首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Ethanol administered in vivo or in vitro during incubation of brain slices was studied with respect to its effect on brain protein synthesis. In the in vivo series the rats were given a single intraperitoneal injection of ethanol 3 h before death. Slices of cerebral cortex and liver were incubated in isotonic saline media containing [3H]leucine. Amounts of free and protein-bound radioactivity were determined. Subcellular fractions and fractions enriched in neuronal perikarya and in glial cells were prepared from cortical slices subsequent to incubation, and the specific radioactivity determined for each cell type. The incorporation of [3H]leucine into brain proteins was inhibited while incorporation into liver proteins was stimulated in ethanol-treated rats. The levels of TCA-soluble radio-activity, however, did not differ between the ethanol group and the controls. In the fractionated material from cerebral cortex, the specific radioactivity in the neuronal fraction was unaffected by ethanol, while the radioactivity in the glial fraction was significantly depressed. In vitro administration of ethanol induced a non-linear response in both brain and liver, with depression of leucine incorporation into proteins of cerebral cortex at all concentrations used. When brain slices were exposed to ethanol in vitro, in concentrations corresponding to the in vivo experiments, a similar reduction of the leucine incorporation into the glial fraction was obtained. Incorporation of leucine into subcellular fractions from whole brain cortex was also investigated. The specific sensitivity of the glial fraction to ethanol is discussed in relation to the involvement of the different cell types with transport processes in the brain.  相似文献   

2.
The incorporation of [methyl-3H]thymidine into DNA, of [5-3H]uridine into RNA, and of [1-14C]leucine into proteins of cerebral hemispheres, cerebellum, and brainstem of guinea pigs after 80 hr of hypoxic treatment was measured. Both in vivo (intraventricular administration of labeled precursors) and in vitro (tissue slices incubation) experiments were performed. The labeling of macromolecules extracted from the various subcellular fractions of the above-mentioned brain regions was also determined. After hypoxic treatment the incorporation of the labeled precursors into DNA, RNA, and proteins was impaired to a different extent in the three brain regions and in the various subcellular fractions examined; DNA and RNA labeling in cerebellar mitochondria and protein labeling in microsomes of the three brain regions examined were particularly affected.  相似文献   

3.
14C leucine incorporation into proteins by cerebral cortex subcellular fractions was studied after the administration of the convulsant 3-mercaptopropionic acid (MP). It was found that MP decreased protein synthesis by isolated nerve endings and mitochondria but not by microsomal fractions. It was also observed that mitochondrial ATPase was inhibited. These findings suggest that the inhibition of protein synthesis might be an indication of a disequilibrium of the normal energy-yielding metabolism.  相似文献   

4.
—The incorporation of [4,5-3H]lysine and [1-14C]leucine into the proteins of subcellular fractions of mouse brain was examined following a single electroconvulsive shock (ECS) or following cycloheximide injections. When the [3H]lysine was injected intraperitoneally immediately after the ECS the incorporation into total brain proteins was decreased by more than 50% as compared to sham controls. The proportion of lysine incorporated into the microsomal fraction was increased, but no changes were observed in the other subcellular fractions including the synaptosomal fraction. With extended pulses administered at various times after the ECS there was no change in total incorporation nor were selective effects seen in any subcellular fractions. With intracranial injections of both [3H]lysine and [14C]leucine the decreased incorporation caused by ECS was not observed, neither were there selective changes in any subcellular fraction. This lack of inhibition occurred because the intracranial injection itself severely inhibited [3H]lysine incorporation. Cycloheximide (30 mg/kg) which depressed [3H]lysine incorporation into brain proteins by 84% caused a selective depression of the incorporation into the cell-sap fraction and selective elevations into the microsomal and synaptosomal fractions. Similar changes were seen with a higher (amnestic) dose of cycloheximide (150 mg/kg) which inhibited incorporation by 94%. These data are interpreted in terms of the diverse mechanisms by which ECS and cycloheximide inhibit protein synthesis.  相似文献   

