首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of herbal plants as traditional medicines has a century long history. Plantain (Plantago lanceolata L.) is a perennial herb containing bioactive components with free radical scavenging activities. An isotope dilution technique using [U-13C]glucose was conducted to determine the effect of plantain on the responses of plasma glucose metabolism to exogenous insulin infusion in sheep. Six crossbred sheep (three wethers and three ewes; mean initial BW=40±2 kg) were fed either a mixed hay of orchardgrass (Dactylis glomerata) and reed canarygrass (Phalaris arundinacea) (MH-diet) or mixed hay and fresh plantain (1 : 1 ratio, dry matter basis, PL-diet) and exposed to a thermoneutral (TN, 20°C; 70% relative humidity (RH)) environment or a heat exposure (HE, 30°C; 70% RH) for 5 days using a crossover design for two 23-day periods. The isotope dilution was conducted on days 18 and 23 of the experimental period during TN and HE, respectively. Plasma concentration of α-tocopherol was greater (P<0.0001) for the PL-diet than the MH-diet and remained comparable between environmental treatments. Plasma glucose concentration before isotope dilution technique was reduced for sheep (P=0.05) during HE compared with TN and remained comparable between diets. Plasma glucose turnover rate during the preinfusion period of insulin did not differ (P=0.10) between dietary treatments and between environments (P=0.65). The response of plasma glucose utilization to exogenous insulin administration was lower (P=0.04) for the PL-diet than the MH-diet. Under present experimental conditions, the plantain group was found to be resistant to the effects of insulin infusion.  相似文献   

2.
An isotope dilution experiment was conducted to determine the effect of metabolizable energy intake (MEI) as starch on whole body protein synthesis (WBPS), nitrogen (N) retention and glucose irreversible loss rate (ILR) in four adult goats (Capra hircus). The goats were fed isonitrogenous diets containing three different metabolizable energy (1.0, 1.5 and 2.0 times maintenance) twice daily. Energy above maintenance was supplemented with cornstarch. The WBPS and glucose ILR during 5 to 7 h after feeding were measured by a primed-continuous infusion of [2H5]phenylalanine, [2H2]tyrosine, [2H4]tyrosine and [13C6]glucose for 4 h, with measurements of plasma concentrations of metabolites and insulin. Ruminal characteristics were also determined. Increasing MEI improved N retention, despite decreased digestible N. Increasing MEI decreased ruminal pH and ammonia nitrogen. In plasma, decreased urea N, increased total amino N and tyrosine, and trends for increases in phenylalanine and insulin resulted from increasing MEI. Increasing MEI increased ILR of glucose, phenylalanine and tyrosine, and hydroxylation rate of phenylalanine and WBPS. We conclude that in goats increasing MEI as starch enhances WBPS in the absorptive state and N retention, despite a decrease in digestible N. These changes are probably associated with both decreased ammonia absorption and increased amino acid absorption.  相似文献   

3.
The overall rates of protein synthesis and degradation in perfusion-grown WI-38 cells were followed in the three days after a stepdown in the serum concentration of the culture medium, from 10% to 0.3%. Within three hours after the stepdown, the rate of protein synthesis had decreased and the rate of protein degradation had increased, the combined result being the cessation of protein accumulation. The degradation rate returned over the next three days to its original value, but a zero rate of accumulation was retained because the synthesis rate continued to decline. The rate of DNA synthesis remained constant for six hours after the stepdown. It then declined steadily until reaching a minimum about eight hours later. The results show that extracellular control of protein accumulation depends on adjustments in both protein synthesis and protein degradation, and that the adjustments take place rapidly. This behavior suggests that the cell cycle is arrested after a stepdown because post-mitotic cells are unable to accumulate additional protein. However, an alternative interpretation of the data is that at least part of the changed accumulation is the result, rather than the cause, of the cycle arrest, and that the arrest is caused by other, more specific, reactions than those of general protein metabolism.  相似文献   

