首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The work of breathing (W(b)) normally incurred during maximal exercise not only requires substantial cardiac output and O(2) consumption (VO(2)) but also causes vasoconstriction in locomotor muscles and compromises leg blood flow (Q(leg)). We wondered whether the W(b) normally incurred during submaximal exercise would also reduce Q(leg). Therefore, we investigated the effects of changing the W(b) on Q(leg) via thermodilution in 10 healthy trained male cyclists [maximal VO(2) (VO(2 max)) = 59 +/- 9 ml. kg(-1). min(-1)] during repeated bouts of cycle exercise at work rates corresponding to 50 and 75% of VO(2 max). Inspiratory muscle work was 1) reduced 40 +/- 6% via a proportional-assist ventilator, 2) not manipulated (control), or 3) increased 61 +/- 8% by addition of inspiratory resistive loads. Increasing the W(b) during submaximal exercise caused VO(2) to increase; decreasing the W(b) was associated with lower VO(2) (DeltaVO(2) = 0.12 and 0.21 l/min at 50 and 75% of VO(2 max), respectively, for approximately 100% change in W(b)). There were no significant changes in leg vascular resistance (LVR), norepinephrine spillover, arterial pressure, or Q(leg) when W(b) was reduced or increased. Why are LVR, norepinephrine spillover, and Q(leg) influenced by the W(b) at maximal but not submaximal exercise? We postulate that at submaximal work rates and ventilation rates the normal W(b) required makes insufficient demands for VO(2) and cardiac output to require any cardiovascular adjustment and is too small to activate sympathetic vasoconstrictor efferent output. Furthermore, even a 50-70% increase in W(b) during submaximal exercise, as might be encountered in conditions where ventilation rates and/or inspiratory flow resistive forces are higher than normal, also does not elicit changes in LVR or Q(leg).  相似文献   

2.
The purpose of this investigation was to compare differences between one- and two-legged exercise on the lactate (LT) and ventilation (VT) threshold. On four separate occasions, eight male volunteer subjects (1-leg VO2max = 3.36 l X min-1; 2-leg VO2max = 4.27 l X min-1) performed 1- and 2-legged submaximal and maximal exercise. Submaximal threshold tests for 1- and 2-legs, began with a warm-up at 50 W and then increased every 3 minutes by 16 W and 50 W, respectively. Similar increments occurred every minute for the maximal tests. Venous blood samples were collected during the last 30 s of each work load, whereas noninvasive gas measures were calculated every 30 s. No differences in VO2 (l X min-1) were found between 1- and 2-legs at LT or VT, but significant differences (p less than 0.05) were recorded at a given power output. Lactate concentration ([LA]) was different (p less than 0.05) between 1- and 2-legs (2.52 vs. 1.97 mmol X l-1) at LT. This suggests it is VO2 rather than muscle mass which affects LT and VT. VO2max for 1-leg exercise was 79% of the 2-leg value. This implies the central circulation rather than the peripheral muscle is limiting to VO2max.  相似文献   

3.
Decreased maximal O2 uptake (VO2max) and stimulation of the sympathetic nervous system have been previously shown to occur at high altitude. We hypothesized that tachycardia mediated by beta-adrenergic stimulation acted to defend VO2max at high altitude. Propranolol treatment beginning before high-altitude (4,300 m) ascent reduced heart rate during maximal and submaximal exercise in six healthy men treated with propranolol (80 mg three times daily) compared with five healthy subjects receiving placebo (lactose). Compared with sea-level values, the VO2max fell on day 2 at high altitude, but the magnitude of fall was similar in the placebo and propranolol treatment groups (26 +/- 6 vs. 32 +/- 5%, P = NS) and VO2max remained similar at high altitude in both groups once treatment was discontinued. During 30 min of submaximal (80% of VO2max) exercise, propranolol-treated subjects maintained O2 uptake levels that were as large as those in placebo subjects. The maintenance of maximal or submaximal levels of O2 uptake in propranolol-treated subjects at 4,300 m could not be attributed to increased minute ventilation, arterial O2 saturation, or hemoglobin concentration. Rather, it appeared that propranolol-treated subjects maintained O2 uptake by transporting a greater proportion of the O2 uptake with each heartbeat. Thus, contrary to our hypothesis, beta-adrenergic blockade did not impair maximal or submaximal O2 uptake at high altitude due perhaps to compensatory mechanisms acting to maintain stroke volume and cardiac output.  相似文献   

