero level of noise. SR effects have been observed in a great variety of systems, comprising electronic circuits, optical devices, chemical reactions and neurons. In this paper we report the SR phenomena occurring in the execution of an extremely simple behavioral rule inspired from bacteria chemotaxis. The phenomena are quantitatively analyzed by using Markov chain models and Monte Carlo simulations.  相似文献   

6.
Mathematical modelling of cell movement has traditionally focussed on a single population of cells, often moving in response to various chemical and environmental cues. In this paper, we consider models for movement in two or more interacting cell populations. We begin by discussing intuitive ideas underlying the extension of models for a single-cell population to two interacting populations. We then consider more formal model development using transition probability methods, and we discuss how the same equations can be obtained as the limiting form of a velocity-jump process. We illustrate the models we have developed via two examples. The first of these is a generic model for competing cell populations, and the second concerns aggregation in cell populations moving in response to chemical gradients.  相似文献   

7.
A spatial diffusion operator that governs the migration of polymorphic populations is derived and some specific epidemic models are analyzed in the presence of this type of diffusion. Threshold criteria and asymptotic behavior of solutions are derived, and it is shown that spatially heterogeneous steady states can occur in these models.The work of this author was partially supported by the National Science Foundation's Ecosystem Studies Program under Interagency Agreement No. DED80-21024 with the U.S. Department of Energy under contract W-7405-eng-26 with Union Carbide Corporation  相似文献   

8.
Summary A multivariate Gaussian model for mammalian development is presented with the associated biological and mathematical assumptions. Many biological investigations use the female mammal X chromosome to test hypotheses and to estimate parameters of the developmental system. In particular, Lyon's (1961) hypotheses are used as a basis of the mathematical model. Experimental mouse data and three sets of human experimental data are analyzed using the hypothesized Gaussian model. The estimated biological parameters are consistent with some current biological theories.  相似文献   

9.
Although single-species deterministic difference equations have long been used in modeling the dynamics of animal populations, little attention has been paid to how stochasticity should be incorporated into these models. By deriving stochastic analogues to difference equations from first principles, we show that the form of these models depends on whether noise in the population process is demographic or environmental. When noise is demographic, we argue that variance around the expectation is proportional to the expectation. When noise is environmental the variance depends in a non-trivial way on how variation enters into model parameters, but we argue that if the environment affects the population multiplicatively then variance is proportional to the square of the expectation. We compare various stochastic analogues of the Ricker map model by fitting them, using maximum likelihood estimation, to data generated from an individual-based model and the weevil data of Utida. Our demographic models are significantly better than our environmental models at fitting noise generated by population processes where noise is mainly demographic. However, the traditionally chosen stochastic analogues to deterministic models--additive normally distributed noise and multiplicative lognormally distributed noise--generally fit all data sets well. Thus, the form of the variance does play a role in the fitting of models to ecological time series, but may not be important in practice as first supposed.  相似文献   

10.
The objectives of this paper to analyse, model and simulate the spread of an infectious disease by resorting to modern stochastic algorithms. The approach renders it possible to circumvent the simplifying assumption of linearity imposed in the majority of the past works on stochastic analysis of epidemic processes. Infectious diseases are often transmitted through contacts of those infected with those susceptible; hence the processes are inherently nonlinear. According to the classical model of Kermack and McKendrick, or the SIR model, three classes of populations are involved in two types of processes: conversion of susceptibles (S) to infectives (I) and conversion of infectives to removed (R). The master equations of the SIR process have been formulated through the probabilistic population balance around a particular state by considering the mutually exclusive events. The efficacy of the present methodology is mainly attributable to its ability to derive the governing equations for the means, variances and covariance of the random variables by the method of system-size expansion of the nonlinear master equations. Solving these equations simultaneously along with rates associated influenza epidemic data yields information concerning not only the means of the three populations but also the minimal uncertainties of these populations inherent in the epidemic. The stochastic pathways of the three different classes of populations during an epidemic, i.e. their means and the fluctuations around these means, have also been numerically simulated independently by the algorithm derived from the master equations, as well as by an event-driven Monte Carlo algorithm. The master equation and Monte Carlo algorithms have given rise to the identical results.  相似文献   

11.
Various tumours can be resected even for cure with complete removal. Surgical excision with a wide margin to ensure complete removal has therefore been suggested as the primary treatment for such lesions. The histological examination of the three-dimensional (3D) excision margins (3D histology) constitutes an important part of the quality control mechanisms in tumour surgery. Understanding histologically relevant properties of the constituents of the microenvironment in tumours and the circumferential portion of non-lesional tissue is therefore critical.Accompanied by the increasing availability of high performance computers in recent decades, there has been a strong movement aiming at the development of mathematical models whose implementations allow in silico simulations of biological reaction networks. Due to its relevance in numerous biological and pathological processes, there have been various attempts to model biased migration of single cells. The model introduced in this paper plays a prominent role insofar as it covers the under-represented 3D case. Moreover, it is uniformly formulated for both two and three dimensions. The velocity of each cell is characterised by a generalised Langevin equation, a stochastic differential equation, where chemotaxis as well as contact guidance are considered to simulate selected aspects of interactions between carcinoma cell groups and fibroblast-like cells.Algorithmic and numeric aspects of the developed equations are detailed in this paper and the results of the simulations are illustrated in different manners to emphasise specific features. A simple test scenario as well as a geometry based on segmentation data of a real histological slide has served for verification of the software. The resulting morphologies closely resemble that of desmoplastic stromal reaction readily identifiable in histological slides of infiltrating carcinoma, and the images can be interpreted in the context of 3D histology.  相似文献   

