首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous measurements were made of changes in vascular resistance in the forearm and calf in response to moving from supine to sitting or to head-down tilt. The subjects were healthy male volunteers, 21-63 yr. Blood flows were measured by venous occlusion plethysmography using mercury-in-Silastic strain-gauges. The gauges were maintained at the same level relative to the heart during the postural changes. Arterial blood pressure was measured by auscultation; heart rate was counted from the plethysmograms. Changing from supine to sitting caused a decrease in forearm blood flow from 4.13 +/- 0.14 to 2.16 +/- 0.19 ml.100 ml-1.min-1. Corresponding calf flows were 4.21 +/- 0.32 and 4.40 +/- 0.59 ml.100 ml-1.min-1. There was no change in mean arterial blood pressure, and heart rate increased by 8.0 +/- 1.5 beats/min. Arrest of the circulation of both legs with occlusion cuffs on the thighs before sitting, to prevent pooling of blood in them, reduced the degree of forearm vasoconstriction. Neck suction (40 Torr) during sitting, to oppose the decrease in transmural pressure at the carotid sinuses, inhibited the vasoconstriction. During a 30 degrees head-down tilt, there was a dilatation of forearm but not of calf resistance vessels. A Valsalva maneuver caused a similar constriction of both vascular beds. Thus, when changes in vascular resistance in forearm and calf are compared, the major reflex adjustments to changes in posture take place in the forearm.  相似文献   

2.
The purpose of this study was to determine whether blood flow (BF) and vascular resistance (VR) are controlled differently in the nonactive arm and leg during submaximal rhythmic exercise. In eight healthy men we simultaneously measured BF to the forearm and calf (venous occlusion plethysmography) and arterial blood pressure (sphygmomanometry) and calculated whole limb VR before (control) and during 3 min of cycling with the contralateral leg at 38, 56, and 75% of peak one-leg O2 uptake (VO2). During the initial phase of exercise (0-1.5 min) at all work loads, BF increased and VR decreased in the forearm (P less than 0.05), whereas calf BF and VR remained at control levels. Thereafter, BF decreased and VR increased in parallel and progressive fashion in both limbs. At end exercise, forearm BF and VR were not different from control values (P greater than 0.05); however, in the calf, BF tended to be lower (P less than 0.05 at 75% peak VO2 only) and VR was higher (23 +/- 9, 44 +/- 14, and 88 +/- 23% above control at 38, 56, and 75% of peak VO2, respectively, all P less than 0.05). In a second series of studies, forearm and calf skin blood flow (laser-Doppler velocimetry) and arterial pressure were measured during the same levels of exercise in six of the subjects. Compared with control, skin BF was unchanged and VR was increased (P less than 0.05) in the forearm by end exercise at all work loads, whereas calf skin BF increased (P less than 0.05) and VR decreased (P less than 0.05). The present findings indicate that skeletal muscle and skin VR are controlled differently in the nonactive forearm and calf during the initial phase of rhythmic exercise with the contralateral leg. Skeletal muscle vasodilation occurs in the forearm but not in the calf; forearm skin vasoconstricts, whereas calf skin vasodilates. Finally, during exercise a time-dependent vasoconstriction occurs in the skeletal muscle of both limbs.  相似文献   

3.
To evaluate the cardiovascular changes induced by otoliths and neck mechanoreceptors stimulation during head movements, nine subjects in supine prone position performed passive head-down neck flexion (P.Ext) and head up P.Extension (P.Flex) As the lower limbs vasoconstricted from P.Ext to P.Flex, it is suggested that the otoliths stimulation towards the base of the head (like in standing position) contribute to reduce the vasoconstriction whereas when stimulated towards the top of the head (head flexion) they increase it.  相似文献   

