首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apolipoprotein A-I is a major secretory product of the human hepatoma cell line, Hep G2; approx. 70% of apolipoprotein A-I was separated from the medium as lipid-poor apolipoprotein A-I in the d greater than 1.21 g/ml fraction while 30% was associated with high-density lipoproteins (HDL) of d 1.063-1.21 g/ml. The lipid-poor apolipoprotein A-I contains 50% proapolipoprotein A-I which is similar to the isoform distribution in Hep G2 preformed HDL. We tested the ability of lipid-poor apolipoprotein A-I from Hep G2 to form complexes with dimyristoylphosphatidylcholine (DMPC) vesicles at DMPC/apolipoprotein A-I molar ratios of 100:1 and 300:1. Lipid-poor apolipoprotein A-I was recovered in complex form while at a 300:1 ratio, 68.8 +/- 6.3% was recovered. On electron microscopy, the former complexes were small discs 16.9 nm +/- 4.5 S.D. in diameter while the latter were larger discs 21.4 +/- 4.4 nm diameter. Non-denaturing gradient gel electrophoresis of complexes formed at a 100:1 ratio had a peak in the region corresponding to 9.64 +/- 0.08 nm; these particles possessed two apolipoprotein A-I molecules. At the higher ratio, 300:1, two distinct complexes were identifiable, one which banded in the 9.7 nm region and the other in the 16.9-18.7 nm region. The former particles contained two molecules of apolipoprotein A-I and the latter, three molecules. This study demonstrates that lipid-poor apolipoprotein A-I which is rich in more basic isoforms forms discrete lipoprotein complexes similar to those formed by mature apolipoprotein A-I. It is further suggested that, under the appropriate conditions, precursor or nascent HDL may be assembled extracellularly.  相似文献   

2.
The effect of plasma components on the particle size distribution and chemical composition of human plasma low-density lipoproteins (LDL) during interaction with discoidal complexes of human apolipoprotein A-I and phosphatidylcholine (PC) was investigated. Incubation (37 degrees C, 1 h and 6 h) of LDL with discoidal complexes in the presence of the plasma ultracentrifugal d greater than 1.20 g/ml fraction (activity of lecithin-cholesterol acyltransferase inhibited) produces an increase in LDL apparent particle diameter two-to six-fold greater than that observed in the absence of the plasma d greater than 1.20 g/ml fraction. In incubation mixtures of LDL and discoidal complexes, both in the presence and absence of the plasma d greater than 1.20 g/ml fraction, the extent of LDL apparent particle diameter increase is: (1) approximately three-fold greater at 6 h than at 1 h, and (2) markedly greater for LDL with initially small (22.4-24.0 nm) major components than for LDL with initially large (26.2-26.8 nm) major components. The facilitation factor in the plasma d greater than 1.20 g/ml fraction is not plasma phospholipid transfer protein. Purified human serum albumin produces an apparent particle diameter increase comparable to the plasma d greater than 1.20 g/ml fraction. The discoidal complex-induced increase in LDL apparent particle diameter value by albumin is associated with an increase in phospholipid uptake by LDL and a decreased loss of LDL unesterified cholesterol. In preliminary experiments, high-density lipoproteins (HDL) reverse the apparent particle diameter increase originally induced by discoidal complexes. The presence of HDL (HDL phospholipid/LDL phospholipid molar ratio of 10:1) in the incubation (6 h) mixture of LDL and discoidal complexes also attenuates LDL apparent particle diameter increase. In vivo, the plasma LDL/HDL ratio may be a controlling factor in determining the extent to which phospholipid uptake and the associated change in LDL particle size distribution occurs.  相似文献   