4.
We tested the hypothesis that a reduced stimulation of whole-body protein synthesis by amino acid administration represents a major mechanism for the bed rest-induced loss of lean body mass. Healthy young subjects and matched controls were studied on the last day of a 14-day bed rest or ambulatory period, as part of the overall protocol "Short-term Bed Rest - Integrated Physiology" set up by the German Aerospace Centre (DLR) in co-operation with the European Space Agency. A balanced mixture of essential and non-essential amino acids was intravenously infused in the postabsorptive state for 3 hours at the rate of 0.1 g/kg/hour. The oxidative and non-oxidative (i.e., to protein synthesis) disposal of the infused leucine was determined by stable isotope and mass spectrometry techniques. The clearance of total infused amino acids tended to be greater (P=0.07) in the ambulatory group than in the bed rest group. When leucine clearance was partitioned between its oxidative and non-oxidative (i.e., to protein synthesis) components, the results indicated that the oxidative disposal was not statistically different in the bed rest and in the ambulatory groups. In contrast, the non-oxidative leucine disposal (i.e., to protein synthesis) was about 20% greater (P<0.01) in the ambulatory group than in the bed rest group. In conclusion, these preliminary data suggest that 14-day bed rest impairs the ability to utilise exogenous amino acids for protein synthesis.  相似文献   

5.
Combined experiments of an isotope dilution method of [1-(13)C]leucine with open circuit calorimetry and a nitrogen (N) balance test were applied to determine the effect of dietary crude protein (CP) intake on plasma leucine flux and protein synthesis and degradation in four sheep. The experiment was conducted in a 3 x 4 Latin rectangle design of three 3-week periods. Dietary CP intake was 5.6, 7.7, and 10.8 g/(kg(0.75) x d). Metabolizable energy intake was 120% of requirement for all dietary treatments. [1-(13)C]Leucine was intravenously infused for 8 h and blood and breath samples were collected during the latter 2-h period of infusion. Isotopic enrichments of plasma [1-(13)C]leucine, alpha-[1-(13)C]ketoisocaproic acid, and exhaled (13)CO(2) were determined. For the N balance test, N digestibility, N excretion in urine, and protein balance (N x 6.25) increased with increasing dietary CP intake. Rates of plasma leucine turnover, protein synthesis, and degradation changed toward reduction with increased dietary CP intake. It is likely that in sheep, high CP intake enhances protein deposition with reduced protein degradation rather than increased protein synthesis.  相似文献   

6.
Relative blood flow in different organs of the supralethally (3 kR) whole body X-irradiated rat was studied using labeled 15 mu microspheres. Immediately after irradiation blood flow in brain diminishes. From 10 to 20 hrs a phase of increase in blood flowing to many parenchymal organs ensues. A second maximum 45 to 50 hrs and a third one at 60 hrs. In most organs except in brain and liver relative blood flow diminishes before death. The genesis of these changes as signs of a slowly developing shock is discussed.  相似文献   

7.
Eight subjects, who were indoor workers and not habitually exposed to cold, spent 53 days in Antarctica. They did mainly geological field work often requiring the use of bare hands. The effects of the expedition on responses to a whole body cold exposure test, a finger blood flow test and a cold pressor test were studied. After the expedition, during whole-body cooling the time for the onset of shivering was delayed by 36 min (P<0.001) and forearm and thigh temperatures were 1.5°C higher (P<0.05) at the end of exposure. During local cooling of the finger with 10°C perfusion, finger vascular resistance was 14.9 (SEM 6.6) mmHg · ml–1 · min · 100 ml (P<0.05) lower and finger temperature 3.9 (SEM 0.8) °C higher (P< 0.01). However, the decrease in rectal temperature during wholebody cooling was unaltered and the response to a cold pressor test was unchanged. The data would indicate that partial acclimatization to cold had been developed. Changes in forearm temperature were correlated with the duration of cold exposure of the hands (P < 0.05) and finger vascular resistance and finger temperature were correlated with responses to cooling before the expedition (P<0.001 and P<0.01, respectively). Because the ambient temperature was not clearly lower in Antarctica in comparison to Finland, the reason for the changes developed seems to be the increased exposure to the outdoor climate in Antarctica.  相似文献   

8.
The kinetics of DNA and protein damage in two lines of cultured cells exposed to radiation-generated hydroxyl free radicals were measured. The results show that DNA damage is a relatively late event, preceded by the formation of protein hydroperoxides which may play a role in the degradation of the DNA.  相似文献   

