首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-beta (TGF-beta) plays an important role in angiogenesis and vascular function. Endoglin, a transmembrane TGF-beta binding protein, is highly expressed on vascular endothelial cells and is the target gene for the hereditary haemorrhagic telangiectasia type I (HHT1), a dominantly inherited vascular disorder. The specific function of endoglin responsible for HHT1 is believed to involve alterations in TGF-beta responses. The initial interactions on the cell surface between endoglin and TGF-beta receptors may be an important mechanism by which endoglin modulates TGF-beta signalling, and thereby responses. Here it is shown that on human microvascular endothelial cells, endoglin is co-expressed and is associated with betaglycan, a TGF-beta accessory receptor with which endoglin shares limited amino acid homology. This complex formation may occur in either a ligand-dependent or a ligand-independent manner. In addition, the occurrence of three higher order complexes containing endoglin, type II and/or type I TGF-beta receptors, on these cells is demonstrated. Our findings suggest that endoglin may modify TGF-beta signalling by interacting with both betaglycan and the TGF-beta signalling receptors at physiological receptor concentrations and ratios.  相似文献   

2.
Endoglin is a transmembrane accessory receptor for transforming growth factor-beta (TGF-beta) that is predominantly expressed on proliferating endothelial cells in culture and on angiogenic blood vessels in vivo. Endoglin, as well as other TGF-beta signalling components, is essential during angiogenesis. Mutations in endoglin and activin receptor-like kinase 1 (ALK1), an endothelial specific TGF-beta type I receptor, have been linked to the vascular disorder, hereditary haemorrhagic telangiectasia. However, the function of endoglin in TGF-beta/ALK signalling has remained unclear. Here we report that endoglin is required for efficient TGF-beta/ALK1 signalling, which indirectly inhibits TGF-beta/ALK5 signalling. Endothelial cells lacking endoglin do not grow because TGF-beta/ALK1 signalling is reduced and TGF-beta/ALK5 signalling is increased. Surviving cells adapt to this imbalance by downregulating ALK5 expression in order to proliferate. The ability of endoglin to promote ALK1 signalling also explains why ectopic endoglin expression in endothelial cells promotes proliferation and blocks TGF-beta-induced growth arrest by indirectly reducing TGF-beta/ALK5 signalling. Our results indicate a pivotal role for endoglin in the balance of ALK1 and ALK5 signalling to regulate endothelial cell proliferation.  相似文献   

3.
Germ line mutations in one of two distinct genes, endoglin or ALK-1, cause hereditary hemorrhagic telangiectasia (HHT), an autosomal dominant disorder of localized angiodysplasia. Both genes encode endothelial cell receptors for the transforming growth factor beta (TGF-beta) ligand superfamily. Endoglin has homology to the type III receptor, betaglycan, although its exact role in TGF-beta signaling is unclear. Activin receptor-like kinase 1 (ALK-1) has homology to the type I receptor family, but its ligand and corresponding type II receptor are unknown. In order to identify the ligand and type II receptor for ALK-1 and to investigate the role of endoglin in ALK-1 signaling, we devised a chimeric receptor signaling assay by exchanging the kinase domain of ALK-1 with either the TGF-beta type I receptor or the activin type IB receptor, both of which can activate an inducible PAI-1 promoter. We show that TGF-beta1 and TGF-beta3, as well as a third unknown ligand present in serum, can activate chimeric ALK-1. HHT-associated missense mutations in the ALK-1 extracellular domain abrogate signaling. The ALK-1/ligand interaction is mediated by the type II TGF-beta receptor for TGF-beta and most likely through the activin type II or type IIB receptors for the serum ligand. Endoglin is a bifunctional receptor partner since it can bind to ALK-1 as well as to type I TGF-beta receptor. These data suggest that HHT pathogenesis involves disruption of a complex network of positive and negative angiogenic factors, involving TGF-beta, a new unknown ligand, and their corresponding receptors.  相似文献   

4.
Betaglycan, also known as the TGF-beta type III receptor, is a membrane- anchored proteoglycan that presents TGF-beta to the type II signaling receptor, a transmembrane serine/threonine kinase. The betaglycan extracellular region, which can be shed by cells into the medium, contains a NH2-terminal domain related to endoglin and a COOH-terminal domain related to uromodulin, sperm receptors Zp2 and 3, and pancreatic secretory granule GP-2 protein. We identified residues Ser535 and Ser546 in the uromodulin-related region as the glycosaminoglycan (GAG) attachment sites. Their mutation to alanine prevents GAG attachment but does not interfere with betaglycan stability or ability to bind and present TGF-beta to receptor II. Using a panel of deletion mutants, we found that TGF-beta binds to the NH2-terminal endoglin-related region of betaglycan. The remainder of the extracellular domain and the cytoplasmic domain are not required for presentation of TGF-beta to receptor II; however, membrane anchorage is required. Soluble betaglycan can bind TGF-beta but does not enhance binding to membrane receptors. In fact, recombinant soluble betaglycan acts as potent inhibitor of TGF-beta binding to membrane receptors and blocks TGF-beta action, this effect being particularly pronounced with the TGF-beta 2 isoform. The results suggest that release of betaglycan into the medium converts this enhancer of TGF-beta action into a TGF-beta antagonist.  相似文献   

