首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Compartmentation of Acetyl-Coenzyme A Carboxylase in Plants   总被引:11,自引:3,他引:8       下载免费PDF全文
  相似文献   

2.
Acetyl-coenzyme A carboxylase (ACCase) was purified >100-fold (specific activity 3.5 units mg-1) from leaf tissue of diclofopresistant and -susceptible biotypes of Lolium multiflorum. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified fractions from both biotypes contained a single 206-kD biotinylated polypeptide. The molecular mass of the native enzyme from both biotypes was approximately 520 kD. In some cases the native dimer from both biotypes dissociated during gel filtration to form a subunit of approximately 224 kD. The inclusion of 5% (w/v) polyethylene glycol 3350 (PEG) in the elution buffer prevented this dissociation. Steady-state substrate kinetics were analyzed in both the presence and absence of 5% PEG. For ACCase from both biotypes, addition of PEG increased the velocity 22% and decreased the apparent Km values for acetyl-coenzyme A (acetyl-CoA), but increased the Km values for bicarbonate and ATP. In the presence of PEG, the Km values for bicarbonate and ATP were approximately 35% higher for the enzyme from the susceptible biotype compared with the resistant enzyme. In the absence of PEG, no differences in apparent Km values were observed for the enzymes from the two biotypes. Inhibition constants (Ki app) were determined for CoA, malonyl-CoA, and diclofop. CoA was an S-hyperbolic (slope replots)-I-hyperbolic (intercept replots) noncompetitive inhibitor with respect to acetyl-CoA, with Ki app values of 711 and 795 [mu]M for enzymes from the resistant and susceptible biotypes, respectively. Malonyl-CoA competitively inhibited both enzymes (versus acetyl-CoA) with Ki app values of 140 and 104 [mu]M for ACCase from resistant and susceptible biotypes, respectively. Diclofop was a linear noncompetitive inhibitor of ACCase from the susceptible biotype and a nonlinear, or S-hyperbolic-I-hyperbolic, noncompetitive inhibitor of ACCase from the resistant biotype. For ACCase from the susceptible biotype the slope (Kis) and intercept (Kii) inhibition constants for diclofop versus acetyl-CoA were 0.08 and 0.44 [mu]M, respectively. ACCase from the resistant biotype had a Ki app value of 6.5 [mu]M. At a subsaturating acetyl-CoA concentration of 50 [mu]M, the Hill coefficients for diclofop binding were 0.61 and 1.2 for ACCase from the resistant and susceptible biotypes, respectively. The Hill coefficients for diclofop binding and the inhibitor replots suggest that the resistant form of ACCase exhibits negative cooperativity in binding diclofop. However, the possibility that the nonlinear inhibition of ACCase activity by diclofop in the enzyme fraction isolated from the resistant biotype is due to the presence of both resistant and susceptible forms of ACCase cannot be excluded.  相似文献   

3.
A mutation (Acc1-S2) in the structural gene for maize (Zea mays L.) acetyl-coenzyme A carboxylase (ACCase) that significantly reduces sethoxydim inhibition of leaf ACCase activity was used to investigate the gene-enzyme relationship regulating ACCase activity during oil deposition in developing kernels. Mutant embryo and endosperm ACCase activities were more than 600-fold less sensitive to sethoxydim inhibition than ACCase in wild-type kernel tissues. Moreover, in vitro cultured mutant kernels developed normally in the presence of sethoxydim concentrations that inhibited wild-type kernel development. The results indicate that the Acc1-encoded ACCase accounts for the majority of ACCase activity in developing maize kernels, suggesting that Acc1-encoded ACCase functions not only during membrane biogenesis in leaves but is also the predominant form of ACCase involved in storage lipid biosynthesis in maize embryos.  相似文献   

4.
Levels of subunits of two acetyl-coenzyme A carboxylases werehigh in small leaves of Pisum sativum, decreased with growth,and remained constant in fully expanded leaves. Irradiationof fully expanded leaves induced the cytosolic isozyme only.This result suggests a key role for the cytosolic enzyme inprotection against UV-B. 1Present address: Laboratory of Molecular Genetics, BiotechnologyInstitute, Akita Prefectural College of Agriculture, 2-2 Minami,Ohgata, Akita, 010-04 Japan 2Present address: Laboratory of Plant Molecular Biology, Schoolof Agricultural Sciences Nagoya University, Nagoya, 464-01 Japan  相似文献   