4.
To evaluate the effect of different levels of arterial oxygen content on hemodynamic parameters during exercise nine subjects performed submaximal bicycle or treadmill exercise and maximal treadmill exercise under three different experimental conditions: 1) breathing room air (control); 2) breathing 50% oxygen (hyperoxia); 3) after rebreathing a carbon monoxide gas mixture (hypoxia). Maximal oxygen consumption (Vo2 max) was significantly higher in hyperoxia (4.99 1/min) and significantly lower in hypoxia (3.80 1/min) than in the control experiment (4.43 1/min). Physical performance changes in parallel with Vo2 max. Maximal cardiac output (Qmax) was similar in hyperoxia as in control but was significantly lower in hypoxia mainly due to a decreased stroke volume. A correlation was found between Vo2 max and transported oxygen, i.e., Cao2 times Amax, thus suggesting that central circulation is an important limiting factor for human maximal aerobic power. During submaximal work HR was decreased in hyperoxia and increased in hypoxia. Corresponding Q values were unchanged except for a reduction during high submaximal exercise in hyperoxia.  相似文献   

5.
It has been suggested that genetic variation in the angiotensin-converting enzyme (ACE) gene is associated with physical performance. We studied the association between the ACE insertion (I)/deletion (D) polymorphism and several fitness phenotypes measured before and after 20 wk of a standardized endurance training program in sedentary Caucasian (n = 476) and black (n = 248) subjects. Phenotypes measured were oxygen uptake (VO(2)), work rate, heart rate, minute ventilation, tidal volume, and blood lactate levels during maximal and submaximal [50 W and at 60 and 80% of maximal VO(2) (VO(2 max))] exercise and stroke volume and cardiac output during submaximal exercise (50 W and at 60% VO(2 max)). The ACE ID polymorphism was typed with the three-primer PCR method. Out of 216 association tests performed on 54 phenotypes in 4 groups of participants, only 11 showed significant (P values from 0.042 to 0. 0001) associations with the ACE ID polymorphism. In contrast to previous claims, in Caucasian offspring, the DD homozygotes showed a 14-38% greater increase with training in VO(2 max), VO(2) at 80% of VO(2 max), and all work rate phenotypes and a 36% greater decrease in heart rate at 50 W than did the II homozygotes. No associations were evident in Caucasian parents or black parents or offspring. Thus these data do not support the hypothesis that the ACE ID polymorphism plays a major role in cardiorespiratory endurance.  相似文献   

6.
Growth hormone (GH) treatment in adults with GH deficiency increases lean body mass and thigh muscle cross-sectional area. The functional significance of this was examined by incremental cycle ergometry in 24 GH-deficient adults treated in a double-blind placebo-controlled trial with recombinant DNA human GH (rhGH) for 6 mo (0.07 U/kg body wt daily). Compared with placebo, the rhGH group increased mean maximal O2 uptake (VO2max) (+406 +/- 71 vs. +133 +/- 84 ml/min; P = 0.016) and maximal power output (+24.6 +/- 4.3 vs. +9.7 +/- 4.8 W; P = 0.047), without differences in maximal heart rate or ventilation. Forced expiratory volume in 1 s, vital capacity, and corrected CO gas transfer were within normal limits and did not change with treatment. Mean predicted VO2max, based on height and age, increased from 78.9 to 96.0% in the rhGH group (compared with 78.5 and 85.0% for placebo; P = 0.036). The anaerobic ventilatory threshold increased in the rhGH group (+159 +/- 39 vs. +1 +/- 51 ml/min; P = 0.02). The improvement in VO2max was noted when expressed per kilogram body weight but not lean body mass or thigh muscle area. We conclude that rhGH treatment in adults with GH deficiency improves and normalizes maximal exercise performance and improves submaximal exercise performance and that these changes are related to increases in lean body mass and muscle mass. Improved cardiac output may also contribute to the effect of rhGH on exercise performance.  相似文献   

