首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apparent values of intravesicular volume (45 microliter/mg of protein), maximal capacity of adsorbed calcium binding on the inner surface of the vesicles (4.5 nmol/mg of protein) and dissociation constants for the Ca2+-binding site complexes (36 microM) were determined from the analysis of peculiarities of passive transport of 45Ca2+ into cow myometrium sarcolemmal vesicles. The kinetics of passive efflux of ionized Ca2+ from the vesicles is described by a two-phase exponential curve. Dilution of the vesicles with a dilution medium is associated with a rapid efflux of ionized Ca2+ from the intravesicular space resulting in dissociation of the Ca2+-binding site complexes on the inner surface of the vesicles and, correspondingly, in the passage from a rapid to the slow phase of Ca2+ efflux from the vesicles which is limited by the dissociation of the Ca2+-binding site complexes. The values of the apparent rate constants for the transmembrane transfer of Ca2+ and dissociation of the Ca2+-binding site complexes (0.73 and 0.02 min-1, respectively) and the permeability of sarcolemmal vesicles for the cation (10(-15) mol of Ca2+/cm2.s) were determined. Alkalinization of the dilution medium stimulates 45Ca2+ release from the vesicles. The blockers of passive Co2+ and Mn2+ transport injected into the vesicles inhibit the efflux of 45Ca2+ from the vesicles. The data obtained were used to analyze the role of sarcolemma in the Ca2+ control of myometrium contraction.  相似文献   

2.
Transport of 45Ca2+ into vesicules of hog myometrium plasmolemma under dissipation conditions of opposite-directed transmembrane gradient of protons (delta pH) was investigated. When studying some time regularities of the process, H+ dissipation was determined to have little effect on the initial velocity Vo (18 and 25 nmol Ca2+/1 mg of protein per 1 min at delta pH = 0 and delta pH = 1.5, respectively) and the time of semiaccumulation of cation (1.1 and 2.1 min). Estimation of Ca2+ accumulation concentrational dependence in the vesicules in Vo (30 s) revealed that Ca2+ input into vesicules was limited by binding the cation with carboxyl residues of Ca2+ channel external part. This effect is a consequence of the absence of Ca(2+)-transport systems in the vesicules on the background of quick filling of the intervesicular space by the cation as well as discrimination of Ca2+ sorption process by the vesicules inner surface under operating in the Vo regime. The value K0.5 = 0.5 microM for Ca2+ obtained conforms to physiological meaning of the imagined Kd, Ca2+ binding with four glutamate residues of Ca2+ channel external part. Dissipation of the artificial delta pH = 1.5 on the vesicular membrane leads to increasing the affinity for Ca2+ (to 0.1 microM at constant value of Vmax (40 nmol Ca2+/1 mg of protein per 1 min). We have also demonstrated irreversibility of the process tested and substrate specificity. The results obtained permit to suppose that delta pH dissipation provides for some conformational changes of the channel structure resulting in increasing Ca2+ affinity for the transporting system as well as increases the membrane permeability for the cation. The latter means the interrelation of two most important signal molecules such as Ca2+ and H+ in the cell is capable to occur on the level on Ca2+ separate channels.  相似文献   

3.
It is proved that in the fraction of inverted vesicles of the myometrium sarcolemma there are two components of calcium metabolism which depend on the proton concentration in the incubation medium. The first component, a static one, identified under alkalization of the incubation medium from pH 6.0 up to pH 8.0 under equilibrium conditions (Ca2+ concentration inside and outside vesicles is the same) is manifested as an increase of the calcium capacity of vesicles at the expense of Ca2+-binding centres of the inner surface of membrane vesicles. The second component, a dynamic one, is represented as a passive transmembrane flow of Ca2+ outflowing from the vesicles induced by alkalization of the extravesicle space. Alkalization-stimulated Ca2+ release from vesicles is analyzed kinetically. Possible functional role of two components of pH-dependent metabolism of Ca2+ in providing the electrical and pharmacological-mechanical conjugation in the smooth-muscular tissue is under discussion.  相似文献   