12.
13.
14.
We present a computational model that successfully captures the cell behaviors that play important roles in 2-D cell aggregation. A virtual cell in our model is designed as an independent, discrete unit with a set of parameters and actions. Each cell is defined by its location, size, rates of chemoattractant emission and response, age, life cycle stage, proliferation rate and number of attached cells. All cells are capable of emitting and sensing a chemoattractant chemical, moving, attaching to other cells, dividing, aging and dying. We validated and fine-tuned our in silico model by comparing simulated 24-h aggregation experiments with data derived from in vitro experiments using PC12 pheochromocytoma cells. Quantitative comparisons of the aggregate size distributions from the two experiments are produced using the Earth Mover's Distance (EMD) metric. We compared the two size distributions produced after 24 h of in vitro cell aggregation and the corresponding computer simulated process. Iteratively modifying the model's parameter values and measuring the difference between the in silico and in vitro results allow us to determine the optimal values that produce simulated aggregation outcomes closely matched to the PC12 experiments. Simulation results demonstrate the ability of the model to recreate large-scale aggregation behaviors seen in live cell experiments.  相似文献   

15.
New stochastic models are developed for the dynamics of a viral infection and an immune response during the early stages of infection. The stochastic models are derived based on the dynamics of deterministic models. The simplest deterministic model is a well-known system of ordinary differential equations which consists of three populations: uninfected cells, actively infected cells, and virus particles. This basic model is extended to include some factors of the immune response related to Human Immunodeficiency Virus-1 (HIV-1) infection. For the deterministic models, the basic reproduction number, R0, is calculated and it is shown that if R0<1, the disease-free equilibrium is locally asymptotically stable and is globally asymptotically stable in some special cases. The new stochastic models are systems of stochastic differential equations (SDEs) and continuous-time Markov chain (CTMC) models that account for the variability in cellular reproduction and death, the infection process, the immune system activation, and viral reproduction. Two viral release strategies are considered: budding and bursting. The CTMC model is used to estimate the probability of virus extinction during the early stages of infection. Numerical simulations are carried out using parameter values applicable to HIV-1 dynamics. The stochastic models provide new insights, distinct from the basic deterministic models. For the case R0>1, the deterministic models predict the viral infection persists in the host. But for the stochastic models, there is a positive probability of viral extinction. It is shown that the probability of a successful invasion depends on the initial viral dose, whether the immune system is activated, and whether the release strategy is bursting or budding.  相似文献   

16.
This article is concerned with the Bayesian estimation of stochastic rate constants in the context of dynamic models of intracellular processes. The underlying discrete stochastic kinetic model is replaced by a diffusion approximation (or stochastic differential equation approach) where a white noise term models stochastic behavior and the model is identified using equispaced time course data. The estimation framework involves the introduction of m- 1 latent data points between every pair of observations. MCMC methods are then used to sample the posterior distribution of the latent process and the model parameters. The methodology is applied to the estimation of parameters in a prokaryotic autoregulatory gene network.  相似文献   

17.
Naringenin is a flavanone compound that alters critical cellular processes such as cell multiplication, glucose uptake, and mitochondrial activity. In this study, we used the social amoeba, Dictyostelium discoideum, as a model system for examining the cellular processes and signaling pathways affected by naringenin. We found that naringenin inhibited Dictyostelium cell division in a dose-dependent manner (IC(50) approximately 20 microM). Assays of Dictyostelium chemotaxis and multicellular development revealed that naringenin possesses a previously unrecognized ability to suppress amoeboid cell motility. We also found that naringenin, which is known to inhibit phosphatidylinositol 3-kinase activity, had no apparent effect on phosphatidylinositol 3,4,5-trisphosphate synthesis in live Dictyostelium cells; suggesting that this compound suppresses cell growth and migration via alternative signaling pathways. In another context, the discoveries described here highlight the value of using the Dictyostelium model system for identifying and characterizing the mechanisms by which naringenin, and related compounds, exert their effects on eukaryotic cells.  相似文献   

18.
Microarray expression profiles are inherently noisy and many different sources of variation exist in microarray experiments. It is still a significant challenge to develop stochastic models to realize noise in microarray expression profiles, which has profound influence on the reverse engineering of genetic regulation. Using the target genes of the tumour suppressor gene p53 as the test problem, we developed stochastic differential equation models and established the relationship between the noise strength of stochastic models and parameters of an error model for describing the distribution of the microarray measurements. Numerical results indicate that the simulated variance from stochastic models with a stochastic degradation process can be represented by a monomial in terms of the hybridization intensity and the order of the monomial depends on the type of stochastic process. The developed stochastic models with multiple stochastic processes generated simulations whose variance is consistent with the prediction of the error model. This work also established a general method to develop stochastic models from experimental information.  相似文献   

19.
20.
Stochastic models for cell kinetics   总被引:1,自引:1,他引:0  
A survey is given of branching process type methods in cell kinetics. Some results are given that allow circadian rhythm and do not require complete independence between cells. Some more classical results on balanced exponential growth are given and some comments are made on flow microfluorometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号