首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The FLP protein of the 2-microns plasmid of yeast belongs to the integrase family of site-specific recombinases whose members form a covalent bond between a conserved tyrosine of the recombinase and the 3'-phosphoryl group at the site of cleavage. We have made an activated DNA substrate and have shown that FLP can promote efficient strand ligation without forming a covalent intermediate with the DNA substrate. The strand ligation activity of FLP is independent of its ability to cleave DNA. Since site-specific recombinases are members of the larger class of topoisomerases, these findings may be generally applicable to other members of this class of enzymes.  相似文献   

2.
The FLP recombinase interacts with its target sequence with the formation of three distinct DNA-protein complexes. The first complex leaves neither a DNase footprint nor is the DNA protected from methylation by dimethyl sulfate. We have found, however, that the FLP protein is bound predominantly to only one of the three 13 base-pair (bp) symmetry elements. This asymmetric loading of the FLP site seems to require the presence of an adjacent directly repeated 13 bp element. We speculate that this asymmetric filling of the target site may be accompanied by the unique order of cleavage and exchange of DNA strands.  相似文献   

3.
The FLP recombinase from the 2 microns plasmid of Saccharomyces cerevisiae contains a region from amino acid 185 to 203 that is conserved among several FLP-like proteins from different yeasts. Using site-directed mutagenesis, we have made mutations in this region of the FLP gene. Five of twelve mutations in the region yielded proteins that were unable to bind to the FLP recombination target (FRT) site. A change of arginine at position 191 to lysine resulted in a protein (FLP-R191K) that could bind to the FRT site but could not catalyze recombination. This mutant protein accumulated as a stable protein-DNA complex in which one of the two bound FLP proteins was covalently attached to the DNA. FLP-R191K was defective in strand exchange and ligation and was unable to promote protein-protein interaction with half-FRT sites. The conservation of three residues in all members of the integrase family of site-specific recombinases (His305, Arg308, Tyr343 in FLP) implies a common mechanism of recombination. The conservation of arginine 191 and the properties of the FLP-R191K mutant protein suggest that this arginine also plays an important role in the mechanism of FLP-mediated site-specific recombination.  相似文献   

4.
Although the integrase (IntDOT) of the Bacteroides conjugative transposon CTnDOT has been classified as a member of the tyrosine recombinase family, the reaction it catalyzes appears to differ in some features from reactions catalyzed by other tyrosine recombinases. We tested the ability of IntDOT to cleave and ligate activated attDOT substrates in the presence of mismatches. Unlike other tyrosine recombinases, the results revealed that IntDOT is able to perform ligation reactions even when all the bases within the crossover region are mispaired. We also show that there is a strong bias in the order of strand exchanges during integrative recombination. The top strands are exchanged first in reactions that appear to require 2 bp of homology between the partner sites adjacent to the sites of cleavage. The bottom strands are exchanged next in reactions that do not require homology between the partner sites. This mode of coordination of strand exchanges is unique among tyrosine recombinases.  相似文献   

5.
The site-specific recombinase (FLP) encoded by the yeast plasmid 2 micron circle belongs to the integrase (of phage lambda) family of recombinases. The sparse homology within the members of this family contrasts with the invariance of three residues, His-396, Arg-399, and Tyr-433 (the numbers correspond to the family alignment positions), among them. We report here results on substrate recognition and catalysis by FLP proteins altered at these residues. Mutations of the conserved His and Tyr that aborted the reaction at specific steps of catalysis permitted genetic dissection of the possible biochemical steps of recombination. We provide indirect evidence that recombination by FLP proceeds through a Holliday junction intermediate.  相似文献   

6.
Wild-type Flp recombinase cleaves DNA in trans.   总被引:1,自引:0,他引:1       下载免费PDF全文
J Lee  M Jayaram    I Grainge 《The EMBO journal》1999,18(3):784-791
Site-specific recombinases of the Integrase family utilize a common chemical mechanism to break DNA strands during recombination. A conserved Arg-His-Arg triad activates the scissile phosphodiester bond, and an active-site tyrosine provides the nucleophile to effect DNA cleavage. Is the tyrosine residue for the cleavage event derived from the same recombinase monomer which provides the RHR triad (DNA cleavage in cis), or are the triad and tyrosine derived from two separate monomers (cleavage in trans)? Do all members of the family follow the same cleavage rule, cis or trans? Solution studies and available structural data have provided conflicting answers. Experimental results with the Flp recombinase which strongly support trans cleavage have been derived either by pairing two catalytic mutants of Flp or by pairing wild-type Flp and a catalytic mutant. The inclusion of the mutant has raised new concerns, especially because of the apparent contradictions in their cleavage modes posed by other Int family members. Here we test the cleavage mode of Flp using an experimental design which excludes the use of the mutant protein, and show that the outcome is still only trans DNA cleavage.  相似文献   