4.
Modest degrees of lower body negative pressure (less than 20 mmHg) cause a reflex constriction of forearm resistance vessels attributable to a decrease in activity of cardiopulmonary mechanoreceptors. In the present study, we sought to determine whether the calf vessels respond similarly. Left forearm and right calf blood flows were measured simultaneously by strain-gauge plethysmography in 10 healthy volunteers. Forearm flows decreased significantly from control during negative pressures of 10, 15, or 20 mmHg, whereas calf flows did not decrease significantly until 20 mmHg; at 10, 15, and 20 mmHg, decreases in forearm flow were significantly greater than those of the calf. Similar results were obtained in a second series of experiments in which venous pooling in the right leg during lower body negative pressure was prevented by enclosing it in a boot. At 40 mmHg, or after a Valsalva maneuver, both forearm and calf vessels constricted markedly and to the same degree. It appears that the reflex reduction in blood flow to the skeletal muscles of the limbs resulting from deactivation of the low-pressure intrathoracic mechanoreceptors is directed primarily to the arm.  相似文献   

5.
Muscle sympathetic nerve activity (MSNA) increases with head-down neck flexion (HDNF). The present study had three aims: 1) to examine sympathetic and vascular responses to two different magnitudes of HDNF; 2) to examine these same responses during prolonged HDNF; and 3) to determine the influence of nonspecific pressure receptors in the head on MSNA. The first experiment tested responses to two static head positions in the vertical axis [HDNF and intermediate HDNF (I-HDNF; approximately 50% of HDNF)]. MSNA increased above baseline during both I-HDNF and HDNF (from 219 +/- 36 to 301 +/- 47 and from 238 +/- 42 to 356 +/- 59 units/min, respectively; P < 0.01). Calf blood flow (CBF) decreased and calf vascular resistance increased during both I-HDNF and HDNF (P < 0.01). Both the increase in MSNA and the decrease in CBF were linearly related to the magnitude of the downward head rotations (P < 0.01). The second experiment tested responses during prolonged HDNF. MSNA increased (from 223 +/- 63 to 315 +/- 79 units/min; P < 0.01) and CBF decreased (from 3.2 +/- 0.4 to 2.6 +/- 0.04 ml. 100 ml-1. min-1; P < 0.01) at the onset of HDNF. These responses were maintained throughout the 30-min period. Mean arterial blood pressure gradually increased during the 30 min of HDNF (from 94 +/- 4 to 105 +/- 3 mmHg; P < 0.01). In a third experiment, head-down neck extension was performed with subjects in the supine position. Unlike HDNF, head-down neck extension did not affect MSNA. The results from these studies demonstrate that MSNA: 1) increases in magnitude as the degree of HDNF increases; 2) remains elevated above baseline during prolonged HDNF; and 3) responses during HDNF are not associated with nonspecific receptors in the head activated by increases in cerebral pressure.  相似文献   

6.
Local vasoconstriction plays an important role in maintaining blood pressure in spinal cord-injured individuals (SCI). We aimed to unravel the mechanisms of local vasoconstriction [venoarteriolar reflex (VAR) and myogenic response] using both limb dependency and cuff inflation in SCI and compare these with control subjects. Limb blood flow was measured in 11 male SCI (age: 24-55 yr old) and 9 male controls (age: 23-56 yr old) using venous occlusion plethysmography in forearm and calf during three levels of 1) limb dependency, and 2) cuff inflation. During limb dependency, vasoconstriction relies on both the VAR and the myogenic response. During cuff inflation, the decrease in blood flow is caused by the VAR and by a decrease in arteriovenous pressure difference, whereas the myogenic response does not play a role. At the highest level of leg dependency, the percent increase in calf vascular resistance (mean arterial pressure/calf blood flow) was more pronounced in SCI than in controls (SCI 186 +/- 53%; controls 51 +/- 17%; P = 0.032). In contrast, during cuff inflation, no differences were found between SCI and controls (SCI 17 +/- 17%; controls 14 +/- 10%). Percent changes in forearm vascular resistance in response to either forearm dependency or forearm cuff inflation were equal in both groups. Thus local vasoconstriction during dependency of the paralyzed leg in SCI is enhanced. The contribution of the VAR to local vasoconstriction does not differ between the groups, since no differences between groups existed for cuff inflation. Therefore, the augmented local vasoconstriction in SCI during leg dependency relies, most likely, on the myogenic response.  相似文献   