3.
The purpose of this experiment was to characterize the high density lipoproteins (HDL) as a function of hydrated density. HDL was subfractionated on the basis of hydrated density by CsCl density gradient centrifugation of whole serum or the d 1.063-1.25 g/ml HDL fraction isolated from three men and three women. Apolipoprotein A-I and A-II quantitation by radial immunodiffusion showed that the A-I/A-II ratio varied with the lipoprotein hydrated density. The A-I/A-II molar ratio of HDL lipoproteins banding between d 1.106 and 1.150 g/ml was nearly constant at 2.2 +/- 0.2. In the density range 1.151-1.25 g/ml the A-I/A-II ratio increased as the density increased. On the other hand, in the density range between 1.077 and 1.105 the A-I/A-II ratio increased as the density decreased, ranging from 2.8 +/- 0.5 for the d 1.093-1.105 g/ml fraction to 5.6 +/- 1.3 for the d 1.077-1.082 g/ml fraction. The d 1.063-1.076 g/ml fraction and the d 1.077-1.082 g/ml fractions had comparable A-I/A-II ratios. Serum and the d 1.063-1.25 g/ml HDL fraction exhibited similar trends. The cholesterol/(A-I + A-II) ratio decreased as the density increased in all 12 samples (six serum and six HDL) examined. Gradient gel electrophoresis of the density gradient fractions showed that as the density increased from 1.063 to 1.200 g/ml the apparent molecular weight decreased from 3.9 x 10(5) to 1.1 x 10(5). HDL subfractions with the same hydrated densities had comparable molecular weights and A-I/A-II and cholesterol/(A-I + A-II) ratios when isolated from men or women. HDL contains subpopulations that differ in the A-I/A-II molar ratio.-Cheung, M. C., and J. J. Albers. Distribution of cholesterol and apolipoprotein A-I and A-II in human high density lipoprotein subfractions separated by CsCl equilibrium gradient centrifugation: evidence for HDL subpopulations with differing A-I/A-II molar ratios.  相似文献   

4.
Using a cholate-dialysis recombination procedure, complexes of apolipoprotein A-I and synthetic phosphatidylcholine (1-palmitoyl-2-oleoylphosphatidylcholine (POPC) or dioleoylphosphatidylcholine (DOPC] were prepared in mixtures at a relatively high molar ratio of 150:1 phosphatidylcholine/apolipoprotein A-I. Particle size distribution analysis by gradient gel electrophoresis of the recombinant mixtures indicated the presence of a series of discrete complexes that included species migrating at RF values observed for discoidal particles in nascent high-density lipoproteins (HDL) in plasma of lecithin-cholesterol acyltransferase-deficient subjects. One of these complex species, designated complex class 6, formed with either phosphatidylcholine, was isolated by gel filtration and characterized at follows: discoidal shape (mean diameter 20.8 nm (POPC) and 19.0 nm (DOPC]; molar ratio, phosphatidylcholine/apolipoprotein A-I, 155:1 (POPC) and 130:1 (DOPC); and both containing 4 molecules of apolipoprotein A-I per particle. Incubation of class 6 complexes with lecithin-cholesterol acyltransferase (EC 2.3.1.43) and a source of unesterified cholesterol (low-density lipoprotein (LDL] was shown by electron microscopy to result in a progressive transformation of the discoidal particles (0 h) to deformable (2.5 h) and to spherical particles (24 h). The spherical particles (diameter 13.6 nm (POPC) and 12.5 nm (DOPC) exhibit sizes at the upper boundary of the interval defining the human plasma (HDL2b)gge (12.9-9.8 nm). The spherical particles contain a cholesteryl ester core that reaches a limiting molar ratio of approx. 50-55:1 cholesteryl ester/apolipoprotein A-I. The deformable particles assume a rectangular shape under negative staining and, relative to the 24-h spherical product, are enriched in phosphatidylcholine. Chemical crosslinking (by dimethyl suberimidate) of the isolated transformation products shows the 24-h spherical particle to contain predominantly 4 apolipoprotein A-I molecules; products produced after intermediate periods of time appear to contain species with 3 and 4 apolipoproteins per particle. Our in vitro studies indicate a potential pathway in the origins of large, apolipoprotein A-I-containing plasma HDL particles. The deformable species observed during transformation were similar in size and shape to particles observed in interstitial fluid.  相似文献   