4.
The effect of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and calcium ionophore A23187 on Ca2+ release from bovine adrenal medullary secretory vesicles and microsomes was examined. Ins(1,4,5)P3 released 3.5 nmol of Ca2+/mg protein from secretory vesicles and 1.5 nmol of Ca2+/mg protein from microsomes as measured by a Ca2(+)-selective electrode. However, A23187 promoted Ca2+ uptake into vesicles while releasing Ca2+ from microsomes. Ins(1,4,5)P3-induced Ca2+ release from secretory vesicles was rapid, but the released Ca2+ was absorbed within 3 min during which the Ins(1,4,5)P3-releasable pools were refilled. The in situ calcium content of secretory vesicle measured by atomic absorption spectrometry was 112 +/- 6.3 nmol/mg protein indicating the potential importance of secretory vesicles as an intracellular Ca2+ store. The high Ca2(+)-buffering capacity of secretory vesicles is presumed to be due to the high Ca2(+)-binding capacity of chromogranin A, the major intravesicular protein, which has calsequestrin-like properties.  相似文献   

5.
It had been previously demonstrated that endoplasmic reticulum membranes from rat hepatocytes contain a major calsequestrin-like protein, on account of electrophoretic and Stains All-staining properties (Damiani et al., J. Biol. Chem. 263, 340-343). Here we show that a Ca2+-binding protein sharing characteristics in size and biochemical properties with this protein is likewise present in the isolated endoplasmic reticulum from human liver. Human calsequestrin-like protein was characterized as 62 kDa, highly acidic protein (pl 4.5), using an extraction procedure from whole tissue, followed by DEAE-Cellulose chromatography, that was originally developed for purification of skeletal muscle and cardiac calsequestrin. Liver calsequestrin-like protein bound Ca2+ at low affinity (Kd = 4 mM) and in high amounts (Bmax = 1600 nmol Ca2+/mg of protein), as determined by equilibrium dialysis, but differed strikingly from skeletal muscle calsequestrin for the lack of binding to phenyl-Sepharose resin in the absence of Ca2+, and of changes in intrinsic fluorescence upon binding of Ca2+. Thus, these results suggest that liver 62 kDa protein, in spite of its calsequestrin-like Ca2+-binding properties, does not contain a Ca2+-regulated hydrophobic site, which is a specific structural feature of the calsequestrin-class of Ca2+-binding proteins.  相似文献   

6.
We have previously described the use of Ca2+-dependent hydrophobic-interaction chromatography to isolate the Ca2+ + phospholipid-dependent protein kinase (protein kinase C) and a novel heat-stable 21 000-Mr Ca2+-binding protein from bovine brain [Walsh, Valentine, Ngai, Carruthers & Hollenberg (1984) Biochem. J. 224, 117-127]. The procedure described for purification of the 21 000-Mr calciprotein to electrophoretic homogeneity has been modified to permit the large-scale isolation of this Ca2+-binding protein, enabling further structural and functional characterization. The 21 000-Mr calciprotein was shown by equilibrium dialysis to bind approx. 1 mol of Ca2+/mol, with apparent Kd approx. 1 microM. The modified large-scale purification procedure revealed three additional, previously unidentified, Ca2+-binding proteins of Mr 17 000, 18 400 and 26 000. The 17 000-Mr and 18 400-Mr Ca2+-binding proteins are heat-stable, whereas the 26 000-Mr Ca2+-binding protein is heat-labile. Use of the transblot/45CaCl2 overlay technique [Maruyama, Mikawa & Ebashi (1984) J. Biochem. (Tokyo) 95, 511-519] suggests that the 18 400-Mr and 21 000-Mr Ca2+-binding proteins are high-affinity Ca2+-binding proteins, whereas the 17 000-Mr Ca2+-binding protein has a relatively low affinity for Ca2+. Consistent with this observation, the 18 400-Mr and 21 000-Mr Ca2+-binding proteins exhibit a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, whereas the 17 000-Mr Ca2+-binding protein does not. The amino acid compositions of the 17 000-Mr, 18 400-Mr and 21 000-Mr Ca2+-binding proteins show some similarities to each other and to calmodulin and other members of the calmodulin superfamily; however, they are clearly distinct and novel calciproteins. In functional terms, none of the 17 000-Mr, 18 400-Mr or 21 000-Mr Ca2+-binding proteins activates either cyclic nucleotide phosphodiesterase or myosin light-chain kinase, both calmodulin-activated enzymes. However, the 17 000-Mr Ca2+-binding protein is a potent inhibitor of protein kinase C. It may therefore serve to regulate the activity of this important enzyme at elevated cytosolic Ca2+ concentrations.  相似文献   