7.
We dissected the relative contribution of arteriovenous hemodynamics, the venoarteriolar response (VAR), and the myogenic reflex toward a decrease in local blood flow induced by venous congestion. Skin blood flow (SkBF) was measured in 12 supine subjects via laser-Doppler flowmetry 1) over areas of forearm and calf skin, in which the VAR was blocked by using eutectic mixture of local anesthetics (EMLA sites) and 2) over the contralateral forearm or calf skin (control sites), using two different techniques: limb dependency of 23-37 cm below the heart and cuff inflation to 40 mmHg. During limb dependency, SkBF decreased at the control sites, whereas it remained unchanged at the EMLA sites. In contrast, during cuff inflation, SkBF decreased at the control sites and also decreased at the EMLA sites. The percent change in SkBF from baseline was greater during cuff inflation than limb dependency at both the control sites and the EMLA sites. Estimated skin vascular resistance remained unchanged at the EMLA sites during cuff inflation, as well as limb dependency. Thus the decrease in SkBF during venous congestion with cuff inflation is not solely due to the cutaneous VAR but also to a reduction in local perfusion pressure. The VAR is therefore most specifically quantified by venous congestion induced by limb dependency, rather than cuff inflation. Finally, from both techniques, we calculated that during venous congestion induced by limb dependency (calf), approximately 45% of the nonbaroreflex vasoconstriction is induced by the VAR and approximately 55% by the myogenic reflex.  相似文献   

8.
Forearm and calf blood flow were measured using a mercury-in-silastic gauge during immersion of one foot in water at 4 degrees C. The subjects were asked to assess the level of pain on a scale 0-10. The effects of one session of repeated immersions on the vascular response in the calf, forearm and on subjective pain sensation were studied. In 6 of the 14 subjects vasodilatation was elicited in both forearm and calf during the first immersion. During the first session the vasodilation diminished, while subjective pain sensation remained at the level of 7 on the scale. In 4 subjects vasoconstriction in both calf and forearm occurred during the first immersion. During repeated immersions forearm vasoconstriction subsided, while in the calf it remained at the same level. The level of the subjective pain sensation diminished from 7.5 to 5 in 1 subject. Repeated immersions in six to ten daily sessions led to reduction of vasodilatation in calf and forearm while there was a small change in the pain sensation, i.e. reduction from the level of 6.9 to 5.7 (P less than 0.01). In subjects in whom vasoconstriction in forearm and calf was observed no clear trend in vascular responses was observed during the repeated daily sessions while the pain sensation in 1 subject was reduced from 6 to 4.8. In 3 subjects the change of vascular responses was different in the forearm and calf.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Cardiovascular indices were analyzed in young healthy males exposed to normobaric hypoxia (breathing a gas mixture containing 10% O2 for 16 min). There was a marked variation in individual responses. A linear relationship was observed between the individual blood oxygen saturation at the end of exposure and the baseline muscle blood flow (MBF). Moreover, blood oxygen saturation decreased in subjects with an initially high forearm MBF and remained unchanged or even slightly increased in subjects with a low forearm MBF. After hypoxic exposure (10–15 min), the MBF continued to decrease, venous capacity increased, and postocclusion hyperemic response decreased. It is suggested that hypoxic exposure activates the neuroreflex mechanisms regulating the peripheral blood flow and that the peripheral vascular response to acute hypoxia depends largely on the baseline blood flow in skeletal muscles.  相似文献   

10.
The effect of local isometric exercise on hand and forearm blood flow was studied. With maximum muscular exercise performed by both males and females, a decrease in hand and forearm blood flow was due to vasoconstriction caused by the mechanical pressure of working muscles. With 75 and 50% loads, marked hyperemia was observed in the main and microcirculatory vessels in the hand and forearm, which was rather long-lasting in the hand because of the difficulty of the forearm venous outflow. The minimum loads affected mainly the microcirculation, and no significant hemodynamic changes in main vessels were observed. The exercise performed at 50% of maximum muscular force was taken as an optimum load in kinesotherapeutic programs.  相似文献   