5.
E A Bonomo  J B Swaney 《Biochemistry》1990,29(21):5094-5103
Plasma high density lipoproteins (HDL) are synthesized in intestinal mucosal cells and hepatocytes and are secreted into the blood. Factors influencing the structure and function of these HDL, such as lipid and protein composition, are poorly understood. It appears, however, that intracellular, discoidal HDL are enriched, relative to plasma HDL, in phosphatidylethanolamine (PE), a phospholipid known to generate unusual, nonbilayer structures of putative physiological significance. Although incubation of dimyristoylphosphatidylcholine (DMPC) with apolipoprotein A-I at the gel-liquid crystalline phase transition temperature results in the spontaneous formation of lipid-protein complexes, the presence of proportionately small amounts of PE prevents the formation of such complexes, suggesting that PE profoundly alters the phase properties of the phospholipid bilayers. However, by using a detergent-mediated method for the formation of PE-rich model nascent HDL from phospholipids and apolipoprotein A-I, lipid-protein complexes containing as much as 75% DLPE could be formed, thus demonstrating that the presence of PE causes a kinetic, rather than a thermodynamic, barrier to spontaneous complex formation. The products contained a DLPE:DMPC molar ratio similar to that of the initial incubation mixture; however, as the mole percentage of DLPE increased, the products became less heterogeneous, the buoyant density of the products increased, and the Stokes diameter of the products decreased. Similar results were obtained when dimyristoylphosphatidylethanolamine (DMPE) and dipalmitoylphosphatidylethanolamine (DPPE) were employed in lieu of DLPE. Electron microscopy of complexes containing DLPE and DMPC at a 1:1 molar ratio showed that these particles possessed a discoidal, bilayer morphology similar to that seen with complexes containing only phosphatidylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The concentration of cholesterol, apolipoproteins A-I, B, and E has been determined in lymphedema fluid from nine patients with chronic primary lymphedema. The concentrations were: 38.14 +/- 21.06 mg/dl for cholesterol, 15.6 +/- 6.17 mg/dl for apolipoprotein A-I, 7.5 +/- 2.8 mg/dl for apolipoprotein B, and 1.87 +/- 0.50 mg/dl for apolipoprotein E. These values represent 23%, 12%, 6%, and 38% of plasma concentrations, respectively. The ratio of esterified to unesterified cholesterol in lymphedema fluid was 1.46 +/- 0.45. Lipoproteins of lymphedema fluid were fractionated according to particle size by gradient gel electrophoresis and by exclusion chromatography. Gradient gel electrophoresis showed that a majority of high density lipoproteins (HDL) of lymphedema fluid were larger than ferritin (mol wt 440,000) and smaller than low density lipoproteins (LDL); several discrete subpopulations could be seen with the large HDL region. Fractionation by exclusion chromatography showed that more than 25% of apolipoprotein A-I and all of apolipoprotein E in lymphedema fluid was associated with particles larger than plasma HDL2. Apolipoprotein A-I also eluted in fractions that contained particles the size of or smaller than albumin. Isolation of lipoproteins by sequential ultracentrifugation showed that less than 25% of lymphedema fluid cholesterol was associated with apolipoprotein B. The majority of apolipoprotein A-containing lipoproteins of lymphedema fluid were less dense than those in plasma. Ultracentrifugally separated fractions of lipoproteins were examined by electron microscopy. The fraction d less than 1.019 g/ml contained little material, while fraction d 1.019-1.063 g/ml contained two types of particles: round particles 17-26 nm in diameter and square-packing particles 13-17 nm on a side. Fractions d 1.063-1.085 g/ml had extensive arrays of square-packing particles 13-14 nm in size. Fractions d 1.085-1.11 g/ml and fractions d 1.11-1.21 g/ml contained round HDL, 12-13 nm diameter and 10 nm diameter, respectively. Discoidal particles were observed infrequently.  相似文献   