7.
Lambda integrase cleaves DNA in cis.   总被引:4,自引:3,他引:1       下载免费PDF全文
In the Int family of site-specific recombinases, DNA cleavage is accomplished by nucleophilic attack on the activated scissile phosphodiester bond by a specific tyrosine residue. It has been proposed that this tyrosine is contributed by a protomer bound to a site other than the one being cleaved ('trans' cleavage). To test this hypothesis, the difference in DNA binding specificity between closely related integrases (Ints) from phages lambda and HK022 was exploited to direct wild type Ints and cleavage- or activation-defective mutants to particular sites on bispecific substrates. Analysis of Int cleavage at individual sites strongly indicates that DNA cleavage is catalyzed by the Int bound to the cleaved site ('cis' cleavage). This conclusion contrasts with those from previous experiments with two members of the Int family, FLP and lambda Int, that supported the hypothesis of trans cleavage. We suggest explanations for this difference and discuss the implications of the surprising finding that Int-family recombinases appear capable of both cis and trans mechanisms of DNA cleavage.  相似文献   

8.
A combination of half-site substrates and step arrest mutants of Flp, a site-specific recombinase of the integrase family, had earlier revealed the following features of the half-site recombination reaction. (i) The Flp active site is assembled by sharing of catalytic residues from at least two monomers of the protein. (ii) A Flp monomer does not cleave the half site to which it is bound (DNA cleavage in cis); rather, it cleaves a half site bound by a second Flp monomer (DNA cleavage in trans). For the lambda integrase (Int protein), the prototype member of the Int family, catalytic complementation between two active-site mutants has been observed in reactions with a suicide attL substrate. By analogy with Flp, this observation is strongly suggestive of a shared active site and of trans DNA cleavage. However, reactions with linear suicide attB substrates and synthetic Holliday junctions are more compatible with cis than with trans DNA cleavage. These Int results either argue against a common mode of active-site assembly within the Int family or challenge the validity of Flp half sites as mimics of the normal full-site substrates. We devised a strategy to assay catalytic complementation between Flp monomers in full sites. We found that the full-site reaction follows the shared active-site paradigm and the trans mode of DNA cleavage. These results suggest that within the Int family, a unitary chemical mechanism of recombination is achieved by more than one mode of physical interaction among the recombinase monomers.  相似文献   

9.
Site-specific recombinases of the gamma Int family carry out two single-strand exchanges by binding as head-to-head dimers on inverted core-type DNA sites. Each protomer may cleave its own site as a monomer in cis (as for Cre recombinase), or it may recruit the tyrosine from its partner in trans to form a composite active site (as for Flp recombinase). The crystal structure of the gamma Int catalytic domain is compatible with both cleavage mechanisms, but two previous biochemical studies on gamma integrase (Int) generated data that were not in agreement. Support for cis and trans cleavage came from assays with bispecific DNA substrates for gamma and HK022 Ints and from functional complementation between recombination-deficient mutants, respectively. The data presented here do not provide new evidence for cis cleavage, but they strongly suggest that the previously described complementation results cannot be used in support of a trans-cleavage mechanism. We show here that IntR212Q retains some residual catalytic function but is impaired in binding to core-type DNA on linear substrates and in forming higher-order attL intasome structures. The binding-proficient mutant IntY342F can stabilize IntR212Q binding to core-type DNA through protein-protein interactions. Similarly, the formation of higher-order Int complexes with arm- and core-type DNA is boosted with both mutants present. This complementation precedes cleavage and thus precludes any conclusions about the mechanism of catalysis. Cross-core stimulation of wild-type HK022-Int cleavage on its cognate site (in cis) by mutant gamma Ints on bispecific core DNA suicide substrates is shown to be independent of the catalytic tyrosine but appears to be proportional to the respective core-binding affinities of the gamma Int mutants.  相似文献   