11.
In view of conflicting reports of skeletal muscle and skin blood flow participation in baroreceptor-mediated reflexes, we studied the effects of graded lower body negative pressure (LBNP) on cutaneous and muscular components of forearm blood flow (FBF) in seven male subjects at 28 degrees C. FBF was measured by venous occlusion plethysmography and cutaneous flow by laser-Doppler velocimetry, the difference being the muscular flow. Mean FBF decreased by 39 and 56% from control at LBNP of 20 and 50 Torr, respectively. Skin flow decreased linearly with graded LBNP contributing 32% of the decrease of total blood flow at 20 Torr and then 50% of total decrease of blood flow at 50 Torr. Conversely, the decrease in muscle flow represented 68% of the total decrease at LBNP of 20 Torr and then 50% of the total decrease at LBNP of 50 Torr. We concluded that both skin and muscle circulations participate in sustained peripheral vasoconstriction during LBNP, with muscle flow achieving near maximum vasoconstriction by 20 Torr and skin showing a graded vasoconstriction to decreases in LBNP.  相似文献   

12.
Nitric oxide (NO) is capable of blunting alpha-adrenergic vasoconstriction in contracting skeletal muscles of experimental animals (functional sympatholysis). We therefore tested the hypothesis that exogenous NO administration can blunt alpha-adrenergic vasoconstriction in resting human limbs by measuring forearm blood flow (FBF; Doppler ultrasound) and blood pressure in eight healthy males during brachial artery infusions of three alpha-adrenergic constrictors (tyramine, which evokes endogenous norepinephrine release; phenylephrine, an alpha1-agonist; and clonidine, an alpha2-agonist). To simulate exercise hyperemia, the vasoconstriction caused by the alpha-agonists was compared during adenosine-mediated (>50% NO independent) and sodium nitroprusside-mediated (SNP; NO donor) vasodilation of the forearm. Both adenosine and SNP increased FBF from approximately 35-40 to approximately 200-250 ml/min. All three alpha-adrenergic constrictor drugs caused marked reductions in FBF and calculated forearm vascular conductance (P < 0.05). The relative reductions in forearm vascular conductance caused by the alpha-adrenergic constrictors during SNP infusion were similar (tyramine, -74 +/- 3 vs. -65 +/- 2%; clonidine, -44 +/- 6 vs. -44 +/- 6%; P > 0.05) or slightly greater (phenylephrine, -47 +/- 6 vs. -33 +/- 6%; P < 0.05) compared with the responses during adenosine. In conclusion, these results indicate that exogenous NO sufficient to raise blood flow to levels simulating those seen during exercise does not blunt alpha-adrenergic vasoconstriction in the resting human forearm.  相似文献   

13.
Studies of whole limb blood flow have shown that static handgrip elicits a vasodilatation in the resting forearm and vasoconstriction in the resting leg. We asked if these responses occur in the skeletal muscle vascular bed, and if so, what is the relative contribution of local metabolic versus other mechanisms to these vascular responses. Blood flow recordings were made simultaneously in the skeletal muscle of the resting arm and leg using the Xenon-washout method in ten subjects during 3 min of isometric handgrip at 30% of maximal voluntary contraction. In the arm, skeletal muscle vascular resistance (SMVR) decreased transiently at the onset of exercise followed by a return to baseline levels at the end of exercise. In the leg SMVR remained unchanged during the 1st min of handgrip, but had increased to exceed baseline levels by the end of exercise. During exercise electromyography (EMG) recordings from nonexercising limbs demonstrated a progressive 20-fold increase in activity in the arm, but remained at baseline in the leg. During EMG-signal modelled exercise performed to mimic the inadvertent muscle activity, decreases in forearm SMVR amounted to 57% of the decrease seen with controlateral handgrip. The present study would seem to indicate that vascular tone in nonexercising skeletal muscle in the arm and leg are controlled differently during the early stages of static handgrip. Metabolic vasodilatation due to involuntary contraction could significantly modulate forearm skeletal muscle vascular responses, but other factors, most likely neural vasodilator mechanisms, must make major contributions. During the later stages of contralateral sustained handgrip, vascular adjustments in resting forearm skeletal muscle would seem to be the final result of reflex sympathetic vasoconstrictor drive, local metabolic vasodilator forces and possibly neurogenic vasodilator mechanisms.  相似文献   

