首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Salmonella typhimurium causes enteric and systemic disease by invading the intestinal epithelium of the distal ileum, a process requiring the invasion genes of Salmonella pathogenicity island 1 (SPI-1). BarA, a sensor kinase postulated to interact with the response regulator SirA, is required for the expression of SPI-1 invasion genes. We found, however, that a barA null mutation had little effect on virulence using the mouse model for septicaemia. This confounding result led us to seek environmental signals present in the distal ileum that might supplant the need for BarA. We found that acetate restored the expression of invasion genes in the barA mutant, but had no effect on a sirA mutant. Acetate had its effect only at a pH that allowed its accumulation within the bacterial cytoplasm and not with the deletion of ackA and pta, the two genes required to produce acetyl-phosphate. These results suggest that the rising concentration of acetate in the distal ileum provides a signal for invasion gene expression by the production of acetyl-phosphate in the bacterial cytoplasm, a pathway that bypasses barA. We also found that a Delta(ackA-pta) mutation alone had no effect on virulence but, in combination with Delta(barA), it increased the oral LD50 24-fold. Thus, the combined loss of the BarA- and acetate-dependent pathways is required to reduce virulence. Two other short-chain fatty acids (SCFA), propionate and butyrate, present in high concentrations in the caecum and colon, had effects opposite to those of acetate: neither restored invasion gene expression in the barA mutant, and both, in fact, reduced expression in the wild-type strain. Further, a combination of SCFAs found in the distal ileum restored invasion gene expression in the barA mutant, whereas colonic conditions failed to do so and also reduced expression in the wild-type strain. These results suggest that the concentration and composition of SCFAs in the distal ileum provide a signal for productive infection by Salmonella, whereas those of the large intestine inhibit invasion.  相似文献   

12.
13.
Salmonella typhimurium, which causes gastroenteritis in calves and humans as well as a typhoid-like disease in mice, uses numerous virulence factors to infect its hosts. Genes encoding these factors are regulated by many environmental conditions and regulatory pathways in vitro. Many virulence genes are specifically induced at particular sites during infection or in cultured host cells. The complex regulation of virulence genes observed in vitro may be necessary to restrict their expression to specific locations within the host. In vitro and in vivo studies provide clues about how virulence genes might be regulated in vivo. Future studies must assess the actual environmental signals and regulators that modulate each virulence gene in vivo and determine how multiple regulatory pathways are integrated to co-ordinate the appropriate expression of virulence factors at specific sites in vivo.  相似文献   

14.
15.
A prerequisite for Salmonella enterica to cause both intestinal and systemic disease is the direct injection of effector proteins into host intestinal epithelial cells via a type three secretion system (T3SS); the T3SS genes are carried on Salmonella pathogenicity island 1 (SPI1). These effector proteins induce inflammatory diarrhea and bacterial invasion. Expression of the SPI1 T3SS is tightly regulated in response to environmental signals through a variety of global regulatory systems. We have previously shown that three AraC-like regulators, HilD, HilC, and RtsA, act in a complex feed-forward regulatory loop to control the expression of the hilA gene, which encodes the direct regulator of the SPI1 structural genes. In this work, we characterize a major positive regulator of this system, the flagellar protein FliZ. Through genetic and biochemical analyses, we show that FliZ posttranslationally controls HilD to positively regulate hilA expression. This mechanism is independent of other flagellar components and is not mediated through the negative regulator HilE or through FliZ-mediated RpoS regulation. We demonstrate that FliZ controls HilD protein activity and not stability. FliZ regulates HilD in the absence of Lon protease, previously shown to degrade HilD. Indeed, it appears that FliZ, rather than HilD, is the most relevant target of Lon as it relates to SPI1 expression. Mutants lacking FliZ are significantly attenuated in their ability to colonize the intestine but are unaffected during systemic infection. The intestinal attenuation is partially dependent on SPI1, but FliZ has additional pleiotropic effects.  相似文献   

16.
17.
Iron is an essential element for the survival of living cells. However, excess iron is toxic, and its uptake is exquisitely regulated by the ferric uptake regulator, Fur. In Salmonella, the Salmonella pathogenicity island 1 (SPI-1) encodes a type three secretion system, which is required for invasion of host epithelial cells in the small intestine. A major activator of SPI-1 is HilA, which is encoded within SPI-1. One known regulator of hilA is Fur. The mechanism of hilA regulation by Fur is unknown. We report here that Fur is required for virulence in Salmonella enterica serovar Typhimurium and that Fur is required for the activation of hilA, as well as of other HilA-dependent genes, invF and sipC. The Fur-dependent regulation of hilA was independent of PhoP, a known repressor of hilA. Instead, the expression of the gene coding for the histone-like protein, hns, was significantly derepressed in the fur mutant. Indeed, the activation of hilA by Fur was dependent on 28 nucleotides located upstream of hns. Moreover, we used chromatin immunoprecipitation to show that Fur bound, in vivo, to the upstream region of hns in a metal-dependent fashion. Finally, deletion of fur in an hns mutant resulted in Fur-independent activation of hilA. In conclusion, Fur activates hilA by repressing the expression of hns.  相似文献   

18.
19.
Differential gene expression in culturable and non-culturable forms of Salmonella typhimurium was studied by the molecular display method. Six fragments of differentially expressed gene cDNA, depending on culturable or non-culturable state of the cultures, were isolated, cloned, and sequenced. Identification of corresponding S. typhimurium differentially expressed genes was carried out by comparing the sequences of cDNA fragments with the bacterial genome data base.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号