7.
Ten foxhounds were studied during maximal and submaximal exercise on a motor-driven treadmill before and after 8-12 wk of training. Training consisted of working at 80% of maximal heart rate 1 h/day, 5 days/wk. Maximal O2 consumption (VO2max) increased 28% from 113.7 +/- 5.5 to 146.1 +/- 5.4 ml O2 X min-1 X kg-1, pre- to posttraining. This increase in VO2max was due primarily to a 27% increase in maximal cardiac output, since maximal arteriovenous O2 difference increased only 4% above pretraining values. Mean arterial pressure during maximal exercise did not change from pre- to posttraining, with the result that calculated systemic vascular resistance (SVR) decreased 20%. There were no training-induced changes in O2 consumption, cardiac output, arteriovenous O2 difference, mean arterial pressure, or SVR at any level of submaximal exercise. However, if post- and pretraining values are compared, heart rate was lower and stroke volume was greater at any level of submaximal exercise. Venous lactate concentrations during a given level of submaximal exercise were significantly lower during posttraining compared with pretraining, but venous lactate concentrations during maximal exercise did not change as a result of exercise training. These results indicate that a program of endurance training will produce a significant increase in VO2max in the foxhound. This increase in VO2max is similar to that reported previously for humans and rats but is derived primarily from central (stroke volume) changes rather than a combination of central and peripheral (O2 extraction) changes.  相似文献   

8.
Endurance training of older men: responses to submaximal exercise.   总被引:2,自引:0,他引:2  
The purpose of this study was to quantify the exercise response of older subjects on a time-to-fatigue (TTF) submaximal performance test before and after a training program. Eight older men (67.4 +/- 4.8 yr) performed two maximal treadmill tests to determine maximum oxygen uptake (VO2max) and ventilation threshold (TVE) and a constant-load submaximal exercise treadmill test that required an oxygen uptake (VO2) between TVE and VO2max. The submaximal test, performed at the same absolute work rate before and after the training program, was performed to volitional fatigue to measure endurance time. The men trained under supervision at an individualized pace representing approximately 70% of VO2max (80% maximum heart rate) for 1 h, four times per week for 9 wk. Significant increases were demonstrated for VO2max (ml.kg-1.min-1; 10.6%); maximal ventilation (VE, l/min; 11.6%), and TVE (l/min; 9.8%). Weight decreased 2.1%. Performance time on the TTF test increased by 180% (7.3 +/- 3.0 to 20.4 +/- 13.5 min). The similar end points for VO2, VE, and heart rate during the TTF and maximal treadmill tests established that the TTF test was stopped because of physiological limitations. The increase in performance time among the subjects was significantly correlated with improvements in VO2max and TVE, with the submaximal work rate representing a VO2 above TVE by 88% of the difference between TVE and VO2max pretraining and 73% of this difference on posttraining values.  相似文献   

9.
The dynamics of ventilation (VE), oxygen uptake (VO2), carbon dioxide output (VCO2), and heart rate (fc) were studied in 12 healthy young men during upright and supine exercise. Responses to maximal and to two different types of submaximal exercise tests were contrasted. During incremental exercise to exhaustion, the maximal work rate, VO2max, VEmax, fc,max, and ventilatory threshold were all significantly reduced in supine compared to upright exercise (P less than 0.01-0.001). Following step increases or decreases in work rate between 25 W and 105 W, both VO2 and VCO2 responded more slowly in supine than upright exercise. Dynamics were also studied in two different pseudorandom binary-sequence (PRBS) exercise tests, with the work rate varying between 25 W and 105 W with either 5-s or 30-s durations of each PRBS unit. In both of these tests, there were no differences caused by body position in the amplitude or phase shifts obtained from Fourier analysis for any observed variable. These data show that the body position alters the dynamic response to the more traditional step increase in work rate, but not during PRBS exercise. It is speculated that the elevation of cardiac output observed with supine exercise in combination with the continuously varying work-rate pattern of the PRBS exercise allowed adequate, perhaps near steady-state, perfusion of the working muscles in these tests, whereas at the onset of a step increase in work rate, greater demands were placed on the mechanisms of blood flow redistribution.  相似文献   