5.
It has been reported that the level of d-biotin in the growth medium of Lactobacillus plantarum regulates the synthesis of apoacetyl-coenzyme A (CoA) carboxylase; high levels cause repression, and deficient levels effect derepression. In this study, evidence has been obtained which suggests that coenzyme repression by biotin is an indirect effect; i.e., biotin regulates the synthesis of unsaturated fatty acids which are the true repressors of the acetyl-CoA carboxylase. This was observed in an experiment in which long-chain unsaturated fatty acids were added to media containing deficient, sufficient, or excess levels of d-biotin. In every case, independently of the biotin concentration for growth, the unsaturated fatty acids caused a severe repression of the carboxylase. Saturated fatty acids were without effect. The level of oleic acid required to give maximal repression was 50 mug/ml. The free fatty acids had no adverse effect on the activity of the cell-free extracts nor on the permeation of d-biotin into the cell. Saturated and unsaturated fatty acids decreased the rate of holocarboxylase formation from d-biotin and the apoacetyl-CoA carboxylase in the extracts. It is concluded that there are at least three mechanisms that control the acetyl-CoA carboxylase in this organism: (i) indirect coenzyme repression by d-biotin, (ii) repression by unsaturated fatty acids, and (iii) regulation of the activity of the holocarboxylase synthetase by both saturated and unsaturated fatty acids.  相似文献   

6.
The mechanism proposed for the activation of animal acetyl-coenzyme A (CoA) carboxylase by alpha-glycerophosphate, namely, the removal of inhibitory palmityl-CoA via glyceride synthesis, is not the only possible one in the yeast system because extracts exhibiting marked stimulation of acetyl-CoA carboxylase activity by alpha-glyerophosphate show a lack of acyl-CoA compounds.  相似文献   

7.
Phosphoenolpyruvate carboxylase (PEPC) [EC 4.1.1.31 [EC] ] of plantsundergoes regulatory phosphorylation in response to light ornutritional conditions. However, the nature of protein kinase(s)for this phosphorylation has not yet been fully elucidated.We separated a Ca2+-requiring protein kinase from Ca2+-independentone, both of which can phosphorylate maize leaf PEPC and characterizedthe former kinase after partial purification. Several linesof evidence indicated that the kinase is one of the characteristicCa2+-dependent but calmodulin-independent protein kinase (CDPK).Although the Mr, of native CDPK was estimated to be about 100kDa by gel permeation chromatography, in situ phosphorylationassay of CDPK in a SDS-polyacrylamide gel revealed that thesubunit has an Mr of about 50 kDa suggesting dimer formationor association with other protein(s). Several kinetic parameterswere also obtained using PEPC as a substrate. Although the CDPKshowed an ability of regulatory phosphorylation (Ser-15 in maizePEPC), no significant desensitization to feedback inhibitor,malate, could be observed presumably due to low extent of phosphorylation.The kinase was not specific to PEPC but phosphorylated a varietyof synthetic peptides. The possible physiological role of thiskinase was discussed. 1Present address: NEOS Central Research Laboratory, 1-1 Ohike-machi,Kosei-cho, Shiga, 520-3213 Japan. 2Present address: Chugai Pharmaceutical Co., Ltd., 1-135 Komakado,Gotemba, 412-0038 Japan. 4N.O. and N.Y. contributed equally to this work.  相似文献   

8.
Glyphosine [N, N-bis-(phosphonomethyl) glycine] inhibited maizeleaf P-enolpyruvate carboxylase competitively with respect toP-enolpyruvate. The inhibition was dependent on glyphosine concentrationand pH. Glycine, but not glucose-6-phosphate, protected theenzyme from the effect of glyphosine. A related compound, glyphosate[N-(phosphonomethyl) glycine], produced little or no inhibition.P-enolpyruvate carboxylase could be one of the targets of glyphosineaction, causing growth inhibition as reported (Croft, S. M.,C. J. Arntzen, L. N. Vanderhoef and C. S. Zettinger (1974) Biochim.Biophys. Acta 335: 211-217). (Received July 10, 1986; Accepted December 4, 1986)  相似文献   

