首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth and differentiation of B cells to immunoglobulin (Ig)-secreting cells is regulated by a variety of soluble factors. This study presents data that support a role for transforming growth factor (TGF)-beta in this regulatory process. B lymphocytes were shown to have high-affinity receptors for TGF-beta that were increased fivefold to sixfold after in vitro activation. The addition of picogram quantities of TGF-beta to B cell cultures suppressed factor-dependent, interleukin 2 (IL 2) B cell proliferation and markedly suppressed factor-dependent (IL 2 or B cell differentiation factor) B cell Ig secretion. In contrast, the constitutive IgG production by an Epstein Barr virus-transformed B cell line was not modified by the presence of TGF-beta in culture. This cell line was found to lack high-affinity TGF-beta receptors. The degree of inhibition of B cell proliferation observed in in vitro cultures was found to be dependent not only on the concentration of TGF-beta added but also on the concentration of the growth stimulatory substance (IL 2) present. By increasing the IL 2 concentrations in culture, the inhibition of proliferation induced by TGF-beta could be partially overcome. In contrast, the inhibition of Ig secretion induced by TGF-beta could not be overcome by a higher concentration of stimulatory factor, demonstrating that the suppression of B cell differentiation by TGF-beta is not due solely to its effects on proliferation. Furthermore, it was demonstrated that B lymphocytes secrete TGF-beta. Unactivated tonsillar B cells had detectable amounts of TGF-beta mRNA on Northern blot analysis, and B cell activation with Staphylococcus aureus Cowan (SAC) resulted in a twofold to threefold increase in TGF-beta mRNA. Supernatants conditioned by unactivated B cells had small amounts of TGF-beta, SAC activation of the B cells resulted in a sixfold to sevenfold increase in the amount of TGF-beta present in the supernatants. Thus, B lymphocytes synthesize and secrete TGF-beta and express receptors for TGF-beta. The addition of exogenous TGF-beta to cultures of stimulated B cells inhibits subsequent proliferation and Ig secretion. TGF-beta may function as an autocrine growth inhibitor that limits B lymphocyte proliferation and ultimate differentiation.  相似文献   

2.
3.
Tissue plasticity is well documented in the context of pancreatic regeneration and carcinogenesis, with recent reports implicating dedifferentiated islet cells both as endocrine progenitors and as the cell(s) of origin in pancreatic adenocarcinoma. Accordingly, it is noteworthy that accumulating evidence suggests that TGFbeta signaling is essential to pancreatic endocrine development and maintenance, whereas its loss is associated with the progression to pancreatic adenocarcinoma. The aim of this study was to examine the role of TGFbeta in an in vitro model of islet morphogenetic plasticity. Human islets were embedded in a collagen gel and cultured under conditions that induced transformation into duct-like epithelial structures (DLS). Addition of TGFbeta caused a dose-dependent decrease in DLS formation. Although it was demonstrated that collagen-embedded islets secrete low levels of TGFbeta, antibody-mediated neutralization of this endogenously released TGFbeta improved DLS formation rates, suggesting local TGFbeta concentrations may in fact be higher. Time course studies indicated that TGFbeta signaling was associated with an increase in ERK and p38 MAPK phosphorylation, although inhibitor-based studies were consistent with an islet endocrine-stabilizing effect mediated by p38 alone. Localization of TGFbeta signaling molecules suggested that the action of TGFbeta is directly on the beta-cell to inhibit apoptosis and thus stabilize endocrine phenotype.  相似文献   

4.
Amyloid beta protein precursor is a mitogen   总被引:4,自引:0,他引:4  
The form of the secreted amyloid beta-protein precursor which contains the protease inhibitor sequence is mitogenic for Swiss 3T3 cells, while the precursor molecule lacking the protease inhibitor domain is not. A ten-fold stimulation of DNA synthesis occurs at 8 x 10(-9) M protein.  相似文献   

5.
Axolotls (urodele amphibians) have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-beta). In the present study, the full length sequence of the axolotl TGF-beta1 cDNA was isolated. The spatio-temporal expression pattern of TGF-beta1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-beta signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-beta type I receptor, SB-431542, we show that TGF-beta signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-beta signaling are down-regulated. These data directly implicate TGF-beta signaling in the initiation and control of the regeneration process in axolotls.  相似文献   