10.
In order to determine the effect of short-term training on central adaptations, gas exchange and cardiac function were measured during a prolonged submaximal exercise challenge prior to and following 10-12 consecutive days of exercise. In addition, vascular volumes and selected haematological properties were also examined. The subjects, healthy males between the ages of 19 and 30 years of age, cycled for 2 h per day at approximately 59% of pre-training peak oxygen consumption (VO2) i.e., maximal oxygen consumption (VO2max). Following the training, VO2max (l.min-1) increased (P less than 0.05) by 4.3% (3.94, 0.11 vs 4.11, 0.11; mean, SE) whereas maximal exercise ventilation (VE,max) and maximal heart rate (fc,max) were unchanged. During submaximal exercise, VO2 was unaltered by the training whereas carbon dioxide production (VE) and respiratory exchange ratio were all reduced (P less than 0.05). The altered activity pattern failed to elicit adaptations in either submaximal exercise cardiac output or arteriovenous O2 difference. fc was reduced (P less than 0.05). Plasma volume (PV) as measured by 125I human serum albumin increased by 365 ml or 11.8%, while red cell volume (RCV) as measured by 51chromium-labelled red blood cells (RBC) was unaltered. The increase in PV was accompanied by reductions (P less than 0.05) in haematocrit, haemoglobin concentration (g.100 ml-1), and RBCs (10(6) mm-3). Collectively these changes suggest only minimal adaptations in maximal oxygen transport during the early period of prolonged exercise training. However, as evidenced by the changes during submaximal exercise, both the ventilatory and the cardiodynamic response were altered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
This study was designed to ascertain whether 7- and 13-wk interval training programs with training frequencies of 2 days/wk would produce improvement in maximal aerobic power (VO2max) comparable to that obtained from 7- and 13-wk programs of the same intensity consisting of 4 training days/wk. Sixty-nine young healthy college males were used as subjects. After training, there was a significant increase in VO2max (bicycle ergometer, open-circuit spirometry) that was independent of both training frequency and duration. However, there was a trend for greater gains after 13 wk. Maximal heart rate (direct lead ECG) was significantly decreased following training, being independent of both training frequency and duration. Submaximal VO2 did not change with training but submaximal heart rate decreased significantly with greater decreases the more frequent and longer the training. Within the limitations of this study, these results indicate that: 1) maximal stroke volume and/or maximal avO2 difference, principle determinants of VO2max, are not dependent on training frequency nor training duration, and 2) one benefit of more frequent and longer duration interval training is less circulatory stress as evidenced by decreased heart rate, during submaximal exercise.  相似文献   

13.
Some recent studies of competitive athletes have shown exercise-induced hypoxemia to begin in submaximal exercise. We examined the role of ventilatory factors in the submaximal exercise gas exchange disturbance (GED) of healthy men involved in regular work-related exercise but not in competitive activities. From the 38 national mountain rescue workers evaluated (36 +/- 1 yr), 14 were classified as GED and were compared with 14 subjects matched for age, height, weight, and maximal oxygen uptake (VO2 max; 3.61 +/- 0.12 l/min) and showing a normal response (N). Mean arterial PO2 was already lower than N (P = 0.05) at 40% VO2 max and continued to fall until VO2 max (GED: 80.2 +/- 1.6 vs. N: 91.7 +/- 1.3 Torr). A parallel upward shift in the alveolar-arterial oxygen difference vs. %VO2 max relationship was observed in GED compared with N from the onset throughout the incremental protocol. At submaximal intensities, ideal alveolar PO2, tidal volume, respiratory frequency, and dead space-to-tidal volume ratio were identical between groups. As per the higher arterial PCO2 of GED at VO2 max, subjects with an exaggerated submaximal alveolar-arterial oxygen difference also showed a relative maximal hypoventilation. Results thus suggest the existence of a common denominator that contributes to the GED of submaximal exercise and affects the maximal ventilatory response.  相似文献   

14.
The purposes of the present study were to characterize the histochemical and enzymatic profiles of various hindlimb skeletal muscles, as well as to determine maximal O2 consumption (VO2max) and respiratory exchange ratios (R) during steady-state exercise in the obese Zucker rat. The changes that occurred in these parameters in response to a 6-wk training program were then assessed. Obese rats were randomly assigned to a sedentary or training group. Lean littermates served as a second control. Training consisted of treadmill running at 18 m/min up an 8% grade, 1.5 h/day, 5 day/wk for 6 wk. During week 6, VO2max and R during a steady-state run (74% max) were determined. After 2 days of inactivity, hindlimb muscles were excised, stained for fiber type and capillaries, and assayed for hexokinase, citrate synthase, cytochrome oxidase, and beta-hydroxyacetyl-CoA dehydrogenase. The obese sedentary rats demonstrated greater oxidative enzyme activities per gram of muscle tissue than their lean littermates, greater R values during submaximal exercise of the same relative intensity, and greater absolute VO2max values. Training resulted in a 20-56% increase in oxidative enzymes, a 10% increase in VO2max, and an increase in capillary density in the soleus and plantaris. There was no alteration in R values during exercise at 74% VO2max or in fiber type composition in response to exercise training. Results suggest that the muscle of the obese Zucker rat manifests a greater oxidative capacity than the muscle of its lean littermates. The apparent inability of the obese rat to increase its use of fat during submaximal exercise of the same relative intensity in response to training remains to be elucidated.  相似文献   