7.
Zhu HL  Atkinson D 《Biochemistry》2007,46(6):1624-1634
Human apolipoprotein A-I (apoA-I) is the principle apolipoprotein of high-density lipoproteins that are critically involved in reverse cholesterol transport. The intrinsically flexibility of apoA-I has hindered studies of the structural and functional details of the protein. Our strategy is to study peptide models representing different regions of apoA-I. Our previous report on [1-44]apoA-I demonstrated that this N-terminal region is unstructured and folds into approximately 60% alpha-helix with a moderate lipid binding affinity. We now present details of the conformation and lipid interaction of a C-terminal 46-residue peptide, [198-243]apoA-I, encompassing putative helix repeats 10 and 9 and the second half of repeat 8 from the C-terminus of apoA-I. Far-ultraviolet circular dichroism spectra show that [198-243]apoA-I is also unfolded in aqueous solution. However, self-association induces approximately 50% alpha-helix in the peptide. The self-associated peptide exists mainly as a tetramer, as determined by native electrophoresis, cross-linking with glutaraldehyde, and unfolding data from circular dichroism (CD) and differential scanning calorimetry (DSC). In the presence of a number of lipid-mimicking detergents, above their CMC, approximately 60% alpha-helix was induced in the peptide. In contrast, SDS, an anionic lipid-mimicking detergent, induced helical folding in the peptide at a concentration of approximately 0.003% (approximately 100 microM), approximately 70-fold below its typical CMC (0.17-0.23% or 6-8 mM). Both monomeric and tetrameric peptide can solubilize dimyristoylphosphatidylcholine (DMPC) liposomes and fold into approximately 60% alpha-helix. Fractionation by density gradient ultracentrifugation and visualization by negative staining electromicroscopy demonstrated that the peptide binds to DMPC with a high affinity to form at least two sizes of relatively homogeneous discoidal HDL-like particles depending on the initial lipid:peptide ratio. The characteristics (lipid:peptide weight ratio, diameter, and density) of both complexes are similar to those of plasma A-I/DMPC complexes formed under similar conditions: small discoidal complexes (approximately 3:1 weight ratio, approximately 110 A, and approximately 1.10 g/cm3) formed at an initial 1:1 weight ratio and larger discoidal complexes (approximately 4.6:1 weight ratio, approximately 165 A, and approximately 1.085 g/cm3) formed at initial 4:1 weight ratio. The cross-linking data for the peptide on the complexes of two sizes is consistent with the calculated peptide numbers per particle. Compared to the approximately 100 A disk-like complex formed by the N-terminal peptide in which helical structure was insufficient to cover the disk edge by a single belt, the compositions of these two types of complexes formed by the C-terminal peptide are more consistent with a "double belt" model, similar to that proposed for full-length apoA-I. Thus, our data provide direct evidence that this C-terminal region of apoA-I is responsible for the self-association of apoA-I, and this C-terminal peptide model can mimic the interaction with the phospholipid of plasma apoA-I to form two sizes of homogeneous discoidal complexes and thus may be responsible for apoA-I function in the formation and maintenance of HDL subspecies in plasma.  相似文献   

8.
Conversion of model discoidal complexes of egg yolk phosphatidylcholine and apolipoprotein A-I, upon interaction with a source of lecithin:cholesterol acyltransferase (plasma d greater than or equal to 1.21 g/ml fraction or partially purified enzyme) and with different sources of substrate unesterified cholesterol (LDL, VLDL or cholesterol incorporated into complexes), was investigated by gradient gel electrophoresis, gel filtration, equilibrium density gradient ultracentrifugation, electron microscopy and chemical analysis. When the incubation mixture contained an inhibitor of lecithin:cholesterol acyltransferase, discoidal complexes with mean long dimension of approximately 10.5 +/- 1.9 nm were converted (within 1 h) predominantly to small round particles and were partially depleted of their phospholipid content. Upon electrophoresis the small particles showed peak maxima within the migration intervals of the human plasma ( HDL3b ) gge and ( HDL3c ) gge subpopulations with associated particle size ranges of 7.8-8.2 and 7.2-7.8 nm, respectively. Within 1 h, in the presence of activated enzyme, the complexes were again converted in major part to the small particles. However, further incubation resulted in an apparent single-step conversion to a larger major product with peak maximum occurring within the migration intervals of the ( HDL2a ) gge and the ( HDL3a ) gge subpopulations (particle size ranges 8.8-9.8 and 8.2-8.8 nm, respectively). Formation of an apolar core was indicated by detection of cholesteryl esters in the conversion product. The form in which the substrate unesterified cholesterol was introduced did not markedly influence the size properties of the final conversion product. With VLDL as source of substrate, considerable incorporation of triacylglycerol occurred in company with a lower level of cholesteryl esters, suggesting transfer of these lipids during formation of the apolar core. Incubation of complexes with a partially purified (3000-fold) preparation of lecithin:cholesterol acyltransferase yielded a product similar in properties to that when the d greater than or equal to 1.21 g/ml fraction was used. Our model discoidal complexes and their conversion products exhibit properties very similar to those of potential precursors to HDL as well as of mature HDL particles. Their further investigation shows promise of providing detailed insight into the possible origin and heterogeneity of human plasma HDL.  相似文献   