7.
Vacuoles of radish (Raphanus sativus) contained a Ca2+-binding protein (RVCaB) of 43 kDa. We investigated the Ca2+-binding properties of the protein. RVCaB was expressed in Escherichia coli and was purified from an extract by ion-exchange chromatography, nitrocellulose membrane filtration, and gel-filtration column chromatography. Ca2+-binding properties of the recombinant protein were examined by equilibrium dialysis with 45Ca2+ and small dialysis buttons. The protein was estimated to bind 19Ca2+ ions per molecule with a Kd for Ca2+ of 3.4 mM. Ca2+ was bound to the protein even in the presence of high concentrations of Mg2+ or K+. The results suggested that the protein bound Ca2+ with high ion selectivity, high capacity, and low affinity.  相似文献   

8.
A Ca2+-binding protein which is capable of activating mammalian Ca2+-activatable cyclic nucleotide phosphodiesterase has been purified from Lumbricus terrestris and characterized. This protein and the Ca2+-dependent protein modulator from bovine tissues have many similar properties. Both proteins have molecular weights of approximately 18,000, isoelectric points of about pH 4, similar and characteristic ultraviolet spectra, and similar amino acid compositions. Both proteins bind calcium ions with high affinity. However, the protein from Lumbricus terrestris binds 2 mol of calcium ions with equal affinity, Kdiss = 6 X 10(-6) M, whereas the Ca2+-dependent protein modulator from bovine tissues binds 4 mol of calcium ions with differing affinities. Although the Ca2+-binding protein of Lumbricus terrestris activates the Ca2+-activatable cyclic nucleotide phosphodiesterase from mammalian tissues, we have failed to detect the existence of a Ca2+-activatable phosphodiesterase activity in Lumbricus terrestris. The activation of phosphodiesterase by the Ca2+-binding protein from Lumbricus terrestris is inhibited by the recently discovered bovine brain modulator binding protein (Wang, J. H., and Desai, R. (1977) J. Biol. Chem. 252, 4175-4184). Since the modulator binding protein has been shown to associate with the mammalian protein modulator to result in phosphodiesterase inhibition, it can be concluded that the Lumbricus terrestris Ca2+-binding protein also associates with the bovine brain modulator binding protein. Attempts to demonstrate the existence of a similar modulator binding protein in Lumbricus terrestris have been unsuccessful.  相似文献   

9.
We previously demonstrated that CALNUC, a Ca2+-binding protein with two EF-hands, is the major Ca2+-binding protein in the Golgi by 45Ca2+ overlay (Lin, P., H. Le-Niculescu, R. Hofmeister, J.M. McCaffery, M. Jin, H. Henneman, T. McQuistan, L. De Vries, and M. Farquhar. 1998. J. Cell Biol. 141:1515-1527). In this study we investigated CALNUC's properties and the Golgi Ca2+ storage pool in vivo. CALNUC was found to be a highly abundant Golgi protein (3.8 microg CALNUC/mg Golgi protein, 2.5 x 10(5) CALNUC molecules/NRK cell) and to have a single high affinity, low capacity Ca2+-binding site (Kd = 6.6 microM, binding capacity = 1.1 micromol Ca2+/micromol CALNUC). 45Ca2+ storage was increased by 2.5- and 3-fold, respectively, in HeLa cells transiently overexpressing CALNUC-GFP and in EcR-CHO cells stably overexpressing CALNUC. Deletion of the first EF-hand alpha helix from CALNUC completely abolished its Ca2+-binding capability. CALNUC was correctly targeted to the Golgi in transfected cells as it colocalized and cosedimented with the Golgi marker, alpha-mannosidase II (Man II). Approximately 70% of the 45Ca2+ taken up by HeLa and CHO cells overexpressing CALNUC was released by treatment with thapsigargin, a sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) (Ca2+ pump) blocker. Stimulation of transfected cells with the agonist ATP or IP3 alone (permeabilized cells) also resulted in a significant increase in Ca2+ release from Golgi stores. By immunofluorescence, the IP3 receptor type 1 (IP3R-1) was distributed over the endoplasmic reticulum and codistributed with CALNUC in the Golgi. These results provide direct evidence that CALNUC binds Ca2+ in vivo and together with SERCA and IP3R is involved in establishment of the agonist-mobilizable Golgi Ca2+ store.  相似文献   