5.
Summary Inhibitors of, and radioactive substrates for, protein synthesis were introduced into germinating pea (Pisum sativum L.) seeds, and protein synthesis was allowed to proceed in vivo. Subsequent analyses of subcellular fractions showed the following: Cycloheximide strongly inhibited the incorporation of [14C]leucine into both mitochondrial and cytoplasmic proteins. d-Threo-chloramphenicol and erythromycin did not affect cytoplasmic protein synthesis, but partially inhibited mitochondrial protein synthesis. These results suggest that most of the new mitochondrial proteins were originally synthesized in the cytoplasm. Actinomycin D did not appreciably affect the initial incorporation of [14C]leucine into either mitochondrial or cytoplasmic proteins, suggesting that information (mRNA) concerning the initially synthesized proteins may be present in the quiescent seeds. The lack of appreciable incorporation of [3H]thymidine into mitochondrial DNA supported our previons report that mitochondria may not be synthesized de novo in pea cotyledons.  相似文献   

6.
Further studies of the transport of protein to nerve endings   总被引:5,自引:0,他引:5  
Mice were injected intracerebrally with [l-14C]leucine, and the specific activities of subcellular fractions of brain and effractions of isolated nerve endings were determined. There was a progressive increase in the specific activity of protein associated with isolated nerve endings after incorporation of [l-14C]leucine into whole brain protein had terminated. Although, the incorporation of [14C]leucine into soluble protein of whole brain did not differ significantly in mice which were 3 months or 1-year old, the subsequent increase in specific activity of soluble protein isolated from nerve endings was significantly greater in the younger animals; 6-month-old mice were intermediate. Therefore, changes in some aspect of the transport of protein to nerve endings is altered even after sexual maturity. Anaesthetization with pentobarbitone during incorporation of [14C]leucine into protein, and inhibition of protein synthesis with acetoxycycloheximide after incorporation of [14C]leucine was complete, did not interfere with the subsequent appearance of radioactive protein at the nerve ending. Evidence is presented for the transport, from a proximal site of synthesis, of protein associated with particulate components of the nerve ending, including synaptic vesicles.  相似文献   

7.
Mice were injected intracerebrally with [14C]glucosamine, and incorporation into macromolecules in various subcellular fractions of brain was studied at a number of times after administration of the precursor. The [14C]glucosamine was rapidly incorporated into macromolecules of all the subcellular fractions of brain including both the soluble and particulate fractions of isolated nerve endings. Incorporation into macromolecules in the soluble fraction of nerve endings was quite extensive 3 hr after administration of the precursor and the specific acitvity of this fraction fell thereafter. In contrast there was only slight incorporation of [14C] leucine into the soluble protein from isolated nerve endings in the first few hours after administration, whereas the other subcellular fractions were maximally labelled at that time. The data suggests that, unlike protein which is largely transported to nerve endings in the axoplasm, there is extensive incorporation of carbohydrate into macromolecules in nerve endings. Whereas the protein component of a glycoprotein or mucopolysaccharide may be transported to the nerve ending from the perikaryon, the structure and function of this protein may be modified at the nerve ending by further incorporation of glucosamine, sialic acid and possibly other carbohydrates. The carbohydrate-containing macromolecules could influence nerve ending function immediately after these final synthetic reactions since these reactions occur at the nerve ending and not in the perikaryon.  相似文献   

8.
Colchicine blocks axoplasmic flow and produces neurofibrillary degeneration. Brain slices from mice injected intracerebrally with colchicine incorporated more [14C]leucine into protein and had a decreased uptake of [14C]leucine into the perchloric acid-soluble pool than did their controls. Brain RNA content was decreased and free leucine increased by colchicine-induced encephalopathy. The specific activities of proteins from subcellular fractions of colchicine-injected brain were increased in the nuclear fraction, the 100,000-g supernatant, and its vinblastine-precipitable tubulin. The ratio of the specific activity of the crude mitochondrial fraction to that of the total homogenate was decreased, as would consistent with impaired movement of newly labeled protein into synaptosomes. Colchicine-injected brain extracts contained one or more cytosol fractions that stimulated ribosomal incorporation of [14C]leucine into protein in a cell-free system. Colchicine-binding-activity measurements indicated loss of soluble and particulate tubulin in colchicine-injected brains; the decrease of soluble tubulin was verified by its selective precipitation with vinblastine. Colchicine encephalopathy did not affect the rate of spontaneous breakdown of in vitro colchicine binding activity. Similarities of colchicine encephalopathy to the neuron's response to axonal damage suggest that colchicine-induced increase in protein synthesis may, in part, reflect a neuronal response to blockage of neuroplasmic transport.  相似文献   