9.
Confluent monolayers of the human hepatoblastoma-derived cell line, Hep G2, were incubated in serum-free medium. Conditioned medium was ultracentrifugally separated into d less than 1.063 g/ml and d 1.063-1.20 g/ml fractions since very little VLDL was observed. The d less than 1.063 g/ml fraction was examined by electron microscopy; it contained particles of 24.5 +/- 2.3 nm diameter, similar in size to plasma LDL; a similar size was demonstrated by nondenaturing gradient gel electrophoresis. These particles possessed apoB-100 only. The d less than 1.063 g/ml fraction had a lipid composition unlike that of plasma LDL; unesterified cholesterol was elevated, there was relatively little cholesteryl ester, and triglyceride was the major core lipid. The d 1.063-1.20 g/ml fraction was heterogeneous in size and morphology. Electron microscopy revealed discoidal particles (14.9 +/- 3.2 nm long axis and 4.5 +/- 0.2 nm short axis) as well as small spherical ones (7.6 +/- 1.4 nm diameter). Nondenaturing gradient gel electrophoresis consistently showed the presence of peaks at 13.4 11.9, 9.7, and 7.4 nm. The latter peak was conspicuous and probably corresponded to the small spherical structures seen by electron microscopy. Unlike plasma HDL, Hep G2 d 1.063-1.20 g/ml lipoproteins contained little or no stainable material in the (HDL3a)gge region by gradient gel electrophoresis. Hep G2 d 1.063-1.20 g/ml lipoproteins differed significantly in composition from their plasma counterparts; unesterified cholesterol and phospholipid were elevated and the mole ratio of unesterified cholesterol to phospholipid was 0.8. Cholesteryl ester content was extremely low. ApoA-I was the major apolipoprotein, while apoE was the next most abundant protein; small quantities of apoA-II and apoCs were also present. Immunoblot analysis of the d 1.063-1.20 g/ml fraction after gradient gel electrophoresis showed that apoE was localized in the larger pore region of the gel (apparent diameter greater than 12.2 nm); the apoA-I distribution in this fraction was very broad (7.1-12.2 nm), and included a distinct band at 7.4 nm. Immunoblotting after gradient gel electrophoresis of concentrated medium revealed that a significant fraction of apoA-I in the uncentrifuged medium was in a lipid-poor or lipid-free form. This cell line may be a useful model for investigating the metabolism of newly formed HDL.  相似文献   

10.
The high-density lipoproteins (HDL) from canine, bovine, and chicken plasma have been shown to contain almost exclusively the apolipoprotein A-I, while human HDL contains a second major component, the apolipoprotein A-II. Chemical cross-linking demonstrated that dog and chicken HDL contain three apolipoprotein A-I molecules per particle, while bovine HDL contain approximately six apolipoprotein A-I molecules per particle. By this method, the amount of protein in human HDL2 (d = 1.063-1.12) was found to be approximately 120 000 g/mol, while for human HDL3 (d = 1.12-1.21) a value of approximately 90 000 g/mol was obtained, suggesting that the protein complement of HDL2 and HDL3 differ by only one apolipoprotein A-I chain per particle. Comparison of the apolipoprotein A-I from various animal species indicated that the canine and human apolipoprotein A-I proteins were the most similar by fluorescence, self-association properties, and immunoreactivity. Cross-linking of chicken and bovine apolipoprotein A-I yielded patterns distinctly different from that obtained with the human or canine counterpart. It is concluded that the quaternary structure of the various species of HDL is not directly correlated with the degree of self-association found for the protein constituents.  相似文献   