6.
7.
Transforming growth factor type beta (TGF beta) is a pleiotropic regulator of cell growth with specific high-affinity cell-surface receptors on a large number of cells; its mechanism of action, however, is poorly defined. In this report, we utilized the mouse fibroblast line AKR-2B to explore the question of the temporal requirements during the cell cycle in regard to both the growth inhibitory and the growth stimulatory action of TGF beta. The results indicate that AKR-2B cells are most sensitive to the inhibitory action of TGF beta during early to mid-G1. In addition, TGF beta need be present only briefly (as little as 1 min) in order to exert its inhibitory effect on EGF-induced DNA synthesis. Likewise, the stimulatory effect of TGF beta in the absence of EGF requires only an equally brief exposure to TGF beta. Use of homogeneous 125I-labeled TGF beta in a cell-binding assay demonstrates that TGF beta bound to cell-surface receptors can readily exchange into the culture medium T1/2 = 120 min), helping to rule out the possibility that persistent receptor-bound TGF beta is the source of a continuous stimulus. The data indicate that TGF beta exposure induces a stable state in the cell (T1/2 = 20 h) similar to but distinct from the state of "competence" induced by platelet-derived growth factor (PDGF).  相似文献   

8.
9.
We have studied the effect of transforming growth factor beta 1 (TGF-beta 1) on vascular smooth muscle cell (SMC) mitogenesis and expression of thrombospondin and other growth related genes. We found that TGF-beta 1 treatment of vascular SMC induced a prolonged increase in steady-state mRNA levels of thrombospondin as well as alpha 1 (IV) collagen. The increase began at approximately 2 h, peaked by 24 h, and remained considerably elevated 48 h after growth factor addition. There was a corresponding increase in thrombospondin protein as well as increased expression of several other secreted polypeptides. The increase in thrombospondin contrasted sharply with that observed for platelet-derived growth factor (PDGF) which induced a rapid and transient increase in thrombospondin mRNA level. Although TGF-beta 1 was able to directly enhance expression of thrombospondin as well as the growth-related genes c-fos and c-myc, and induced c-fos expression with identical kinetics as PDGF, it was unable to elicit [3H]thymidine incorporation into DNA in three independent smooth muscle cell strains. However, TGF-beta 1 was able to strongly increase the mitogenic response of SMC to PDGF. Addition of both TGF-beta 1 and PDGF to SMC also caused a synergistic increase in the expression of thrombospondin as well as c-myc. Interestingly, in one other smooth muscle cell strain, a weak and delayed mitogenic response to TGF-beta 1 alone was observed. Our results strongly suggest that induction of thrombospondin expression by TGF-beta 1 and by PDGF occurs by distinct mechanisms. In addition, that TGF-beta 1 can enhance PDGF-induced mitogenesis may be due to the ability of TGF-beta 1 to directly induce the expression of thrombospondin, c-fos, c-myc, and the PDGF beta-receptor.  相似文献   

10.
Transforming growth factor beta signaling mediators and modulators   总被引:24,自引:0,他引:24  
Zimmerman CM  Padgett RW 《Gene》2000,249(1-2):17-30
  相似文献   

11.
Cleavage and release of membrane protein ectodomains, a regulated process that affects many cell surface proteins, remains largely uncharacterized. To investigate whether cell surface proteins are cleaved through a shared mechanism or through multiple independent mechanisms, we mutagenized Chinese hamster ovary (CHO) cells and selected clones that were unable to cleave membrane-anchored transforming growth factor alpha (TGF-alpha). The defect in TGF-alpha cleavage in these clones is most apparent upon cell treatment with the protein kinase C (PKC) activator PMA, which stimulates TGF-alpha cleavage in wild-type cells. The mutant clones do not have defects in TFG-alpha expression, transport to the cell surface or turnover. Concomitant with the loss of TGF-alpha cleavage, these clones have lost the ability to cleave many structurally unrelated membrane proteins in response to PMA. These proteins include beta-amyloid precursor protein (beta-APP), whose cleavage into a secreted form avoids conversion into the amyloidogenic peptide A beta, and a group of cell surface proteins whose release into the medium is stimulated by PMA in wild type CHO cells but not in mutants. The mutations prevent cleavage by PKC- dependent as well as PKC-independent mechanisms, and thus affect an essential component that functions downstream of these various signaling mechanisms. We propose that regulated cleavage and secretion of membrane protein ectodomains is mediated by a common system whose components respond to multiple activators and act on susceptible proteins of diverse structure and function.  相似文献   