10.
The Flp site-specific recombinase is encoded by the 2 µm plasmid of Saccharomyces cerevisiae and is a member of the integrase family of recombinases. Like all members of the integrase family studied, Flp mediates recombination in two steps. First, a pair of strand exchanges creates a Holliday-like intermediate; second, this intermediate is resolved to recombinant products by a second pair of strand exchanges.
Evidence derived from experiments using linear substrates indicates that Flp's active site is composed of two Flp protomers. One binds to the Flp recognition target site (FRT site) and activates the scissile phosphodiester bond for cleavage. Another molecule of Flp bound elsewhere in the synaptic complex ( in trans ) donates the nucleophilic tyrosine that executes cleavage and thereby becomes covalently attached to the 3' phosphoryl group at the cleavage site.
It has previously been shown that Flp efficiently resolves synthetic, Holliday-like (χ) structures to linear products. In this paper, we examined whether resolution of χ structures by Flp also occurs via the trans cleavage mechanism. We used in vitro complementation studies of mutant Flp proteins as well as nicked χ structures to show that Flp resolves χ structures by trans cleavage. We propose a model for Flp-mediated recombination that incorporates trans cleavage at both the initial and resolution steps of strand exchange.  相似文献   

11.
The Bacteroides conjugative transposon CTnDOT encodes an integrase, IntDOT, which is a member of the tyrosine recombinase family. Other members of this group share a strict requirement for sequence identity within the region of strand exchange, called the overlap region. Tyrosine recombinases catalyze recombination by making an initial cleavage, strand exchange and ligation, followed by strand swapping isomerization requiring sequence identity in the overlap region, followed by the second cleavage, strand exchange and ligation. IntDOT is of particular interest because it has been shown to utilize a three-step mechanism: a sequence identity-dependent initial strand exchange that requires two base pairs of complementary DNA at the site of cleavage; a sequence identity-independent strand swapping isomerization, followed by a sequence identity-independent cleavage, strand exchange and ligation. In addition to the sequence identity requirement in the overlap region, Lambda Int interactions with arm-type sites dictate the order of strand exchange regardless of the orientation of the overlap region. Although IntDOT has an arm-binding domain, we show here that the location of sequence identity within the overlap region dictates where the initial cleavage takes place and that IntDOT can recombine substrates containing mismatches in the overlap region so long as a single base of sequence identity exists at the site of initial cleavage.  相似文献   

12.
The FLP recombinase, encoded by the 2 micron plasmid of Saccharomyces cerevisiae, promotes efficient recombination in vivo and in vitro between its specific target sites (FLP sites). It was previously determined that FLP interacts with DNA sequences within its target site (B. J. Andrews, G. A. Proteau, L. G. Beatty, and P. D. Sadowski. Cell 40:795-803, 1985), generates a single-stranded break on both DNA strands within the FLP site, and remains covalently attached to the 3' end of each break. We now show that the FLP protein is bound to the 3' side of each break by an O-phosphotyrosyl residue and that it appears that the same tyrosyl residue(s) is used to attach to either DNA strand within the FLP site.  相似文献   

13.
The FLP recombinase of the 2 mu plasmid of Saccharomyces cerevisiae binds to a target containing three 13 base-pair symmetry elements called a, b and c. The symmetry elements b and c are in direct orientation while the a element is in inverted orientation with respect to b and c on the opposite side of an eight base-pair core region. Each symmetry element acts as a binding site for the FLP protein. The FLP protein can form three different complexes with the FLP recognition target (FRT site) according to the number of elements within the site that are occupied by the FLP protein. Binding of FLP to the FRT site induces DNA bending. We have measured the angles of bends caused by the binding of the FLP protein to full and partial FRT sites. We find that FLP induces three types of bend in the FRT-containing DNA. The type I bend is approximately 60 degrees and results from a molecule of FLP bound to one symmetry element. The type II bend is greater than 144 degrees and results from FLP molecules bound to symmetry elements a and b. The type III bend is approximately 65 degrees and results from FLP proteins bound to symmetry elements b and c. Certain FLP proteins that are defective in recombination can generate the type I and type III bends but are impaired in their ability to induce the type II bend. We discuss the role of bending in FLP-mediated recombination.  相似文献   