10.
To learn more about the function of intracellular Ca2+ in Dictyostelium discoideum, we searched databases for sequences encoding potential members of the neuronal calcium sensor (NCS) family of Ca2+-binding proteins. As a result, genes for five new putative Ca2+-binding proteins were identified. Based on amino acid sequence alignments and phylogenetic analyses, one of these genes (ncsA) was determined to be closely related to NCS-1/frequenin genes in other organisms. The protein product of ncsA (NcsA) binds 45Ca2+ and exhibits a dramatic gel mobility shift in the presence of Ca2+, suggesting that it is a Ca2+ sensor. ncsA-null cells grow normally in axenic culture. However, on bacterial lawns, the ncsA-null clones expand slowly and development begins prematurely within the plaques. In larger clones, ncsA-null cells form narrow growth zones with evenly spaced aggregates along the inner edge, and closely packed fruiting bodies. An analysis of intracellular cyclic adenosine monophosphate (cAMP) levels, developmental timing on phosphate-buffered saline (PBS) agar, and stage-specific gene expression indicate that development of ncsA-null cells is accelerated by 3-4 h. Together, these results suggest that NcsA might function in Dictyostelium to prevent cells from entering development prematurely in the presence of environmental nutrients.  相似文献   

11.
The troponin C superfamily consists of about 100 Ca2+-binding proteins. Sequence variations observed in these proteins have been analyzed and lead to the following conclusions. (1) There are some strict rules defining the set of calcium ligands necessary for effective Ca2+ binding. (2) If they are fulfilled, the Ca2+ binding constant depends on tertiary interactions within a protein, as well as the free energy of secondary structures of its polypeptide chain. The former provide a constant contribution to the free energy of protein folding and the Ca2+-binding process. (3) The observed variety in Ca2+-binding constants of these proteins results from the various abilities of segments of these proteins to assume the correct secondary structure.  相似文献   

12.
A large-scale preparation method for bovine brain 28-kDa cholecalcin-like protein is described. Flow dialysis binding studies revealed that the protein binds at least 3 mol of Ca2+/mol of protein. The protein undergoes conformational changes on binding calcium as shown by UV differential absorption spectroscopy, near and far UV circular dichroism, and intrinsic fluorescence. Circular dichroism (CD) studies in the far UV indicate an apparent increase in helical content in the presence of Ca2+. The effect of calcium on the protein structure is nearly maximum for 1 Ca2+ bound/protein molecule. UV differential absorption studies on the binding of the Ca2+ agonist Tb3+ and Tb3+ luminescence induced by energy Trp----Tb3+ transfer indicate that Tb3+ binds to two higher affinity Ca2+-binding sites. These sites are probably very close to the single Trp residue. Analysis of the fluorescence parameters of the single tryptophan residue in the apoprotein and its accessibility to ionic and neutral quenchers suggests that this residue is located in a highly hydrophobic domain on the protein surface.  相似文献   

13.
Calbindin-D(28K) is a Ca2+-binding protein, performing roles as both a calcium buffer and calcium sensor. The NMR solution structure of Ca2+-loaded calbindin-D(28K) reveals a single, globular fold consisting of six distinct EF-hand subdomains, which coordinate Ca2+ in loops on EF1, EF3, EF4 and EF5. Target peptides from Ran-binding protein M and myo-inositol monophosphatase, along with a new target from procaspase-3, are shown to interact with the protein on a surface comprised of alpha5 (EF3), alpha8 (EF4) and the EF2-EF3 and EF4-EF5 loops. Fluorescence experiments reveal that calbindin-D(28K) adopts discrete hydrophobic states as it binds Ca2+. The structure, binding interface and hydrophobic characteristics of Ca2+-loaded calbindin-D(28K) provide the first detailed insights into how this essential protein may function. This structure is one of the largest high-resolution NMR structures and the largest monomeric EF-hand protein to be solved to date.  相似文献   