9.
《Molecular cell》2014,53(5):710-725
  1. Download : Download high-res image (199KB)
  2. Download : Download full-size image
  相似文献   

10.
利用简并PCR结合染色体步移法首次克隆获得粘红酵母乙酰辅酶A羧化酶(ACC)基因的全长序列信息。序列分析表明,该基因包含2个内含子,分别位于42~147 bp和315~677 bp处,编码区域总长为6 801bp,推导的氨基酸序列进行二级结构分析具备乙酰辅酶A羧化酶典型的3个功能域:生物素羧化酶(BC)、生物素羧基载体蛋白(BCCP)和羧基转移酶(CT)。克隆该基因的CT功能域基因,连接到原核表达载体pET-28a上,在Escherichia coli BL21(DE3)中成功表达,利用Ni-NTA树脂柱纯化获得CT的可溶性重组蛋白,浓度为1.8mg/mL,为研究ACC的功能和针对CT作用的除草剂机理研究提供了有价值的材料。  相似文献   

11.
Mitochondria from Pisum sativum seedlings purified free of peroxisomal and chlorophyll contamination were examined for acetyl-coenzyme A (CoA) hydrolase activity. Acetyl-CoA hydrolase activity was latent when assayed in isotonic media. The majority of the enzyme activity was found in the soluble matrix of the mitochondria. The products, acetate and CoA, were quantified by two independent methods and verified that the observed activity was an acetyl-CoA hydrolase. The pea mitochondrial acetyl-CoA hydrolase showed a Km for acetyl-CoA of 74 micromolar and a Vmax of 6.1 nanomoles per minute per milligram protein. CoA was a linear competitive inhibitor of the enzyme with a Kis of 16 micromolar. The sensitivity of the enzyme to changes in mole fraction of acetyl-CoA suggested that the changes in the intramitochondrial acetyl-CoA/CoA ratio may be an effective mechanism of control. The widespread distribution of mitochondrial acetyl-CoA hydrolase activity among different plant species indicated that this may be a general mechanism in plants for synthesizing acetate.  相似文献   

12.
Herbicidal activity of aryloxyphenoxypropionate and cyclohexanedione herbicides (graminicides) has been proposed to involve two mechanisms: inhibition of acetyl-coenzyme A carboxylase (ACCase) and depolarization of cell membrane potential. We examined the effect of aryloxyphenoxypropionates (diclofop and haloxyfop) and cyclohexanediones (sethoxydim and clethodim) on root cortical cell membrane potential of graminicide-susceptible and -tolerant corn (Zea mays L.) lines. The graminicide-tolerant corn line contained a herbicide-insensitive form of ACCase. The effect of the herbicides on membrane potential was similar in both corn lines. At a concentration of 50 [mu]M, the cyclohexanediones had little or no effect on the membrane potential of root cells. At pH 6, 50 [mu]M diclofop, but not haloxyfop, depolarized membrane potential, whereas both herbicides (50 [mu]M) dramatically depolarized membrane potential at pH 5. Repolarization of membrane potential after removal of haloxyfop and diclofop from the treatment solution was incomplete at pH 5. However, at pH 6 nearly complete repolarization of membrane potential occurred after removal of diclofop. In graminicide-susceptible corn, root growth was significantly inhibited by a 24-h exposure to 1 [mu]M haloxyfop or sethoxydim, but cell membrane potential was unaffected. In gramincide-tolerant corn, sethoxydim treatment (1 [mu]M, 48 h) had no effect on root growth, whereas haloxyfop (1 [mu]M, 48 h) inhibited root growth by 78%. However, membrane potential was the same in roots treated with 1 [mu]M haloxyfop or sethoxydim. The results of this study indicate that graminicide tolerance in the corn line used in this investigation is not related to an altered response at the cell membrane level as has been demonstrated with other resistant species.  相似文献   