9.
Abstract— In order to investigate synthesis and phosphorylation of the various fractions of nuclear proteins. [3H]leucine and [32P] phosphate incorporation were studied with tissue slices in vitro. Cerebral cortex and cerebellum were used to delineate the similarity and dissimilarity within CNS, and liver was taken to compare the extraneural organ. There were significant differences in [3H]leucine incorporation into nuclear proteins among those tissue sources examined, while [32P]phosphate incorporation showed very similar results among them. Although the acidic chromatin protein demonstrated high activity in each tissue source for both synthesis and phosphorylation, 0.14M-NaCl soluble protein showed the activity as high as or even higher than the acidic chromatin protein. Both [3H]leucine incorporation and [32P]phosphate incorporation were relatively low in histone. When the acidic chromatin protein was further fractionated with SDS-acrylamide gel electrophoresis, significant difference was found between CNS tissue and liver for synthesis and phosphorylation. However, considerable difference was also observed even between cerebral cortex and cerebellum. The present investigation demonstrated complicity and diversity of nuclear chromatin proteins in different organs, not only for their protein constituents but also for their synthesis and phosphorylation.  相似文献   

10.
The effect of undernutrition on the incorporation of [methyl-3H]thymidine into DNA and of 5-[3H]uridine into RNA of cerebral hemispheres, cerebellum, and brain stem was studied in vivo and in vitro in rats. The labeling of DNA from nuclei and mitochondria and of RNA from nuclei, mitochondria, microsomes, and soluble fractions, was also measured in vitro. The results demonstrate that nucleic acid synthesis is impaired and delayed during undernutrition. Specific effects were observed for the different brain regions and subcellular fractions: at 10 days nuclear and mitochondrial DNA and RNA synthesis was impaired, whereas at 30 days only the mitochondrial nucleic acid synthesis was affected.The delay of DNA and RNA labeling, caused by undernutrition, was most evident in the cerebellum, probably due to its intense cell proliferation during postnatal development. The specific sensitivity of mitochondria as compared to other subcellular fractions, may be due to the intense biogenesis and/or turnover of nucleic acids in brain mitochondria not only during postnatal development, but also in the adult animal.  相似文献   

11.
—Ribosomes isolated from the brains of rats treated with morphine in vivo were less active in promoting the incorporation of [14C]leucine into protein than ribosomes isolated from untreated rats. This inhibitory phenomenon was studied in relation to dose of morphine, time after drug administration and the pharmacological responses of hypothermia and analgesia. The inhibition of [14C]leucine incorporation into brain proteins in vitro was transient after a single injection of morphine and dose-dependent, and related to the hypothermic response, but not prevented by keeping the rats at an ambient temperature which prevented hypothermia. The incorporation of [14C]leucine into protein by liver ribosomes was also inhibited in preparations from morphine treated rats.  相似文献   

12.
The influence of early hypothyroidism on the concentration and biochemical properties of soluble and particulate tubulin from the cerebral cortex and cerebellum was investigated during development in the rat. Cellular soluble tubulin concentration (pmol colchicine bound/μg DNA) was approx 16% lower in both brain areas of hypothyroid animals compared to controls at 25 days of age. No effect of thyroid hormone deficiency was observed when tubulin concentration was expressed in terms of tissue protein or weight. The particulate tubulin concentration was approx 20% lower in the cerebral cortex of 25-day-old hypothyroid rats although the distribution of tubulin between soluble and particulate fractions was similar to controls. The incorporation of [14C]leucine into cerebral cortical tubulin in vitro (c.p.m. in tubulin/c.p.m. in total protein) was not significantly altered by the hormonal deficiency. Thus there was no apparent evidence of a selective defect in tubulin synthesis. Tubulin from hypothyroid rats behaved similarly to control samples with respect to the effects of pharmacological agents and temperature, lability of binding, chromatographic profile and electrophoretic mobility on sodium dodecyl sulfate polyacrylamide gels.  相似文献   