14.
Recoverin is an N-myristoylated 23 kDa calcium-binding protein from retina, which modulates the Ca2+-sensitive deactivation of rhodopsin via Ca2+-dependent inhibition of rhodopsin kinase. It was shown by intrinsic and bis-ANS probe fluorescence, circular dichroism, and differential scanning calorimetry that myristoylated recombinant recoverin interacts specifically with zinc ions. Similar to the calcium binding, the binding of zinc to Ca2+-loaded recoverin additionally increases its alpha-helical content, hydrophobic surface area, and environmental mobility/polarity of its tryptophan residues. In contrast to the calcium binding, the binding of zinc decreases thermal stability of the Ca2+-loaded protein. Zn2+-titration of recoverin, traced by bis-ANS fluorescence, reveals binding of a single Zn2+ ion per protein molecule. It was shown that the double-mutant E85Q/E121Q with inactivated Ca2+-binding EF-hands 2 and 3 (Alekseev, A. M.; Shulga-Morskoy, S. V.; Zinchenko, D. V.; Shulga-Morskaya, S. A.; Suchkov, D. V.; Vaganova, S. A.; Senin, I. I.; Zargarov, A. A.; Lipkin, V. M.; Akhtar, M.; Philippov, P. P. FEBS Lett. 1998, 440, 116-118), which can be considered as an analogue of the apo-protein, binds Zn2+ ion as well. Apparent zinc equilibrium binding constants evaluated from spectrofluorimetric Zn2+-titrations of the protein are 1.4 x 10(5) M(-1) (dissociation constant 7.1 microM) for Ca2+-loaded wild-type recoverin and 3.3 x 10(4) M(-1) (dissociation constant 30 microM) for the E85Q/E121Q mutant (analogue of apo-recoverin). Study of the binding of wild-type recoverin to ROS membranes showed a zinc-dependent increase of its affinity for the membranes, without regard to calcium content, suggesting further solvation of a protein myristoyl group upon Zn2+ binding. Possible implications of these findings to the functioning of recoverin are discussed.  相似文献   

15.
Calcium binding to bone gamma-carboxyglutamic acid protein (BGB) from calf has been studied using 43Ca NMR. The temperature dependence of the 43Ca NMR signal has been used to calculate the calcium ion exchange rate, koff. The dependence of the 43Ca NMR band shape on the [Ca2+]/[BGP] ratio fits well to a chemical equilibrium model having a single Ca2+-binding site with an association constant in the range of 5 X 10(3)-1 X 10(5) M-1. The pH dependence of the 43Ca NMR line-width shows a single apparent pKa value of 5.1.  相似文献   

16.
Ca2+-binding proteins in nuclei   总被引:1,自引:0,他引:1  
Nuclei isolated from skeletal muscle of 15-day-old chick embryos, adult chickens, rabbits and from rat liver contain on the average 8-18 nmol Ca2+/mg protein. Digestion of nuclei with DNAase I and RNAase at 37 degrees C for 8--12 h reduced the Ca2+ binding by more than 90%. After nuclease treatment, Ca2+-binding proteins were identified in the nonhistone chromosomal protein fractions and in the insoluble residue by equilibrium dialysis and centrifuge transport, in media of 0.1 M KCl and 1 mM MgCl2. The interaction of Ca2+-binding proteins with chromatin may be of importance in the regulation of the gene expression in response to changes in cytoplasmic and nucleoplasmic free-Ca2+ concentration.  相似文献   

17.
The relationship between intrasynaptosomal total (CaT) and free ([Ca2+]i) calcium and 45Ca accumulation was studied under physiological and K(+)-depolarised conditions in rat cortical synaptosomes. Under physiological conditions, CaT (10.7 mM) was approximately 10,000 times higher than [Ca2+]i (118 nM), showing that there is a large reservoir of sequestered calcium in synaptosomes. 45Ca accumulation was rapid (initial rate, 3.4 nmol/mg protein/min), substantial (7 nmol/mg protein in 2 min), and depolarisation dependent, and reached equilibrium after 5 min. At equilibrium, only 10% of CaT was freely exchangeable. This pool was much larger than the free Ca2+ pool. CaT, [Ca2+]i, and 45Ca accumulations were directly related to the Ca2+ concentration in the buffer, suggesting that [Ca2+]i is not highly conserved but is maintained by simple equilibria between the various pools. Clonidine reduced 45Ca accumulation in a time- and dose-dependent manner. Maximum inhibition (40% at 100 microM) occurred at 2 min and the IC50 was 80 nM. The reduction caused by clonidine (1 microM) reached equilibrium after 5 min, but this equilibrium value was lower than in controls, suggesting that clonidine changes the exchangeable Ca2+ pool size. The effects of clonidine (1 microM) on [Ca2+]i (26% reduction) and on 45Ca accumulation (24% reduction) were most apparent under physiological conditions. However, while it was not dependent on depolarisation, it did not occur in physiological buffer containing low K+ concentration (0.1-1 mM). The inhibitory effect of clonidine on 45Ca accumulation is receptor mediated as it was antagonised by idazoxan (1 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The structural properties of myristoylated forms of recombinant recoverin of the wild type and of its mutants with damaged second and/or third Ca(2+)-binding sites were studied by fluorimetry and circular dichroism. The interaction of wild-type recoverin with calcium ions was shown to induce unusual structural rearrangements in its molecule. In particular, protein binding with Ca2+ ions results in an increase in the mobility of the environment of Trp residues, in higher hydrophobicity, and in elevated thermal stability (its thermal transition shifts by 15 degrees C to higher temperatures) but has almost no effect on its secondary structure. Similar structural changes induced by Ca2+ are also characteristic of the -EF2 mutant of recoverin whose second Ca(2+)-binding site is modified and cannot bind calcium ions. The structural properties of the -EF3 and -EF2,3 mutants (whose third or simultaneously second and third Ca(2+)-binding sites, respectively, are modified and damaged) are practically indifferent to calcium ions.  相似文献   