9.
We and others have shown that moderate passive whole body heating (i.e., increased internal temperature ~0.7°C) increases muscle (MSNA) and skin sympathetic nerve activity (SSNA). It is unknown, however, if MSNA and/or SSNA continue to increase with more severe passive whole body heating or whether these responses plateau following moderate heating. The aim of this investigation was to test the hypothesis that MSNA and SSNA continue to increase from a moderate to a more severe heat stress. Thirteen subjects, dressed in a water-perfused suit, underwent at least one passive heat stress that increased internal temperature ~1.3°C, while either MSNA (n = 8) or SSNA (n = 8) was continuously recorded. Heat stress significantly increased mean skin temperature (Δ~5°C, P < 0.001), internal temperature (Δ~1.3°C, P < 0.001), mean body temperature (Δ~2.0°C, P < 0.001), heart rate (Δ~40 beats/min, P < 0.001), and cutaneous vascular conductance [Δ~1.1 arbitrary units (AU)/mmHg, P < 0.001]. Mean arterial blood pressure was well maintained (P = 0.52). Relative to baseline, MSNA increased midway through heat stress (Δ core temperature 0.63 ± 0.01°C) when expressed as burst frequency (26 ± 14 to 45 ± 16 bursts/min, P = 0.001), burst incidence (39 ± 13 to 48 ± 14 bursts/100 cardiac cyles, P = 0.03), or total activity (317 ± 170 to 489 ± 150 units/min, P = 0.02) and continued to increase until the end of heat stress (burst frequency: 61 ± 15 bursts/min, P = 0.01; burst incidence: 56 ± 11 bursts/100 cardiac cyles, P = 0.04; total activity: 648 ± 158 units/min, P = 0.01) relative to the mid-heating stage. Similarly, SSNA (total activity) increased midway through the heat stress (normothermia; 1,486 ± 472 to mid heat stress 6,467 ± 5,256 units/min, P = 0.03) and continued to increase until the end of heat stress (11,217 ± 6,684 units/min, P = 0.002 vs. mid-heat stress). These results indicate that both MSNA and SSNA continue to increase as internal temperature is elevated above previously reported values.  相似文献   

10.
11.
1. The influence of the gut microflora on protein synthesis in individual tissues and in the whole body of young chicks was investigated by the large-dose injection of [3H]phenylalanine. 2. Growth of germ-free chicks was significantly better than that of conventional controls. Wet weights of liver, spleen, duodenum, jejunum + ileum and caeca were heavier in conventional birds than in germ-free counterparts. 3. Fractional rates of protein synthesis were higher in jejunum + ileum and whole body of conventional birds than in those of germ-free birds. Amounts of protein synthesized were larger in liver, jejunum + ileum and caeca in the presence of the gut microflora. 4. When tissues were classified into gut + liver and the remainder of the carcass, in the presence of the gut microflora an enhanced protein synthesis in fractional and absolute rate was found in the gut + liver, which is in direct contact or in close association with micro-organisms, whereas virtually no effect of the gut micro-organisms was detected in the remainder of the carcass. 5. The contribution of protein synthesis of gut + liver to that of the whole body was larger in conventional chicks than in germ-free birds, whereas the reverse was true for the remainder of the carcass.  相似文献   

12.
Arterial blood acid-base status of unanesthetized sand rats (Psammomys obesus) were studied under normocapnic and hypercapnic conditions, and compared to those obtained for the albino rat (Rattus norvegicus). The average control blood pH: 7.396 +/- 0.034; PaCO2: 30.5 +/- 2.9 mmHg; HCO-3: 18.8 +/- 2.5 mM/l; and HCO-3 std: 20.9 +/- 2.1 (N = 15) obtained here for the sand rat are in the lower range of values found in other mammals and indicate a status of partially compensated metabolic acidosis. The blood buffer values of the sand rat, delta log PCO2/delta pH = -2.32 +/- 0.35 (N = 25) are significantly higher than those found here for the rat, delta log PCO2/delta pH = -1.51 +/- 0.10 (N = 39), and those reported for other mammals. This high blood buffer value may be related to the natural high mineral diet of the sand rat. The in vivo (whole body) buffer value delta log PaCO2/delta pH = -1.41 and -1.65 for the sand rat and the rat found here are higher than those reported for the man and dog and may represent a physiological adaptation to the hypercapnic conditions prevailing in underground burrows.  相似文献   