11.
Complexes formed between apolipoprotein A-I (apo A-I) and dimyristoylphosphatidylcholine (DMPC) or egg phosphatidylcholine have been studied by high-field 1H NMR, nondenaturing gradient gel electrophoresis, electron microscopy, and gel filtration chromatography. Emphasis has been placed on an analysis of the particle size distribution within the micellar complexes produced at lipid/protein molar ratios of 40-700. As determined by electron microscopy and gel filtration of DMPC/apo A-I complexes, the size of the discoidal micelles produced appears to increase uniformly with an increasing lipid/protein ratio. By electron microscopy, the diameters of isolated DMPC/apo A-I discoidal micelles range from approximately 89 A at a 40 molar ratio to 205 A at a 700 molar ratio. Analysis of the micellar complexes by 1H NMR shows that concomitant with the increase in size is the progressive downfield shift of the choline N-methyl proton resonance of the complex which is observed from 3.245 to 3.267 ppm over the above molar ratio range. The relationship between chemical shift and micelle size is most simply interpreted as arising from a weighted averaging of two lipid environments--lipid-lipid and lipid-protein. In contrast to the above interpretation of the gel filtration experiments on DMPC/apo A-I complexes, nondenaturing gradient gel electrophoresis analysis of particle size distribution leads to an unexpected observation: as the DMPC/apo A-I ratio increases, discrete complexes of increasing size are formed in an apparently quantized manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.  相似文献   

13.
Apolipoprotein A-IV was isolated from the d less than 1.21 g/ml fraction of rat serum by gel filtration followed by heparin-Sepharose affinity chromatography; this method also facilitated the preparation of apolipoprotein A-I and apolipoprotein E. The apolipoprotein A-IV preparation was characterized by SDS-gel electrophoresis, isoelectric focusing, amino acid analysis and immunodiffusion. The lipid-binding properties of this protein were studied. Apolipoprotein A-IV associated with dimyristoylphosphatidylcholine (DMPC) to form recombinants which contained two molecules of apolipoprotein A-IV and had a lipid/protein molar ratio of 110. The density of the DMPC/apolipoprotein A-IV particles was determined to be 1.08 g/ml and the particles were visualized by electron microscopy as discs which were 5.8 nm thick and 18.0 nm in diameter. The stability of the DMPC/apolipoprotein A-IV recombinants, as determined by resistance to denaturation, was comparable to the stability of DMPC/apolipoprotein A-I complexes. However, by competition studies it was found that apolipoprotein A-I competed for the binding to DMPC more effectively than did apolipoprotein A-IV. It is concluded that, while rat apolipoprotein A-IV resembles other apolipoproteins in its lipid-binding characteristics, it may be displaced from lipid complexes by apolipoprotein A-I.  相似文献   

14.
Two populations of apolipoprotein (apo) A-I-containing lipoprotein particles are found in high density lipoproteins (HDL): those that also contain apo A-II[Lp(A-I w A-II)] and those that do not [Lp(A-I w/o A-II)]. Lp(A-I w/o A-II) comprised two distinct particle sizes with mean hydrates Stokes diameter of 10.5 nm for Lp(A-I w/o A-II)1 and 8.5 nm for Lp(A-I w/o A-II)2. To study the effect of ultracentrifugation on these particles, Lp(A-I w/o A-II) and Lp(A-I w A-II) were isolated from the plasma and the ultracentrifugal HDL (d 1.063-1.21 g/ml fractions) of five normolipidemic and three hyperlipidemic subjects. The size subpopulations of these particles were studied by gradient polyacrylamide gel electrophoresis. Several consistent differences were detected between plasma Lp(A-I w/o A-II) and HDL Lp(A-I w/o A-II). First, in all subjects, the relative proportion of Lp(A-I w/o A-II)1 to Lp(A-I w/o A-II)2 isolated from HDL was reduced. Second, particles larger than Lp(A-I w/o A-II)1 and smaller than Lp(A-I w/o A-II)2 were considerably reduced in HDL. Third, a distinct population of particles with approximate Stokes diameter of 7.1 nm usually absent in plasma was detected in HDL Lp(A-I w/o A-II). Little difference in subpopulation distribution was detected between Lp(A-I w A-II) isolated from the plasma and HDL of the same subject. When plasma Lp(A-I w/o A-II) and Lp(A-I w A-II) were centrifuged, 14% and 4% of A-I were, respectively, recovered in the D greater than 1.21 g/ml fraction. Only 2% A-II was found in this density fraction. These studies show that the Lp(A-I w/o A-II) particles are less stable than Lp(A-I w A-II) particles upon ultracentrifugation. Among the various Lp(A-I w/o A-II) subpopulations, particles larger than Lp(A-I w/o A-II)1 and smaller than Lp(A-I w/o A-II)2 are most labile.  相似文献   