14.
In this study we measured (n = 6) the phosphocreatine-to-inorganic phosphate ratio (PCr/Pi), Pi, and pH with 31P-nuclear magnetic resonance (31P-NMR) in the human forearm during static work at 30% of maximal voluntary contraction (MVC) for 2 min followed immediately by 3 min of circulatory arrest (forearm arterial occlusion). Static exercise, with its central volitional and skeletal muscle metabolic and mechanical afferent components, caused a rise in heart rate (HR, 32%), blood pressure (BP, 29%), and calf vascular resistance (calf R, 30%). During forearm occlusion after static exercise, HR returned to base line, the increase in BP was attenuated by 30%, and calf R remained elevated and unchanged. The percent change in calf R was correlated with forearm cellular pH (R = 0.56, P less than 0.001) but only weakly associated with PCr/Pi (R = 0.33, P less than 0.042). 30% MVC for 1 min followed by arterial occlusion (3 min) reduced PCr/Pi by 65% and pH by 0.16 U (P less than 0.05). Calf R was unchanged. Circulatory arrest alone (20 min) caused no change in either pH or calf R but large changes in PCr/Pi (50% reduction). We conclude that 1) there is an association between forearm cellular acidosis and calf vasconstriction during static forearm exercise and 2) large changes in PCr/Pi without concomitant changes in pH are not associated with changes in calf R.  相似文献   

15.
To isolate the peripheral adaptations to training, five normal subjects exercised the nondominant (ND) wrist flexors for 41 +/- 11 days, maintaining an exercise intensity below the threshold required for cardiovascular adaptations. Before and after training, intracellular pH and the ratio of inorganic phosphate to phosphocreatine (Pi/PCr) were measured by 31P magnetic resonance spectroscopy. Also maximal O2 consumption (VO2 max), muscle mass, and forearm blood flow were determined by graded systemic exercise, magnetic resonance imaging, and venous occlusion plethysmography, respectively. Blood flow, Pi/PCr, and pH were measured in both forearms at rest and during submaximal wrist flexion at 5, 23, and 46 J/min. Training did not affect VO2 max, exercise blood flow, or muscle mass. Resting pH, Pi/PCr, and blood flow were also unchanged. After training, the ND forearm demonstrated significantly lower Pi/PCr at 23 and 46 J/min. Endurance, measured as the number of contractions to exhaustion, also was increased significantly (63%) after training in the ND forearm. We conclude that 1) forearm training results in a lower Pi/PCr at identical submaximal work loads; 2) this improvement is independent of changes in VO2 max, muscle mass, or limb blood flow; and 3) these differences are associated with improved endurance and may reflect improved oxidative capacity of skeletal muscle.  相似文献   

16.
ATP released from circulating erythrocytes is a potential signal regulating muscle blood flow during exercise (exercise hyperemia), and intravascular ATP appears to blunt sympathetic vasoconstriction during exercise. Erythrocytes from patients with cystic fibrosis (CF) do not release ATP. The goal of the present study was to determine whether increases in forearm blood flow during exercise are blunted in CF patients and whether CF patients exhibit greater vasoconstrictor responsiveness during exercise. Nine control subjects and 10 CF patients who were free of other disease complications (approximately 96% O2 saturation) performed incremental rhythmic forearm exercise at 5, 10, and 15% of maximum handgrip strength for 21 min (7 min at each workload). We used a cold pressor test to evoke sympathetic vasoconstriction under resting conditions and at each exercise workload. As a control, subjects performed a second exercise bout without the cold pressor test. Continuous brachial artery blood velocity was monitored beat-to-beat, and vessel diameter was assessed by Doppler ultrasound. Artery diameter, as well as blood pressure, heart rate, and O2 saturation, was measured at steady-state exercise and at 1 min into the cold pressor stimulus. Blood pressure and heart rate responses to the forearm exercise and each cold pressor test were similar in both groups (P > 0.05). Contrary to our hypothesis, forearm blood flow (P = 0.91) and forearm vascular conductance (P = 0.82) were similar at rest and at each level of exercise between CF patients and controls. Additionally, there was no difference in the degree of sympathetic vasoconstriction between groups at rest and at each level of exercise (P = 0.22). Our results suggest that ATP released from the deformation of erythrocytes is not an obligatory signal for exercise hyperemia in human skeletal muscle.  相似文献   