14.
The Flp and Cre recombinases are members of the integrase family of tyrosine recombinases. Each protein consists of a 13 kDa NH(2)-terminal domain and a larger COOH-terminal domain that contains the active site of the enzyme. The COOH-terminal domain also contains the major determinants for the binding specificity of the recombinase to its cognate DNA binding site. All family members cleave the DNA by the attachment of a conserved nucleophilic tyrosine residue to the 3'-phosphate group at the sites of cleavage. In order to gain further insights into the determinants of the binding specificity and modes of cleavage of Flp and Cre, we have made chimeric proteins in which we have fused the NH(2)-terminal domain of Flp to the COOH-terminal domain of Cre ("Fre") and the NH(2)-terminal domain of Cre to the COOH-terminal domain of Flp ("Clp"). These chimeras have novel binding specificities in that they bind strongly to hybrid sites containing elements from both the Flp and Cre DNA targets but poorly to the native target sites.In this study we have taken advantage of the unique binding specificities of Fre and Clp to examine the mode of cleavage by Cre, Flp, Fre and Clp. We find that the COOH-terminal domain of the recombinases determines their mode of cleavage. Thus Flp and Clp cleave in trans whereas Cre and Fre cleave in cis. These results agree with the studies of Flp and with the cocrystal structure of Cre bound to its DNA target site. They disagree with our previous findings that Cre could carry out trans cleavage. We discuss the variations in the experimental approaches in order to reconcile the different results.  相似文献   

15.
The site-specific recombinases Flp and R from Saccharomyces cerevisiae and Zygosaccharomyces rouxii, respectively, are related proteins that belong to the yeast family of site-specific recombinases. They share approximately 30% amino acid matches and exhibit a common reaction mechanism that appears to be conserved within the larger integrase family of site-specific recombinases. Two regions of the proteins, designated box I and box II, also harbor a significantly high degree of homology at the nucleotide sequence level. We have analyzed the properties of Flp and R variants carrying point mutations within the box I segment in substrate-binding, DNA cleavage, and full-site and half-site strand transfer reactions. All mutations abolish or seriously diminish recombinase function either at the substrate-binding step or at the catalytic steps of strand cleavage or strand transfer. Of particular interest are mutations of Arg-191 of Flp and R, residues which correspond to one of the two invariant arginine residues of the integrase family. These variant proteins bind substrate with affinities comparable to those of the corresponding wild-type recombinases. Among the binding-competent variants, only Flp(R191K) is capable of efficient substrate cleavage in a full recombination target. However, this protein does not cleave a half recombination site and fails to complete strand exchange in a full site. Strikingly, the Arg-191 mutants of Flp and R can be rescued in half-site strand transfer reactions by a second point mutant of the corresponding recombinase that lacks its active-site tyrosine (Tyr-343). Similarly, Flp and R variants of Cys-189 and Flp variants at Asp-194 and Asp-199 can also be complemented by the corresponding Tyr-343-to-phenylalanine recombinase mutant.  相似文献   

16.
The conjugative transposon Tn916 encodes a protein called INT(Tn916) which, based on DNA sequence comparisons, is a member of the integrase family of site-specific recombinases. Integrase proteins such as INT(lambda), FLP, and XERC/D that promote site-specific recombination use characteristic, conserved amino acid residues to catalyze the cleavage and ligation of DNA substrates during recombination. The reaction proceeds by a two-step transesterification reaction requiring the formation of a covalent protein-DNA intermediate. Different requirements for homology between recombining DNA sites during integrase-mediated site-specific recombination and Tn916 transposition suggest that INT(Tn916) may use a reaction mechanism different from that used by other integrase recombinases. We show that purified INT(Tn916) mediates specific cleavage of duplex DNA substrates containing the Tn916 transposon ends and adjacent bacterial sequences. Staggered cleavages occur at both ends of the transposon, resulting in 5' hydroxyl protruding ends containing coupling sequences. These are sequences that are transferred with the transposon from donor to recipient during conjugative transposition. The nature of the cleavage products suggests that a covalent protein-DNA linkage occurs via a residue of INT(Tn916) and the 3'-phosphate group of the DNA. INT(Tn916) alone is capable of executing the strand cleavage step required for recombination during Tn916 transposition, and this reaction probably occurs by a mechanism similar to that of other integrase family site-specific recombinases.  相似文献   