15.
High density lipoproteins (HDL) from 14 patients with obstructive jaundice were examined by gradient gel electrophoresis to determine the effect of obstruction on particle size distribution. HDL from 7 of these patients were fractionated by gel permeation chromatography and further characterized by electron microscopy, SDS gel electrophoresis, apolipoprotein A-I and apolipoprotein A-II immunoturbidimetry, and analysis of chemical composition. In addition, lecithin:cholesterol acyltransferase (LCAT) activity was measured and correlated with plasma apolipoprotein A-I concentration and particle size distribution. HDL were abnormal in all patients regardless of severity, cause, or duration of obstruction. The major HDL subfraction in normal subjects, HDL3a (radius 4.1-4.3 nm) was either absent or considerably diminished, and HDL2b (radius 5.3 nm) was also frequently absent. Very small particles comparable in size to normal HDL3c (radius 3.8 nm) were prominent. In patients with a bilirubin concentration greater than 250 mumol/l, normal HDL had totally disappeared and were replaced by large discoidal particles of radius 8.5 nm and small spherical particles of radius 3.6-3.7 nm. Both populations of particles were markedly depleted of cholesteryl ester and enriched in free cholesterol and phospholipid. The discoidal particles were rich in apolipoproteins E, A-I, A-II, and C, while the small spherical particles contained predominantly apolipoprotein A-I. LCAT activity was diminished in all subjects to 8-54% of normal, and was strongly positively correlated (r = 0.91 P less than 0.05) with plasma apolipoprotein A-I levels.  相似文献   

16.
Complexes of egg yolk phosphatidylcholine and apolipoprotein A-I were prepared by a detergent (sodium cholate)-dialysis method and characterized by gradient gel electrophoresis, gel filtration, electron microscopy and chemical analysis. Multicomponent electrophoretic patterns were obtained indicating formation of at least eight classes of discoidal complexes. The relative contribution of the different classes to the electrophoretic pattern was a function of the molar ratio of phosphatidylcholine:apolipoprotein A-I in the interaction mixture. Molar ratios of phosphatidylcholine:apolipoprotein A-I in isolated complexes were strongly and positively correlated with disc diameter obtained by electron microscopy. Incorporation of unesterified cholesterol into phosphatidylcholine/apolipoprotein A-I interaction mixtures also resulted in formation of unique complexes but with considerably different particle size distributions relative to those observed in the absence of cholesterol. One common consequence of cholesterol incorporation into interaction mixtures of 87.5:1 and 150:1 molar ratio of phosphatidylcholine:apolipoprotein A-I was the disappearance of a major complex class with diameter of 10.8 nm and the appearance of a major component with diameter of approximately 8.8 nm. Electrophoretic patterns of cholesterol-containing complexes showed a strong similarity to patterns recently published for high density lipoproteins from plasma of lecithin:cholesterol acyltransferase-deficient subjects, suggesting that the complexes formed in vitro by the detergent-dialysis method may serve as appropriate models for investigation of the origins of the HDL particle size distribution.  相似文献   