13.
Activities of carbonic anhydrase and Na+,K+-ATPase in tissue homogenates and in subcellular fractions from different brain regions were studied in inherited primary hypothyroid (hyt/hyt) mice. The body weight, the weight of different brain regions, and the plasma thyroxine and triiodothyronine levels of hyt/hyt mice were significantly lower than those of the age-matched hyt/+ controls. In tissue homogenates of cerebral cortex, brain stem and cerebellum of hypothyroid mice, the activity of carbonic anhydrase (units/mg protein) was 59.2, 57.6, and 43.2%, and the activity of Na+,K+-ATPase (nmol Pi/mg protein/min) was 73.7, 74.4 and 68.7%, respectively, of that in corresponding regions of euthyroid littermates. The decrease in enzyme activity in tissue homogenates was also reflected in different subcellular fractions. In cerebral cortex and brain stem, carbonic anhydrase activity in cytosol, myelin and mitochondrial fractions of hypothyroid mice was about 45–50% of that in euthyroid mice, while in cerebellum the carbonic anhydrase activity in these subcellular fractions of hyt/hyt mice was only 33–38% of that in hyt/+ controls. Na+,K+-ATPase activity in myelin fraction of different brain regions of hyt/hyt mice was about 34–42% of that in hyt/+ mice, while in mitochondria, synaptosome and microsome fractions were about 44–52, 46–53, and 66–68%, respectively of controls. These data indicate that the activity of both carbonic anhydrase and Na+,K+-ATPase was affected more in the myelin than other subcellular fractions and more in the cerebellum than cerebral cortex and brain stem by deficiency of thyroid hormones. A reduction in the activity of transport enzymes in brain tissues as a result of thyroid hormone deficiency during the critical period of development may underlie permanent nervous disorders in primary hypothyroidism.  相似文献   

14.
Summary The pathway of gluconeogenesis from pyruvate, lactate and alanine was investigated in isolated liver cells of the eel. Amino-oxyacetate, a transaminase inhibitor, inhibited gluconeogenesis not only from lactate, but also from pyruvate by 60%.d-Malate did not inhibit gluconeogenesis from either of the substrates (Table 1 A).The effects of various amino acids on gluconeogenesis were investigated. Leucine accelerated gluconeogenesis from pyruvate or alanine (Table 2). Leucine promoted the incorporation of14C-pyruvate into glutamate and aspartate, and increased the glutamate content. The specific activity of14C-aspartate was increased markedly by leucine (Table 5).From the investigation of subcellular distribution of enzymes unique to gluconeogenesis, it was found that pyruvate carboxylase was located almost exclusively in the mitochondrial fraction, and that phophoenolpyruvate carboxykinase and aspartate transaminase were located in both the mitochondrial and the cytosolic fractions (Table 7).From these results it is concluded that the oxaloacetate-aspartate pathway is a major route in gluconeogenesis from any of the substrates in the eel liver.Abbreviations AOA amino-oxyacetate - PEP phosphoenolpyruvate  相似文献   

15.
Abstract— The synthesis of γ-aminobutyric acid (GABA) in mouse brain was decreased by treatment of the animals with pyridoxal phosphate- γ-glutamylhydrazone, an inhibitor of glutamate decarboxylase in vivo. Under these experimental conditions the following parameters were studied: (1) the incorporation of labeled leucine in vivo , into protein of brain subcellular fractions; (2) the brain polysome profile; (3) the incorporation of labeled leucine into protein in vitro , in ribosomal preparations isolated from brain tissue. In other experiments, GABA synthesis was also decreased in brain cortex slices by preincubation with aminooxyacetic acid. The incorporation of [3H]leucine or [14C]leucine into protein in these slices was studied, and samples from the proteins were subjected to acrylamide-sodium dodecylsulfate gel electrophoresis. Radioactivity was counted in slices of the gel. The results of the experiments in vivo and in vitro indicate that the previously reported decrease of protein synthesis induced by an inhibition of GABA synthesis affects proteins of all subcellular fractions and all populations of protein as separated by gel electrophoresis. The polysome profile from brains of mice with decreased GABA synthesis was similar to that of control mice. This result differs from that found when brain protein synthesis is inhibited by dopamine and serotonin.  相似文献   

16.
1. The incorporation of [14C]leucine into liver proteins of rats was measured in vivo at various times after treatment of the animals with dimethylnitrosamine and was correlated with the state of the liver ribosomal aggregates. Inhibition of incorporation ran parallel with breakdown of the aggregates. 2. Inhibition of leucine incorporation into protein and breakdown of ribosomal aggregates were not preceded by inhibition of incorporation of [14C]orotate into nuclear RNA of the liver. 3. Evidence was obtained of methylation of nuclear RNA in the livers of rats treated with [14C]dimethylnitrosamine. 4. Zonal centrifugation analysis of radioactive, nuclear, ribosomal and transfer RNA from livers of rats treated with [14C]dimethylnitrosamine revealed labelling of all centrifugal fractions to about the same extent. 5. It is suggested that methylation of messenger RNA might occur in the livers of dimethylnitrosamine-treated rats and the possible relation of this to inhibition of hepatic protein synthesis is discussed.  相似文献   