13.
Previously we reported that eight proteins were reproducibly induced in postimplantation rat embryos exposed to a brief heat shock (43°C, 15 min). The major heat-inducible rat embryo protein has now been identified as heat shock protein 72 (Hsp 72). In addition, the induction of Hsp 72 is temporally correlated with induction of thermotolerance. One of the other rat embryo proteins previously shown to be induced by elevated temperature is a heat shock protein of approximately 27 kilodaltons (Hsp 27). In this report we show that this protein is recognized by an antibody directed against a conserved peptide sequence of Hsp 27. Unlike Hsp 72, Hsp 27 is constitutively expressed in the rat embryo in the absence of any thermal stress; however, the level of Hsp 27 is increased approximately 2–3-fold after thermal stress (43°C, 10 min). Immunohistochemical analysis revealed that the constitutively expressed Hsp 27 is localized primarily to cells of the heart, cells that are uniquely resistant to the cytotoxic effects of hyperthermia. After thermal stress, Hsp 27 is expressed in all tissues of the embryo. Finally, our data show that Hsp 27 exists in the rat embryo as three major isoforms indicative of different phosphorylation states. Furthermore, most Hsp 27 in the heart is phosphorylated, whereas in the rest of the embryo, nonphosphorylated Hsp 27 predominates. After thermal stress, levels of phosphorylated isoforms increase dramatically in nonheart tissues of the embryo. Together, these results suggest that Hsp 27 may play a role in the development of thermotolerance in the postimplantation mammalian embryo. © 1996 Wiley-Liss, Inc.  相似文献   

14.
While both the quantity and quality of food ingested are potent regulators of whole body protein metabolism in ruminants, little data are available on responses across a wide range of intakes. The current study examined the responses in whole body protein flux (PrF) to such intake changes and compared these with the responses across the hind-quarters (in a companion study). Six growing sheep (6-8 months, 30-35 kg) received each of four intakes of dried grass pellets (0.5, 1.0, 1.5 and 2.5 times maintenance energy; M) for a minimum of 7 days. At each intake, a mixture of U-13C amino-acids (AA) was infused intravenously for 10 h. Arterial plasma and blood were obtained over the last 4 h of infusion and the concentrations and the enrichments of thirteen 13C labelled AA were determined. The absolute values for plasma Irreversible Loss Rate (ILR) but also converted PrF varied between the AA. PrF values were lower for histidine, methionine, aspartate, glycine and proline (range 68 to 174 g x d(-1) at 1.5 M) than for isoleucine, leucine, valine and glutamate (range 275 to 400 g x d(-1) at 1.5 M). These discrepancies may be explained by (1) the differential AA removal by the splanchnic tissues, (2) the de novo synthesis of the non-essential AA, (3) the transfer of AA from the erythrocytes or plasma to the tissues. The first two assumptions require further investigation whereas recent work has shown a minor role for AA transfers between erythrocytes and tissues. For most AA, ILR and PrF responded linearly to intake but curvilinear responses were observed for phenylalanine, lysine, leucine, isoleucine and tyrosine. These differences were not due to hind-quarter metabolism and may involve the digestive tract and liver.  相似文献   

15.
Corn mitochondrial protein synthesis in response to heat shock   总被引:1,自引:1,他引:1       下载免费PDF全文
Nebiolo CM  White EM 《Plant physiology》1985,79(4):1129-1132
Corn (Zea mays L., W23(N), OH43(N), and reciprocal single cross hybrid) seedling mitochondria respond to a 10°C temperature shift (27-37°C) by incorporating a greater amount of [35S]methionine into acid-insoluble material than mitochondria incubated at the original growing temperature (27°C). This increase is in part manifested in the enhanced synthesis of a 52 kilodaltons protein. At both temperatures mitochondria of two inbreds and their reciprocal hybrids synthesize normal (N) cytoplasm proteins sensitive to chloramphenicol and insensitive to cyclohexamide treatment. The 52 kilodaltons protein is found in the supernatants of pelleted (15,000g, 5 min) mitochondria after heat shock. The role of this protein in the heat shock response is discussed in light of the implication of mitochondria as the primary cellular target to temperature stress.  相似文献   