15.
The effect of fatigue as a result of a standard submaximal dynamic exercise on maximal short-term power output generated at different contraction velocities was studied in humans. Six subjects performed 25-s maximal efforts on an isokinetic cycle ergometer at five different pedaling rates (60, 75, 90, 105, and 120 rpm). Measurements of maximal power output were made under control conditions [after 6 min of cycling at 30% maximal O2 uptake (VO2max)] and after fatiguing exercise that consisted of 6 min of cycling at 90% VO2max with a pedaling rate of 90 rpm. Compared with control values, maximal peak power measured after fatiguing exercise was significantly reduced by 23 +/- 19, 28 +/- 11, and 25 +/- 11% at pedaling rates of 90, 105, and 120 rpm, respectively. Reductions in maximum peak power of 11 +/- 8 and 14 +/- 8% at 60 and 75 rpm, respectively, were not significant. The rate of decline in peak power during the 25-s control measurement was least at 60 rpm (5.1 +/- 2.3 W/s) and greatest at 120 rpm (26.3 +/- 13.9 W/s). After fatiguing exercise, the rate of decline in peak power at pedaling rates of 105 and 120 rpm decreased significantly from 21.5 +/- 9.0 and 26.3 +/- 13.9 W/s to 10.0 +/- 7.3 and 13.3 +/- 6.9 W/s, respectively. These experiments indicate that fatigue induced by submaximal dynamic exercise results in a velocity-dependent effect on muscle power. It is suggested that the reduced maximal power at the higher velocities was due to a selective effect of fatigue on the faster fatigue-sensitive fibers of the active muscle mass.  相似文献   

16.
This study determined the effects of endurance or resistance exercise training on maximal O2 consumption (VO2max) and the cardiovascular responses to exercise of 70- to 79-yr-old men and women. Healthy untrained subjects were randomly assigned to a control group (n = 12) or to an endurance (n = 16) or resistance training group (n = 19). Training consisted of three sessions per week for 26 wk. Resistance training consisted of one set of 8-12 repetitions on 10 Nautilus machines. Endurance training consisted of 40 min at 50-70% VO2max and at 75-85% VO2max for the first and last 13 wk of training, respectively. The endurance training group increased its VO2max by 16% during the first 13 wk of training and by a total of 22% after 26 wk of training; this group also increased its maximal O2 pulse, systolic blood pressure, and ventilation, and decreased its heart rate and perceived exertion during submaximal exercise. The resistance training group did not elicit significant changes in VO2max or in other maximal or submaximal cardiovascular responses despite eliciting 9 and 18% increases in lower and upper body strength, respectively. Thus healthy men and women in their 70s can respond to prolonged endurance exercise training with adaptations similar to those of younger individuals. Resistance training in older individuals has no effect on cardiovascular responses to submaximal or maximal treadmill exercise.  相似文献   

17.
Cardiovascular adaptations to exercise training in the elderly   总被引:1,自引:0,他引:1  
Maximal O2 uptake (VO2max) and left ventricular function decrease with age. Endurance exercise training of sufficient intensity, frequency, and duration increases VO2max in the elderly. The mechanisms underlying the increased VO2max in the elderly are enhanced O2 extraction of trained muscle during maximal exercise leading to a wider arteriovenous O2 difference, and higher cardiac output in the trained state. However, increased cardiac output during true maximal exercise has not been documented in elderly subjects. Endurance exercise training results in a lower heart rate and rate pressure product during submaximal exercise at a given intensity. However, no improvement in left ventricular function has been reported in the elderly after exercise training. Highly trained master athletes exhibit proportional increases in the left ventricular end-diastolic dimension and wall thickness suggestive of volume-overload hypertrophy compared with age-matched sedentary controls. The magnitude of left ventricular enlargement is similar to that in young athletes. The failure of exercise training to alter the age-related deterioration of left ventricular function in the elderly may reflect an insufficient training stimulus rather than the inability of the heart to adapt to training in elderly subjects.  相似文献   