5.
6.
Endoglin, a dimeric membrane glycoprotein expressed at high levels on human vascular endothelial cells, shares regions of sequence identity with betaglycan, a major binding protein for transforming growth factor-beta (TGF-beta) that co-exists with TGF-beta receptors I and II in a variety of cell lines but is low or absent in endothelial cells. We have examined whether endoglin also binds TGF-beta and demonstrate here that the major TGF-beta 1-binding protein co-existing with TGF-beta receptors I and II on human umbilical vein endothelial cells is endoglin, as determined by specific immunoprecipitation of endoglin affinity-labeled with 125I-TGF-beta. Furthermore, endoglin ectopically expressed in COS cells binds TGF-beta 1. Competition affinity-labeling experiments showed that endoglin binds TGF-beta 1 (KD approximately 50 pM) and TGF-beta 3 with high affinity but fails to bind TGF-beta 2. This difference in affinity of endoglin for the TGF-beta isoforms is in contrast to beta-glycan which recognizes all three isoforms. TGF-beta however is binding with high affinity to only a small fraction of the available endoglin molecules, suggesting that some rate-limiting event is required to sustain TGF-beta binding to endoglin.  相似文献   

7.
Transforming growth factor-beta (TGF-beta) signaling in endothelial cells is able to modulate angiogenesis and vascular remodeling, although the underlying molecular mechanisms remain poorly understood. Endoglin and ALK-1 are components of the TGF-beta receptor complex, predominantly expressed in endothelial cells, and mutations in either endoglin or ALK-1 genes are responsible for the vascular dysplasia known as hereditary hemorrhagic telangiectasia. Here we find that the extracellular and cytoplasmic domains of the auxiliary TGF-beta receptor endoglin interact with ALK-1 (a type I TGF-beta receptor). In addition, endoglin potentiates TGF-beta/ALK1 signaling, with the extracellular domain of endoglin contributing to this functional cooperation between endoglin and ALK-1. By contrast, endoglin appears to interfere with TGF-beta/ALK-5 signaling. These results suggest that the functional association of endoglin with ALK-1 is critical for the endothelial responses to TGF-beta.  相似文献   

8.
Complex formation and endocytosis of transforming growth factor-β (TGF-β) receptors play important roles in signaling. However, their interdependence remained unexplored. Here, we demonstrate that ALK1, a TGF-β type I receptor prevalent in endothelial cells, forms stable complexes at the cell surface with endoglin and with type III TGF-β receptors (TβRIII). We show that ALK1 undergoes clathrin-mediated endocytosis (CME) faster than ALK5, type II TGF-β receptor (TβRII), endoglin, or TβRIII. These complexes regulate the endocytosis of the TGF-β receptors, with a major effect mediated by ALK1. Thus, ALK1 enhances the endocytosis of TβRIII and endoglin, while ALK5 and TβRII mildly enhance endoglin, but not TβRIII, internalization. Conversely, the slowly endocytosed endoglin has no effect on the endocytosis of either ALK1, ALK5, or TβRII, while TβRIII has a differential effect, slowing the internalization of ALK5 and TβRII, but not ALK1. Such effects may be relevant to signaling, as BMP9-mediated Smad1/5/8 phosphorylation is inhibited by CME blockade in endothelial cells. We propose a model that links TGF-β receptor oligomerization and endocytosis, based on which endocytosis signals are exposed/functional in specific receptor complexes. This has broad implications for signaling, implying that complex formation among various receptors regulates their surface levels and signaling intensities.  相似文献   