12.
Transforming growth factors beta (TGF beta) are multifunctional polypeptides that participate in regulation of growth, differentiation and function of many cell types. The mature TGF beta molecule is a 25 kDa protein composed of two 12.5 kDa monomers linked by disulfide bonds. Human glioblastoma cells secrete biologically active TGF beta 2. Here we report that in addition to the free form of TGF beta 2, a stable complex between a approximately 110 kDa binding protein and TGF beta 2 was isolated from glioblastoma cell supernatant. This binding protein was purified and was found to show sequence identity to part of the beta amyloid precursor protein (beta APP), to be specifically labeled by several different antisera to beta APP, and to be affinity labeled with TGF beta by crosslinking. The complex formation between TGF beta and beta APP may have important implications in regulation of biological activity of the two proteins and in delivery or clearance of TGF beta and beta APP in the brain and other compartments.  相似文献   

13.
14.
Spermidine synthase was purified to apparent homogeneity from human spleens (8700-fold) by affinity chromatography. The native enzyme was composed of two subunits of identical Mr (35,000) and showed an apparent Mr of 62,000 in pore-gradient gel electrophoresis. Its pI was 5.1, Spermine synthase was purified to apparent homogeneity from placenta (5300-fold) and from kidney (4600-fold). The native enzyme was composed of two subunits of identical Mr (45,000) and showed an apparent Mr of 78,000 in pore-gradient gel electrophoresis. In isoelectric focusing it revealed two bands, with pI values of 4.9 and 5.0. Both synthases were present in all human tissues studied, but revealed a clear tissue-specific pattern. Mouse antisera against spermidine synthase revealed only one band, of Mr 35,000, in all purified enzyme preparations and in crude human tissue extracts in immunoblotting. Antisera against spermine synthase showed an immunoreactive band corresponding to the Mr of the subunit of spermine synthase. These antisera did not indicate any cross-reactivity in immunoblotting. Thus spermine synthase and spermidine synthase do not share homologous antigenic sites and are totally different proteins.  相似文献   

15.
125I-Labeled human platelet-derived transforming growth factor beta (125I-TGF-beta) and human alpha 2-macroglobulin (alpha 2M) formed a complex as demonstrated by 5% native polyacrylamide gel electrophoresis. The 125I-TGF-beta.alpha 2M complex migrated at a position identical to that of the fast migrating form of alpha 2M. Most of the 125I-TGF-beta.alpha 2M complex could be dissociated by acid or urea treatment. When 125I-TGF-beta was incubated with serum, the high molecular weight form of 125I-TGF-beta could be immunoprecipitated by anti-human alpha 2M anti-sera as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. alpha 2M purified from platelet-rich plasma also showed the latent transforming growth factor activity and immunoreactivity of TGF-beta. These results suggest that TGF-beta.alpha 2M complex is a latent form of TGF-beta.  相似文献   

16.
Transforming growth factor beta in cardiovascular development and function   总被引:5,自引:0,他引:5  
Transforming growth factor betas (TGFbetas) are pleiotropic cytokines involved in many biological processes. Genetic engineering and tissue explanation studies have revealed specific non-overlapping roles for TGFbeta ligands and their signaling molecules in development and in normal function of the cardiovascular system in the adult. In the embryo, TGFbetas appear to be involved in epithelial-mesenchymal transformations (EMT) during endocardial cushion formation, and in epicardial epithelial-mesenchymal transformations essential for coronary vasculature, ventricular myocardial development and compaction. In the adult, TGFbetas are involved in cardiac hypertrophy, vascular remodeling and regulation of the renal renin-angiotensin system. The evidence for TGFbeta activities during cardiovascular development and physiologic function will be given and areas which need further investigation will be discussed.  相似文献   