17.
Summary Purified mitochondria from rat liver were found to contain protein synthesis inhibitors, that could be extracted by disruption of mitochondrial membranes and fractionated by gel filtration into two fractions of low and high molecular weight. Small size inhibitors were also released from the latter peak by high ionic strength followed by gel filtration. Both types of factors inhibit incorporation of radioactive amino acids into protein by liver cytoplasmic polysomes programmed with endogenous mRNA or poly U, and by rabbit reticulocyte lysates programmed with added globin mRNA and by incubations of Walker carcinoma cells. They decrease to the same level the cytoplasmic synthesis of proteins for the mitochondrial and extra-mitochondrial compartments in intact cells, but do not appear to inhibit substantially endogenous mitochondrial protein synthesis. Inhibitors were purified by paper chromatography and reverse phase high performance liquid chromatography into fractions which block with the same kinetics the incorporation of [14]leucine and [35]methionine into protein in systems able to initiate protein synthesis, such as reticulocyte lysates or intact cells, but differ in this respect in incubations of liver ribosomes where re-binding of mRNA is a limiting step. Some of these factors behave as oligopeptides that are assumed to inhibit in vitro primarily the initiation stage but whose function in vivo is still undetermined.  相似文献   

18.
Purified neuronal and glial nuclei were separated from rat brain cells. The fraction rich in neuronal nuclei contained 68 ± 9 per cent neuronal nuclei and the fraction rich in glial nuclei contained 89 ± 6 per cent glial nuclei. The fraction rich in neuronal nuclei isolated from cells of adult rat brain incorporated l -[4,5-3H]leucine into TCA-insoluble material at a rate comparable to those of the microsomal and the soluble fractions of the brain, and at a much higher rate than the fraction rich in glial nuclei. The proteins soluble in buffered-saline, the acid-soluble deoxyribonucleoproteins, and the residual proteins of the neuronal nuclei are apparently the proteins which account for the higher specific activity of neuronal proteins compared with glial nuclear proteins. In liver and kidney, the incorporation of [3H]leucine into nuclear proteins was lower than into other subcellular fractions from the same organs.  相似文献   

19.
Abstract— Homogenates of neuronal perikarya isolated from the cerebral cortex of the 8-day-old rat were incubated with [3H]leucine, and the characteristics of the protein synthetic process were studied. Incorporation of leucine into protein was linear up to 90 min, proceeded optimally at pH 7.6 and was stimulated by K+ and NH4+, unaffected by Li+ and inhibited by Na+. Puromycin, cycloheximide, RNAse, sulphhydryl blocking agents and phospholipase A exerted a pronounced inhibition, whereas chloramphenicol and phospholipase C had no effect. About 42 per cent of the total radioactive protein formed in the optimally fortified in uitro system was recovered in non-sedimentable form. Incorporation into the subcellular fractions of the neuronal perikarya increased steadily with increasing time of incubation. The microsomal fraction acquired the highest specific radioactivity (d.p.m./mg of protein), followed by the mitochondrial and the nuclear + cell debris fractions. The high-speed soluble fraction exhibited the lowest specific radioactivity. Although the addition of L-methionine to a suitably fortified incubation medium inhibited neuronal protein synthesis by about 80 per cent, the addition of D-methionhe, α-methyl-DL-methionine or L-tryptophan was relatively ineffective by comparison.  相似文献   

20.
Tunicamycin resistant mutants (TMR) were isolated and characterized from Chinese hamster ovary cells. One feature of this TMR mutants was a marked decrease in incorporation of radioactive glucosamine, both into membrane glycoproteins and G protein of vesicular stomatitis virus.

The cellular uptake and incorporation into acid insoluble materials of various radioactive substances, including glucosamine, galactosamine, mannose, 2-deoxyglucose and leucine, was examined for the purpose of determination whether the reduced incorporation of radioactive glucosamine into glycoproteins was due to a defect in the glycosylation step or decreased uptake of glucosamine by cells.

While incorporation of glucosamine and 2-deoxyglucose into acid insoluble fractions was reduced strikingly in the mutants, the incorporation of mannose and leucine were the same as in the parent cells.

The uptake of glucosamine in TMR cells was lower than that in the wild type cells, and the Km value for glucosamine uptake differed between the mutants and wild type cells. There was no obvious difference in the uptake of 2-deoxyglucose and mannose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号