9.
Endoglin is an accessory receptor for transforming growth factor beta (TGFbeta) in endothelial cells, essential for vascular development. Its pivotal role in angiogenesis is underscored in Endoglin null (Eng-/-) murine embryos, which die at mid-gestation (E10.5) from impaired yolk sac vessel formation. Moreover, mutations in endoglin and the endothelial-specific TGFbeta type I receptor, ALK1, are linked to hereditary hemorrhagic telangiectasia. To determine the role of endoglin in TGFbeta pathways, we derived murine endothelial cell lines from Eng+/+ and Eng-/- embryos (E9.0). Whereas Eng+/+ cells were only partially growth inhibited by TGFbeta, Eng-/- cells displayed a potent anti-proliferative response. TGFbeta-dependent Smad2 phosphorylation and Smad2/3 translocation were unchanged in the Eng-/- cells. In contrast, TGFbeta treatment led to a more rapid activation of the Smad1/5 pathway in Eng null cells that was apparent at lower TGFbeta concentrations. Enhanced activity of the Smad1 pathway in Eng-/- cells was reflected in higher expression of ALK1-dependent genes such as Id1, Smad6, and Smad7. Analysis of cell surface receptors revealed that the TGFbeta type I receptor, ALK5, which is required for ALK1 function, was increased in Eng-/- cells. TGFbeta receptor complexes were less numerous but displayed a higher binding affinity. These results suggest that endoglin modulates TGFbeta signaling in endothelial cells by regulating surface TGFbeta receptors and suppressing Smad1 activation. Thus an altered balance in TGFbeta receptors and downstream Smad pathways may underlie defects in vascular development and homeostasis.  相似文献   

10.
Transforming growth factor (TGF)-beta is a multifunctional growth factor with important roles in development, cell proliferation, and matrix deposition. It signals through the sequential activation of two serine/threonine kinase receptors, the type I and type II receptors. A third cell surface receptor, betaglycan, serves as a co-receptor for TGF-beta in some cell types, enhancing TGF-beta-mediated signaling. We have examined the function of betaglycan in renal epithelial LLC-PK1 cells that lack endogenous betaglycan. We demonstrate that the expression of betaglycan in LLC-PK1 cells results in inhibition of TGF-beta signaling as measured by reporter gene expression, thymidine incorporation, collagen production, and phosphorylation of the downstream signaling effectors Smad2 and Smad3. In comparison, the expression of betaglycan in L6 myoblasts enhances TGF-beta signaling, which is consistent with the published literature. The effects of betaglycan in LLC-PK1 cells are not mediated by ligand sequestration or increased production of a soluble form of the receptor, which has been reported to serve as a ligand antagonist. We demonstrate instead that in LLC-PK1 cells, unlike L6 cells, expression of betaglycan prevents association between the type I and type II TGF-beta receptors, which is required for signaling. This is a function of the glycosaminoglycan modifications of betaglycan. Betaglycan in LLC-PK1 cells exhibits higher molecular weight glycosaminoglycan (GAG) chains than in L6 cells, and a GAG- betaglycan mutant does not inhibit TGF-beta signaling or type I/type II receptor association in LLC-PK1 cells. Our data indicate that betaglycan can function as a potent inhibitor of TGF-beta signaling by a novel mechanism and provide support for an essential but complex role for proteoglycan co-receptors in growth factor signaling.  相似文献   

11.
Transforming growth factor-beta1 (TGF-beta1) and BMP-7 (bone morphogenetic protein-7; OP-1) play central, antagonistic roles in kidney fibrosis, a setting in which the expression of endoglin (CD105), an accessory TGF-beta type III receptor, is increased. So far, endoglin is known as a negative regulator of TGF-beta/ALK-5 signaling. Here we analyzed the effect of BMP-7 on TGF-beta1 signaling and the role of endoglin for both pathways in endoglin-deficient L(6)E(9) cells. In this myoblastic cell line, TGF-beta1 and BMPs are opposing cytokines, interfering with myogenic differentiation. Both induce specific target genes of which Id1 (for BMPs) and collagen I (for TGF-beta1) are two examples. TGF-beta1 activated two distinct type I receptors, ALK-5 and ALK-1, in these cells. Although the ALK-5/Smad3 signaling pathway mediated collagen I expression, ALK-1/Smad1/Smad5 signaling mediated a transient Id1 up-regulation. In contrast, BMP-7 exclusively activated Smad1/Smad5 resulting in a more prolonged Id1 expression. Although BMP-7 had no impact on collagen I abundance, it antagonized TGF-beta1-induced collagen I expression and (CAGA)(12)-MLP-Luc activity, effects that are mediated by the ALK-5/Smad3 pathway. Finally, we found that the transient overexpression of endoglin, previously shown to inhibit TGF-beta1-induced ALK-5/Smad3 signaling, enhanced the BMP-7/Smad1/Smad5 pathway.  相似文献   