17.
Occupations that involve sustained or repetitive neck flexion are associated with a higher incidence of neck pain. Little in vivo information is available on the impact of static neck flexion on cervical spinal tissue. The aim of this study was to assess changes in mechanical and neuromuscular behaviors to sustained neck flexion in healthy adults. Sixty healthy subjects aged 20–35 years participated in this study. The participants were exposed to static neck flexion at a fixed angle of full flexion for 10 min. Mechanical and neuromuscular responses of the cervical spine to sudden perturbations were measured pre- and post-exposure. Magnitude of load-relaxation during flexion exposure, stiffness, peak head angular velocity, and reflexive activities of cervical muscles were recorded. Effective neck stiffness decreased significantly, especially in female participants (P = 0.0001). The reflexive response of the cervical erector spinae muscles to head perturbation delayed significantly (P = 0.0001). Peak head angular velocity was significantly increased after exposure to neck flexion for 10 min, especially in female participants (P = 0.001). In the present study, static flexion resulted in changes in mechanical and neuromuscular behavior of the cervical spine, potentially leading to decreased stiffness of the cervical spine. The results confirm the importance of maintaining a correct head and neck position during work and improving the work environment to reduce the cervical spinal load and work-related neck pain.  相似文献   

18.
The in vivo or effective thermal conductivity (keff) of muscle tissue of the human forearm was determined through a finite-element (FE) model solution of the bioheat equation. Data were obtained from steady-state temperatures measured in the forearm after 3 h of immersion in water at temperatures (Tw) of 15 (n = 6), 20 (n = 5), and 30 degrees C (n = 5). Temperatures were measured every 0.5 cm from the longitudinal axis of the forearm to the skin approximately 9 cm distal from the elbow. Heat flux was measured at two sites on the skin adjacent to the temperature probe. The FE model is comprised of concentric annular compartments with boundaries defined by the location of temperature measurements. Through this approach, it was possible to include both the metabolic heat production and the convective heat transfer between blood and tissue at two levels of blood flow, one perfusing the compartment and the other passing through the compartment. Without heat exchange at the passing blood flow level, the arterial blood temperature would be assumed to have a constant value everywhere in the forearm muscles, leading to a solution of the bioheat equation that greatly underpredicts keff. The extent of convective heat exchange at the passing blood flow level is estimated to be approximately 60% of the total heat exchange between blood and tissue. Concurrent with this heat exchange is a decrease in the temperature of the arterial blood as it flows radially from the axis to the skin of the forearm, and this decrease is enhanced with a lowered Tw.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Orthostasis is characterized by translocation of blood from the upper body and thorax into dependent venous structures. Although active splanchnic venoconstriction is known to occur, active limb venoconstriction remains controversial. Based on prior work, we initially hypothesized that active venoconstriction does occur in the extremities during orthostasis in response to baroreflex activation. We investigated this hypothesis in the arms and legs of 11 healthy volunteers, aged 13-19 yr, using venous occlusion strain gauge plethysmography to obtain the forearm and calf blood flows and to compute the capacitance vessel volume-pressure compliance relation. Subjects were studied supine and at -10, +20, and +35 degrees to load the baroreflexes. With +20 degrees of tilt, blood flow decreased and limb arterial resistance increased significantly (P < 0.05) compared with supine. With +35 degrees of tilt, blood flow decreased, limb arterial resistance increased, and heart rate increased, indicating parasympathetic withdrawal and sympathetic activation with arterial vasoconstriction. The volume-pressure relation was unchanged by orthostatic maneuvers. The results suggest that active venoconstriction in the limbs is not important to mild orthostatic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号