13.
Fluorescein isothiocyanate inactivates phosphoenolpyruvate carboxylasefrom maize leaves, presumably by reacting with lysyl groups.The reaction appears to involve at least two groups of lysineson the enzyme. The more rapid reaction is with groups whichare protected by the substratemagnesium phosphoenolpyruvateand thus probably are located in the active site. In addition,fluorescein isothiocyanate apparently binds more slowly at asite which desensitizes the enzyme to activation by glucose-6-phosphate. Using the fluorescence of the complex of fluorescein isothiocyanatewith phosphoenolpyruvate carboxylase it was shown that bothmagnesium phosphoenolpyruvate and glucoses-6-phosphate causechanges in the conformation of the enzyme and influence thebinding of fluorescein isothiocyanate as well. Light scattering measurements showed that fluorescein isothiocyanateinduced disaggregation of the enzyme, while glucose-6-phosphatecaused aggregation, although less when fluorescein isothiocyanatewas present. 1Supported in part by National Science Foundation grant no.DMB 88-12484.  相似文献   

14.
The catalytic activity of ribulosebisphosphate carboxylase (Rubisco) declined as soon as catalysis was initiated by exposure to its substrate, d-ribulose-1,5-bisphosphate (ribulose-P(2)). The decline continued exponentially, with a half-time of approximately 7 minutes until, eventually, a steady state level of activity was reached which could be as low as 15% of the initial activity. The ratio of the steady state activity to the initial activity was lower at low CO(2) concentration and at low pH. The inhibitors 6-phosphogluconate and H(2)O(2) alleviated the inactivation, increasing the final/initial rate ratio and the half-time. Varying ribulose-P(2) concentration in the range above that required to saturate catalysis did not affect the kinetics of inactivation. The affinities for CO(2) and ribulose-P(2) were unaffected by the inactivation. The decline in activity occurred with preparations of ribulose-P(2) which contained no detectable d-xylulose-1,5-bisphosphate and also with ribulose-P(2) which had been generated enzymatically immediately before use. Inclusion of an aldolase system for removing d-xylulose-1,5-bisphosphate also did not alter the inactivation process. The inactivated Rubisco did not recover after complete exhaustion of ribulose-P(2). We conclude that the inactivation is not caused by readily-reversible binding of ribulose-P(2) at a site different from the active site and that it is unlikely to be attributable to inhibitory contaminants in ribulose-P(2) preparations.  相似文献   

15.
转PEPC基因水稻的光合生理特性 迟伟1焦德茂1* 黄雪清1 李霞1 匡廷云2 Ku S..B.MAURICE 3  相似文献   

16.
3-Methylcrotonyl-coenzyme A (CoA) carboxylase was purified to homogeneity from pea (Pisum sativum L.) leaf and potato (Solanum tuberosum L.) tuber mitochondria. The native enzyme has an apparent molecular weight of 530,000 in pea leaf and 500,000 in potato tuber as measured by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate disclosed two nonidentical subunits. The larger subunit (B subunit) is biotinylated and has an apparent molecular weight of 76,000 in pea leaf and 74,000 in potato tuber. The smaller subunit (A subunit) is biotin free and has an apparent molecular weight of 54,000 in pea leaf and 53,000 in potato tuber. The biotin content of the enzyme is 1 mol/133,000 g of protein and 1 mol/128,000 g of protein in pea leaf and potato tuber, respectively. These values are consistent with an A4B4 tetrameric structure for the native enzyme. Maximal 3-methylcrotonyl-CoA carboxylase activity was found at pH 8 to 8.3 and at 35 to 38[deg]C in the presence of Mg2+. Kinetic constants (apparent Km values) for the enzyme substrates 3-methylcrotonyl-CoA, ATP, and HCO3- were: 0.1 mM, 0.1 mM, and 0.9 mM, respectively, for pea leaf 3-methylcrotonyl-CoA carboxylase and 0.1 mM, 0.07 mM, and 0.34 mM, respectively, for potato tuber 3-methylcrotonyl-CoA carboxylase. A steady-state kinetic analysis of the carboxylase-catalyzed carboxylation of 3-methylcrotonyl-CoA gave rise to parallel line patterns in double reciprocal plots of initial velocity with the substrate pairs 3-methylcrotonyl-CoA plus ATP and 3-methylcrotonyl-CoA plus HCO3- and an intersecting line pattern with the substrate pair HCO3- plus ATP. It was concluded that the kinetic mechanism involves a double displacement. Purified 3-methylcrotonyl-CoA carboxylase was inhibited by end products of the reaction catalyzed, namely ADP and orthophosphate, and by 3-hydroxy-3-methylglutaryl-CoA. Finally, as for the 3-methylcrotonyl-CoA carboxylases from mammalian and bacterial sources, plant 3-methylcrotonyl-CoA carboxylase was sensitive to sulfhydryl and arginyl reagents.  相似文献   