12.
Determination of the functional relationship between the transforming growth factor-beta (TGFbeta) receptor proteins endoglin and ALK1 is essential to the understanding of the human vascular disease, hereditary hemorrhagic telangiectasia. TGFbeta1 caused recruitment of ALK1 into a complex with endoglin in human umbilical vein endothelial cells (HUVECs). Therefore, we examined TGFbeta receptor-dependent phosphorylation of endoglin by the constitutively active forms of the TGFbeta type I receptors ALK1, ALK5, and the TGFbeta type II receptor, TbetaRII. Of these receptors, TbetaRII preferentially phosphorylated endoglin on cytosolic domain serine residues Ser(634) and Ser(635). Removal of the carboxyl-terminal tripeptide of endoglin, which comprises a putative PDZ-liganding motif, dramatically increased endoglin serine phosphorylation by all three receptors, suggesting that the PDZ-liganding motif is important for the regulation of endoglin phosphorylation. Constitutively active (ca)ALK1, but not caALK5, phosphorylated endoglin on cytosolic domain threonine residues. caALK1-mediated threonine phosphorylation required prior serine phosphorylation, suggesting a sequential mechanism of endoglin phosphorylation. Wild-type, but not a threonine phosphorylation-defective endoglin mutant blocked cell detachment and the antiproliferative effects of caALK1 expressed in HUVECs. These results suggest that ALK1 is a preferred TGFbeta receptor kinase for endoglin threonine phosphorylation in HUVECs and indicate a role for endoglin phosphorylation in the regulation of endothelial cell adhesion and growth by ALK1.  相似文献   

13.
14.
Transforming growth factor-beta (TGF-beta) has multiple functions including increasing extracellular matrix deposition in fibrosis. It functions through a complex family of cell surface receptors that mediate downstream signaling. We report here that a transmembrane heparan sulfate proteoglycan, syndecan-2 (S2), can regulate TGF-beta signaling. S2 protein increased in the renal interstitium in diabetes and regulated TGF-beta-mediated increased matrix deposition in vitro. Transfection of renal papillary fibroblasts with S2 or a S2 construct that has a truncated cytoplasmic domain (S2DeltaS) promoted TGF-beta binding and S2 core protein ectodomain directly bound TGF-beta. Transfection with S2 increased the amounts of type I and type II TGF-beta receptors (TbetaRI and TbetaRII), whereas S2DeltaS was much less effective. In contrast, S2DeltaS dramatically increased the level of type III TGF-beta receptor (TbetaRIII), betaglycan, whereas S2 resulted in a decrease. Syndecan-2 specifically co-immunoprecipitated with betaglycan but not with TbetaRI or TbetaRII. This is a novel mechanism of control of TGF-beta action that may be important in fibrosis.  相似文献   

15.
16.
We describe the primary structure of rat betaglycan, a polymorphic membrane-anchored proteoglycan with high affinity for transforming growth factor-beta (TGF-beta). As deduced from its cDNA sequence, the 853 amino acid core protein of betaglycan has an extracellular domain with clustered sites for potential attachment of glycosaminoglycan chains. These chains are dispensable for TGF-beta binding to the core protein. The transmembrane region and the short cytoplasmic tail of betaglycan are very similar to these regions in human endoglin, an endothelial cell membrane glycoprotein involved in intercellular recognition. The ectodomain of betaglycan can be released as a soluble proteoglycan; a potential cleavage site near the transmembrane region is identical to the highly regulated cleavage site of the membrane-anchored transforming growth factor-alpha precursor. The unique features of betaglycan suggest important roles in cell interaction with TGF-beta.  相似文献   

17.
Endoglin is a component of the receptor complex for transforming growth factor (TGF)-β1 and TGF-β3. We analysed its expression by immunohistochemistry in human embryos at 4–8 weeks of gestation and in hearts ranging from 4–13 weeks old. We compared endoglin distribution with that of TGF-β receptors type I (TβR-I), type II (TβR-II) and betaglycan. Endoglin was found on endothelial cells in all tissues examined, consistent with its expression in adult blood vessels. TβR-I, TβR-II and betaglycan were observed on most cell types and had an overall similar pattern of distribution. Endoglin was detected on the endocardium as early as 4 weeks, but was absent from myocardium. It was present at high levels on the endocardial cushion tissue mesenchyme from 5–8 weeks’ gestation, during heart septation and valve formation, and subsequently decreased as the valves matured. Endoglin expression in heart extracts was confirmed by Western blot analysis. TβR-I, TβR-II and betaglycan were mostly found on cardiac myocytes, but were detectable at low levels on endocardium. They were expressed transiently on cushion mesenchyme, albeit at much lower levels than endoglin. All four components of the TGF-β receptor complex were detected by RT-PCR in embryonic heart. Thus transient up-regulation of the components of the TGF-β receptor complex, and particulartly of endoglin, is associated with heart septation and valve formation during early human development.  相似文献   