17.
A newly discovered Bacteroides conjugative transposon (CTn), CTnBST, integrates more site specifically than two other well-studied CTns, the Bacteroides CTn CTnDOT and the enterococcal CTn Tn916. Moreover, the integrase of CTnBST, IntBST, had the C-terminal 6-amino-acid signature that is associated with the catalytic regions of members of the tyrosine recombinase family, most of which integrate site specifically. Also, in most of these integrases, all of the conserved amino acids are required for integration. In the case of IntBST, however, we found that changing three of the six conserved amino acids in the signature, one of which was the presumed catalytic tyrosine, resulted in a 1,000-fold decrease in integration frequency. Changes in the other amino acids had little or no effect. Thus, although the CTnBST integrase still seems to be a member of the tyrosine recombinase family, it clearly differs to some extent from other members of the family in its catalytic site. We also determined the sequence requirements for CTnBST integration in the 18-bp region where the crossover occurs preferentially during integration. We found that CTnBST integrates in this preferred site about one-half of the time but can also use other sites. A consensus sequence was tentatively derived by comparison of a few secondary sites: AATCTGNNAAAT. We report here that within the consensus region, no single base change affected the frequency of integration. However, 3 bp at one end of the consensus sequence (CTG) proved to be essential for integration into the preferred site. This sequence appeared to be at one end of a 7-bp crossover region, CTGNNAA. The other bases could vary without affecting either integration frequency or specificity. Thus, in contrast to well-studied site-specific recombinases which require homology throughout the crossover region, integration of CTnBST requires homology at one end of the crossover region but not at the other end.  相似文献   

18.
J W Chen  J Lee  M Jayaram 《Cell》1992,69(4):647-658
Each recombination event mediated by the Flp recombinase is the sum of four strand breakage and reunion reactions executed in two steps of two-strand exchanges. The reaction requires four Flp monomers. The key catalytic residue in Flp is Tyr-343. Arg-191, His-305, and Arg-308 appear to facilitate the cleavage and exchange steps of recombination. These four residues constitute the invariant tetrad of the Int family site-specific recombinases. Complementation tests between "step-arrest" mutants of Flp suggest that each Flp protomer harbors a "fractional active site." Hybrid "half site-recombinase" complexes reveal that efficient catalysis occurs when the Arg-His-Arg triad is present on one Flp monomer and the active site Tyr on a second monomer. Strand cleavage by an Flp monomer occurs virtually exclusively on the half site to which its partner protein is bound (cleavage in trans), and almost never on the half site to which it is bound (cleavage in cis). Trans-cleavage by Flp can provide a means for functionally exchanging Flp monomers between two DNA partners. Such a mechanism would be germane to recombination, since cleavage and rejoining in cis can only restore the parental substrate configuration and cannot yield recombinants.  相似文献   

19.
The integrase protein (Int) of phage lambda is a well-studied representative of the tyrosine recombinase family, whose defining features are two sequential pairs of DNA cleavage/ligation reactions that proceed via a 3' phosphotyrosine covalent intermediate to first form and then resolve a Holliday junction recombination intermediate. We devised an assay that takes advantage of DNA hairpin formation at one Int target site to trap Int cleavages at a different target site, and thereby reveal iterative cycles of cleavage and ligation that would otherwise be undetected. Using this assay and others to compare wild-type Int and a mutant (R169D) defective in forming proper dimer/tetramer interfaces, we found that the efficiency of "bottom-strand" DNA cleavage by wild-type Int, but not R169D, is very sensitive to the base-pair at the "top-strand" cleavage site, seven base-pairs away. We show that this is related to the finding that hairpin formation involving ligation of a mispaired base is much faster for R169D than for wild-type Int, but only in the context of a multimeric complex. During resolution of Holliday junction recombination intermediates, wild-type Int, but not R169D, is very sensitive to homology at the sites of ligation. A long-sought insight from these results is that during Holliday junction resolution the tetrameric Int complex remains intact until after ligation of the product helices has been completed. This contrasts with models in which the second pair of DNA cleavages is a trigger for dissolution of the recombination complex.  相似文献   

20.
The integrase family of site-specific recombinases (also called the tyrosine recombinases) mediate a wide range of biological outcomes by the sequential exchange of two pairs of DNA strands at defined phosphodiester positions.The reaction produces a recombinant arrangement of the DNA sequences flanking the cross-over region. The crystal structures of four integrase family members have revealed very similar three-dimensional protein folds that belie the large diversity in amino acid sequences among them. The active sites are similar in organization to those seen in structures of eukaryotic type IB topoisomerases, and conservation of catalytic mechanism is expected. The crystal structures, combined with previous biochemical knowledge, allow the refinement of models for recombination and the assignment of catalytic function to the active site residues. However, each system has its own peculiarities, and the exact sequence of events that allows the reaction to proceed from the first exchange reaction to the second is still unclear for at least some family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号