17.
Lolium rigidum biotype SR4/84 is resistant to the herbicides diclofop-methyl and chlorsulfuron when grown in the field, in pots, and in hydroponics. Similar extractable activities and affinities for acetyl-coenzyme A of carboxylase (ACCase), an enzyme inhibited by diclofop-methyl, were found for susceptible and resistant L. rigidum. ACCase activity from both biotypes was inhibited by diclofop-methyl, diclofop acid, haloxyfop acid, fluazifop acid, sethoxydim, and tralkoxydim but not by chlorsulfuron or trifluralin. Exposure of plants to diclofop-methyl did not induce any changes in either the extractable activities or the herbicide inhibition kinetics of ACCase. It is concluded that, in contrast to diclofop resistance in L. multiflorum and diclofop tolerance in many dicots, the basis of resistance to diclofop-methyl and to other aryloxyphenoxypropionate and cyclohexanedione herbicides in L. rigidum is not due to the altered inhibition characteristics or expression of the enzyme ACCase. The extractable activities and substrate affinity of acetolactate synthase (ALS), an enzyme inhibited by chlorsulfuron, from susceptible and resistant biotypes of L. rigidum were similar. ALS from susceptible and resistant plants was equally inhibited by chlorsulfuron. Prior exposure of plants to 100 millimolar chlorsulfuron did not affect the inhibition kinetics. It is concluded that resistance to chlorsulfuron is not caused by alterations in either the expression or inhibition characteristics of ALS.  相似文献   

18.
In cells of Saccharomyces cerevisiae grown with glucose in standing cultures, the microsomal fraction had the highest specific activity for acetyl-coenzyme A synthetase and contained the greatest fraction of the total activity regardless of when the cells were harvested during growth. The addition of acetate did not affect the distribution of the enzyme, nor did subsequent aeration of such cells in phosphate buffer even in the presence of glucose, acetate, or succinate. In cells grown aerobically, however, the microsomal fraction had the highest specific activity and the greatest fraction of the total activity only until the cells reached the stationary phase. After this time, most of the activity was associated with the mitochondrial fraction. Finally, 3 or 4 days after inoculation, this fraction appeared to lose most of the enzyme to the microsomal and soluble fractions. Chloramphenicol, at concentrations that interfered with respiration but not with fermentation, prevented the association of acetyl-coenzyme A synthetase with the mitochondrial fraction in aerated cells, but it did not appreciably affect the large increases in enzyme activity observed during aerobic incubation. Cells grown with glucose under strict anaerobic conditions contained barely detectable amounts of acetyl-coenzyme A synthetase.  相似文献   

19.
Values of δ13C and levels of phosphoenolpyruvate carboxylase and ribulose 1,5-bisphosphate carboxylase/oxygenase were analyzed in segments from the fourth leaf of young maize (Zea mays L.) plants. The δ13C values became significantly more negative from the base to the tip of the leaves. Phosphoenolpyruvate carboxylase levels and ribulose bisphosphate carboxylase levels both increased from the base to the tip. The principal effect of phosphoenolpyruvate carboxylase levels or δ13C should arise through its effect on the carboxylation/diffusion balance in the mesophyll. In this case, δ13C values should become more negative as phosphoenolpyruvate carboxylase levels increase, unless there are offsetting changes in stomatal aperture. The principal effect of ribulose bisphosphate carboxylase/oxygenase on δ13C should occur through its effect on the extent of leakage of CO2 from the bundle sheath cells. In this case, δ13C values should become more positive as ribulose bisphosphate carboxylase levels increase. Accordingly, the variation in δ13C values seen in maize leaves appears to be the result of variations in the level of phosphoenolpyruvate carboxylase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号