18.
Transforming growth factor beta (TGF-beta) signals through three high affinity cell surface receptors, TGF-beta type I, type II, and type III receptors. The type III receptor, also known as betaglycan, binds to the type II receptor and is thought to act solely by "presenting" the TGF-beta ligand to the type II receptor. The short cytoplasmic domain of the type III receptor is thought to have no role in TGF-beta signaling because deletion of this domain has no effect on association with the type II receptor, or with the presentation role of the type III receptor. Here we demonstrate that the cytoplasmic domains of the type III and type II receptors interact specifically in a manner dependent on the kinase activity of the type II receptor and the ability of the type II receptor to autophosphorylate. This interaction results in the phosphorylation of the cytoplasmic domain of the type III receptor by the type II receptor. The type III receptor with the cytoplasmic domain deleted is able to bind TGF-beta, to bind the type II receptor, and to enhance TGF-beta binding to the type II receptor but is unable to enhance TGF-beta2 signaling, determining that the cytoplasmic domain is essential for some functions of the type III receptor. The type III receptor functions by selectively binding the autophosphorylated type II receptor via its cytoplasmic domain, thus promoting the preferential formation of a complex between the autophosphorylated type II receptor and the type I receptor and then dissociating from this active signaling complex. These studies, for the first time, elucidate important functional roles of the cytoplasmic domain of the type III receptor and demonstrate that these roles are essential for regulating TGF-beta signaling.  相似文献   

19.
The matricellular protein connective tissue growth factor (CCN2) is considered a faithful marker of fibroblast activation in wound healing and in fibrosis. CCN2 is induced during activation of hepatic stellate cells (HSC). Here, we investigate the molecular basis of CCN2 gene expression in HSC. Fluoroscence activated cell sorting was used to investigate CCN2 expression in HSC in vivo in mice treated with CCl(4). CCN2 and TGF-beta mRNA expression were assessed by polymerase chain reaction as a function of culture-induced activation of HSC. CCN2 promoter/reporter constructs were used to map cis-acting elements required for basal and TGFbeta-induced CCN2 promoter activity. Real-time polymerase chain reaction analysis was used to further clarify signaling pathways required for CCN2 expression in HSC. CCl(4) administration in vivo increased CCN2 production by HSC. In vitro, expression of CCN2 and TGF-beta mRNA were concommitantly increased in mouse HSC between days 0 and 14 of culture. TGFbeta-induced CCN2 promoter activity required the Smad and Ets-1 elements in the CCN2 promoter and was reduced by TGFbeta type I receptor (ALK4/5/7) inhibition. CCN2 overexpression in activated HSC was ALK4/5/7-dependent. As CCN2 overexpression is a faithful marker of fibrogenesis, our data are consistent with the notion that signaling through TGFbeta type I receptors such as ALK5 contributes to the activation of HSC and hence ALK4/5/7 inhibition would be expected to be an appropriate treatment for liver fibrosis.  相似文献   

20.
Transforming growth factor-beta (TGF-beta) is a key modulator of epidermal development and homeostasis, and has been shown to potently regulate keratinocyte migration and function during wound repair. There are three cloned TGF-beta receptors termed type I, type II, and type III that are found on most cell types. The types I and II are the signaling receptors, while the type III is believed to facilitate TGF-beta binding to the types I and II receptors. Recently, we reported that in addition to these receptors, human keratinocytes express a 150 kDa TGF-beta 1 binding protein (r150) which forms a heteromeric complex with the TGF-beta signaling receptors. This accessory receptor was described as glycosyl phosphatidylinositol-specific anchored based on its sensitivity to phosphatidylinositol phospholipase C (PIPLC). In the present study, we demonstrate that the GPI-anchor is contained in r150 itself and not on a tightly associated protein and that it binds TGF-beta 1 with an affinity similar to those of the types I and II TGF-beta signaling receptors. Furthermore, the PIPLC released (soluble) form of this protein is capable of binding TGF-beta 1 independently from the signaling receptors. In addition, we provide evidence that r150 is released from the cell surface by an endogenous phospholipase C. Our observation that r150 interacts with the TGF-beta signaling receptors, together with the finding that the soluble r150 binds TGF-beta 1 suggest that r150 in either its membrane anchored or soluble form may potentiate or antagonize TGF-beta signaling. Elucidating the mechanism by which r150 functions as an accessory molecule in TGF-beta signaling may be critical to understanding the molecular mechanisms underlying the regulation of TGF-beta action in keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号