17.
Wu QF  Yang L  Li S  Wang Q  Yuan XB  Gao X  Bao L  Zhang X 《Cell》2012,149(7):1549-1564
Secretory fibroblast growth factors (FGFs) and their receptors are known for their regulatory function in the early stages of neural development. FGF13, a nonsecretory protein of the FGF family, is expressed in cerebral cortical neurons during development and is a candidate gene for syndromal and nonspecific forms of X-chromosome-linked mental retardation (XLMR). However, its function during development remains unclear. We show that FGF13 acts intracellularly as a microtubule-stabilizing protein required for axon and leading process development and neuronal migration in the cerebral cortex. FGF13 is enriched in axonal growth cones and interacts directly with microtubules. Furthermore, FGF13 polymerizes tubulins and stabilizes microtubules. The loss of FGF13 impairs neuronal polarization and increases the branching of axons and leading processes. Genetic deletion of FGF13 in mice results in neuronal migration defects in both the neocortex and the hippocampus. FGF13-deficient mice also exhibit weakened learning and memory, which is correlated to XLMR patients' intellectual disability.  相似文献   

18.
TGF beta has been identified in normal human urine specimens from five individuals studied for five consecutive days. The peptide was extracted from urine using Sepralyte C1 beads. Detectable levels of [125I]TGF beta competing activity as measured by radioreceptor assay was found in about half of the specimens studied. The protein isolated from urine using C1 Sepralyte beads was further purified using Biogel P-60 column chromatography. Fractions were tested for TGF beta and EGF competing activity using radioreceptor assays. TGF beta and EGF extracted from urine are clearly separated by column chromatography. Two distinct EGF peaks and a single TGF beta peak were observed. Fractions having [125I]TGF beta competing activity were pooled and further purified using reverse-phase HPLC. HPLC fractions having [125I]TGF beta competing activity were tested for bioactivity using a soft agar assay. The fractions were capable of stimulating soft agar growth of AKR-2B (clone 84A) cells and cross reacted with a TGF beta antibody in a radioimmunoassay. The presence of TGF beta in normal human urine was also demonstrated by immunoblotting. These results also suggest that C1 bead extraction of urine specimens can be used as a rapid first step in purification of TGF beta.  相似文献   

19.
20.
Transforming growth factor beta (TGF-beta) inhibits proliferation and promotes cell migration. In TGF-beta-treated MCF10A mammary epithelial cells overexpressing HER2 and by chromatin immunoprecipitation, we identified novel Smad targets including protein tyrosine phosphatase receptor type kappa (PTPRK). TGF-beta up-regulated PTPRK mRNA and RPTPkappa (receptor type protein tyrosine phosphatase kappa, the protein product encoded by the PTPRK gene) protein in tumor and nontumor mammary cells; HER2 overexpression down-regulated its expression. RNA interference (RNAi) of PTPRK accelerated cell cycle progression, enhanced response to epidermal growth factor (EGF), and abrogated TGF-beta-mediated antimitogenesis. Endogenous RPTPkappa associated with EGF receptor and HER2, resulting in suppression of basal and ErbB ligand-induced proliferation and receptor phosphorylation. In MCF10A/HER2 cells, TGF-beta enhanced cell motility, FAK phosphorylation, F-actin assembly, and focal adhesion formation and inhibited RhoA activity. These responses were abolished when RPTPkappa was eliminated by RNA interference (RNAi). In cells expressing RPTPkappa RNAi, phosphorylation of Src at Tyr527 was increased and (activating) phosphorylation of Src at Tyr416 was reduced. These data suggest that (i) RPTPkappa positively regulates Src; (ii) HER2 signaling and TGF-beta-induced RPTPkappa converge at Src, providing an adequate input for activation of FAK and increased cell motility and adhesion; and (iii) RPTPkappa is required for both the antiproliferative and the promigratory effects of TGF-beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号