18.
In two experiments maximal aerobic power (VO2max) calculated from maximal mechanical power (Wmax) was evaluated in 39 children aged 9-11 years. A maximal multi-stage cycle ergometer exercise test was used with an increase in work load every 3 min. In the first experiment oxygen consumption was measured in 18 children during each of the prescribed work loads and a correction factor was calculated to estimate VO2max using the equation VO2max = 12.Wmax + 5.weight. An appropriate increase in work rate based on height was determined for boys (0.16 W.cm-1) and girls (0.15 W.cm-1) respectively. In the second experiment 21 children performed a maximal cycle ergometer exercise test twice. In addition to the procedure in the first experiment a similar exercise test was performed, but without measurement of oxygen uptake. Calculated VO2max correlated significantly (p less than 0.01) with those values measured in both boys (r = 0.90) and girls (r = 0.95) respectively, and the standard error of estimation for VO2max (calculated) on VO2max (measured) was less than 3.2%. Two expressions of relative work load (%VO2max and %Wmax) were established and found to be closely correlated. The relative work load in %VO2max could be predicted from the relative work load in %Wmax with an average standard error of 3.8%. The data demonstrate that calculated VO2max based on a maximal multi-stage exercise test provides an accurate and valid estimate of VO2max.  相似文献   

19.
The present study investigated the effect of exercise training at different intensities on fat oxidation in obese men. Twenty-four healthy male obese subjects were randomly divided in either a low- [40% maximal oxygen consumption (VO(2 max))] or high-intensity exercise training program (70% VO(2 max)) for 12 wk, or a non-exercising control group. Before and after the intervention, measurements of fat metabolism at rest and during exercise were performed by using indirect calorimetry, [U-(13)C]palmitate, and [1,2-(13)C]acetate. Furthermore, body composition and maximal aerobic capacity were measured. Total fat oxidation did not change at rest in any group. During exercise, after low-intensity exercise training, fat oxidation was increased by 40% (P < 0.05) because of an increased non-plasma fatty acid oxidation (P < 0.05). High-intensity exercise training did not affect total fat oxidation during exercise. Changes in fat oxidation were not significantly different among groups. It was concluded that low-intensity exercise training in obese subjects seemed to increase fat oxidation during exercise but not at rest. No effect of high-intensity exercise training on fat oxidation could be shown.  相似文献   

20.
We examined the effect of maternal weight gain during pregnancy on exercise performance. Ten women performed submaximal cycle (up to 60 W) and treadmill (4 km/h, up to 10% grade) exercise tests at 34 +/- 1.5 (SD) wk gestation and 7.6 +/- 1.7 wk postpartum. Postpartum subjects wearing weighted belts designed to equal their body weight during the antepartum tests performed two additional treadmill tests. Absolute O2 uptake (VO2) at the same work load was higher during pregnancy than postpartum during cycle (1.04 +/- 0.08 vs. 0.95 +/- 0.09 l/min, P = 0.014), treadmill (1.45 +/- 0.19 vs. 1.27 +/- 0.20 l/min, P = 0.0002), and weighted treadmill (1.45 +/ 0.19 vs. 1.36 +/- 0.20 l/min, P = 0.04) exercise. None of these differences remained, however, when VO2 was expressed per kilogram of body weight. Maximal VO2 (VO2max) estimated from the individual heart rate-VO2 curves was the same during and after pregnancy during cycling (1.96 +/- 0.37 to 1.98 +/- 0.39 l/min), whereas estimated VO2max increased postpartum during treadmill (2.04 +/- 0.38 to 2.21 +/- 0.36 l/min, P = 0.03) and weighted treadmill (2.04 +/- 0.38 to 2.19 +/- 0.38 l/min, P = 0.03) exercise. We conclude that increased body weight during pregnancy compared with the postpartum period accounts for 75% of the increased VO2 during submaximal weight-bearing exertion in pregnancy and contributes to reduced exercise capacity. The postpartum increase in estimated VO2max during weight-bearing exercise is the result of consistently higher antepartum heart rates during all submaximal work loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号