19.
The interaction of ruthenium red, [(NH3)5Ru-O-Ru(NH3)4-O-Ru(NH3)5]Cl6.4H2O, with various Ca2(+)-binding proteins was studied. Ruthenium red inhibited Ca2+ binding to the sarcoplasmic reticulum protein, calsequestrin, immobilized on Sepharose 4B. Furthermore, ruthenium red bound to calsequestrin with high affinity (Kd = 0.7 microM; Bmax = 218 nmol/mg protein). The dye stained calsequestrin in sodium dodecyl sulfate-polyacrylamide gels or on nitrocellulose paper and was displaced by Ca2+ (Ki = 1.4 mM). The specificity of ruthenium red staining of several Ca2(+)-binding proteins was investigated by comparison with two other detection methods, 45Ca2+ autoradiography and the Stains-all reaction. Ruthenium red bound to the same proteins detected by the 45Ca2+ overlay technique. Ruthenium red stained both the erythrocyte Band 3 anion transporter and the Ca2(+)-ATPase of skeletal muscle sarcoplasmic reticulum. Ruthenium red also stained the EF hand conformation Ca2(+)-binding proteins, calmodulin, troponin C, and S-100. This inorganic dye provides a simple, rapid method for detecting various types of Ca2(+)-binding proteins following electrophoresis.  相似文献   

20.
The mechanism of the sarcoplasmic reticulum Ca2+-ATPase was investigated at low temperatures (0 to -12 degrees C). Transient states of the enzyme were studied by two complementary techniques: intrinsic protein fluorescence and rapid filtration on Millipore filters. Intrinsic fluorescence was used to distinguish conformational states of the protein and to evaluate the rate of conversion between these states. Filtrations were used to measure the evolution of the active sites during the transition; the time resolution was 2-5 s. At sub-zero temperatures this time is shorter than the lifetime of most of the enzymatic states which have been detected. In this paper the mechanism of Ca2+ binding to the protein is investigated in the absence of nucleotides. Two basic experiments are described; (1) Kinetics of calcium binding and dissociation over a wide range of calcium concentration. (2) Kinetics of calcium exchange (45Ca2+ in equilibrium 40Ca2+) at constant concentration. The results obtained in the first series of experiments are consistent with a sequential binding to two interacting Ca2+ binding sites. Calcium ions have very fast access to a site with low apparent affinity (Kd approximately 25 microM). Occupation of this site induces a slow conformational change which increased its apparent affinity and reveals a second site of high apparent affinity. At equilibrium the two sites are not equivalent in terms of rate of exchange. Two different rates were detected k fast greater than 0.2 s-1, k slow approximately 0.015 s-1 at -10 degrees C. Removal of Ca2+ from the fast exchanging site by addition of EGTA accelerates the rate of release of the slow exchanging one. A model is proposed with two interacting Ca2+-binding sites. A set of parameters has been obtained which produces correctly the Ca2+-binding curve and the fluorescence level at equilibrium as well as the rate constants of the calcium-induced fluorescence changes over a very wide range of Ca2+ concentrations (0.02 to 150 microM). The non-equivalence of the two classes of site and the meaning of the initial low-affinity binding are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号