16.
The fleece is an important component in thermoregulation of sheep exposed to high levels of solar radiation. A model written in CSMP has been developed which represents the flow of energy between the sheep and its environment. This model is based on a set of differential equations which describe the flux of heat between the components of the system--fleece, tip, skin, body and environment. It requires as input parameters location, date, time of day, temperature, relative humidity, cloud cover, wind movement, animal weight and linear measurements and fleece length. At each integration interval incoming solar radiation and its components, the heat arising from the animal's metabolism and the heat exchange by long-wave radiation, convection, conduction and evaporative cooling are computed. Temperatures at the fleece tip, skin and body core are monitored.  相似文献   

17.
18.
Noel KD  Carneol M  Brill WJ 《Plant physiology》1982,70(5):1236-1241
Nitrate or ammonium was added to soybean (Glycine max L. Merrill cv Corsoy) plants grown in plastic pouches 10 days after nodules first appeared. By the third day of treatment with 10 millimolar nitrate, nitrogenase specific activity (per unit nodule weight) had decreased to 15% to 25% of that of untreated plants. Longer incubations and higher concentrations of nitrate had no greater effect. In addition, exogenous nitrate or ammonium resulted in slower nodule growth and decreased total protein synthesis in both the bacterial and the plant portion of the nodule (as measured by incorporation of 35S). Two-dimensional gel electrophoresis revealed that the nitrogenase components were not repressed or degraded relative to other bacteroid proteins. In the presence of an optimal carbon source, the nitrogenase specific activity of nodules detached from nitrate-treated plants was equivalent to that of nodules from untreated plants. These results are consistent with models that propose decreased availability or utilization of photosynthate in root nodules when legumes are exposed to fixed nitrogen.  相似文献   

19.
The responses to vestibular stimulation of brain stem neurons that regulate sympathetic outflow and blood flow have been studied extensively in decerebrate preparations, but not in conscious animals. In the present study, we compared the responses of neurons in the rostral ventrolateral medulla (RVLM), a principal region of the brain stem involved in the regulation of blood pressure, to whole body rotations of conscious and decerebrate cats. In both preparations, RVLM neurons exhibited similar levels of spontaneous activity (median of ~17 spikes/s). The firing of about half of the RVLM neurons recorded in decerebrate cats was modulated by rotations; these cells were activated by vertical tilts in a variety of directions, with response characteristics suggesting that their labyrinthine inputs originated in otolith organs. The activity of over one-third of RVLM neurons in decerebrate animals was altered by stimulation of baroreceptors; RVLM units with and without baroreceptor signals had similar responses to rotations. In contrast, only 6% of RVLM neurons studied in conscious cats exhibited cardiac-related activity, and the firing of just 1% of the cells was modulated by rotations. These data suggest that the brain stem circuitry mediating vestibulosympathetic reflexes is highly sensitive to changes in body position in space but that the responses to vestibular stimuli of neurons in the pathway are suppressed by higher brain centers in conscious animals. The findings also raise the possibility that autonomic responses to a variety of inputs, including those from the inner ear, could be gated according to behavioral context and attenuated when they are not necessary.  相似文献   

20.
The present study was conducted to determine the contribution of muscle protein synthesis to the prevention of anesthesia-induced hypothermia by intravenous administration of an amino acid (AA) mixture. We examined the changes of intraperitoneal temperature (Tcore) and the rates of protein synthesis (K(s)) and the phosphorylation states of translation initiation regulators and their upstream signaling components in skeletal muscle in conscious (Nor) or propofol-anesthetized (Ane) rats after a 3-h intravenous administration of a balanced AA mixture or saline (Sal). Compared with Sal administration, the AA mixture administration markedly attenuated the decrease in Tcore in rats during anesthesia, whereas Tcore in the Nor-AA group became slightly elevated during treatment. Stimulation of muscle protein synthesis resulting from AA administration was observed in each case, although K(s) remained lower in the Ane-AA group than in the Nor-Sal group. AA administration during anesthesia significantly increased insulin concentrations to levels approximately 6-fold greater than in the Nor-AA group and enhanced phosphorylation of eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) and ribosomal protein S6 protein kinase relative to all other groups and treatments. The alterations in the Ane-AA group were accompanied by hyperphosphorylation of protein kinase B and the mammalian target of rapamycin (mTOR). These results suggest that administration of an AA mixture during anesthesia stimulates muscle protein synthesis via insulin-mTOR-dependent activation of translation initiation regulators caused by markedly elevated insulin and, thereby, facilitates thermal accumulation in the body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号