17.
To obtain information on testosterone effects on plasma apolipoproteins, the amount and composition of apo-proteins in lipoproteins of 5 density classes (VLDL, LDL, HDL2b, HDL2a, HDL3) was estimated in 3 groups of adult male rats: normal control rats, castrated rats, and rats injected daily with testosterone propionate (200 micrograms/day) for one week after castration. Apoproteins were separated by sodium dodecylsulfate polyacrylamide gel electrophoresis after ultracentrifugation of plasma, and determined colorimetrically. Total amount of apoprotein carried in LDL (d = 1.006-1.063 g/ml) and HDL2b (d = 1.063-1.100 g/ml) was higher in castrated than in control rats, but was not significantly different from controls in testosterone substituted rats. LDL apo B and HDL2b apo E were higher in castrated than in normal rats; control levels were observed in androgen substituted rats. Except for a greatly increased relative amount of HDL2b apo E, and a decreased percentage of HDL2b apo A-I in castrated rats, there were no significant alterations by castration of apoprotein composition of the lipoproteins. The results raise the question whether the androgenic state might affect processes related to the effects of plasma LDL apo B and HDL apo E.  相似文献   

18.
Incubation (24 h, 37 degrees C) of discoidal complexes of phosphatidylcholine and apolipoprotein A-I (molar ratio 95 +/- 10 egg yolk phosphatidylcholine-apolipoprotein A-I; 10.5 X 4.0 nm, long X short dimension; designated, class 3 complexes) with the ultracentrifugal d greater than 1.21 g/ml fraction transformed the discoidal complexes to a small product with apparent mean hydrated and nonhydrated diameter of 7.8 and 6.6 nm, respectively. Formation of the small product was associated with marked reduction in phosphatidylcholine-apolipoprotein AI molar ratio of the complexes (on average from 95:1 to 45:1). Phospholipase A2 activity of lecithin:cholesterol acyltransferase participated in the depletion process, as evidenced by production of unesterified fatty acids. In the presence of the d greater than 1.21 g/ml fraction or partially purified lecithin:cholesterol acyltransferase and a source of unesterified cholesterol, the small product could be transformed to a core-containing (cholesteryl ester) round product with a hydrated and nonhydrated diameter of 8.6 and 7.5 nm, respectively. By means of cross-linking with dimethylsuberimidate, the protein moiety of the small product was shown to contain primarily two apolipoprotein A-I molecules per particle, while the large product contained three apolipoprotein A-I molecules per particle. The increase in number of apolipoprotein A-I molecules per particle during transformation of the small to the large product appeared to result from fusion of the small particles during core build-up and release of excess apolipoprotein A-I from the fusion product. The results obtained with the model complexes were consistent for the most part with recent observations (Chen, C., Applegate, K., King, W.C., Glomset, J.A., Norum, K.R. and Gjone, E. (1984) J. Lipid Res. 25, 269-282) on the transformation, by lecithin:cholesterol acyltransferase, of the small spherical high-density lipoproteins of patients with familial lecithin:cholesterol acyltransferase deficiency.  相似文献   

19.
Role of apolipoproteins in cellular cholesterol efflux   总被引:1,自引:0,他引:1  
The effects of serum apolipoproteins, particle size and concentration on the effectiveness of phosphatidylcholine (PC)-containing acceptor particles in causing release of cholesterol from cells growing in culture have been investigated. The acceptor particles were prepared by detergent-dialysis procedures and were either egg PC small unilamellar vesicles (SUV) or discoidal complexes of egg PC with apoproteins from human high-density lipoprotein (HDL). Gel filtration chromatography was employed to isolate particles of defined composition and size. The half-times (t 1/2) for the unidirectional efflux of cholesterol from cells prelabeled with [3H]cholesterol were measured as a function of acceptor PC concentration in the extracellular medium. HDL apolipoprotein-egg PC discoidal complexes at 100 micrograms PC/ml gave the following t 1/2 values when incubated with rat Fu5AH hepatoma, human HepG2 hepatoma, human GM3468 skin fibroblast, L-cell and mouse J774 macrophage-tumor cells: 11 +/- 2, 22 +/- 5, 84 +/- 18, 17 +/- 2 and 32 +/- 6 h, respectively. Equivalent experiments using purified apolipoprotein A-I or the total apolipoprotein C fraction to form the egg PC complexes showed that the t 1/2 values for the hepatoma cells were unaltered. However, with the fibroblasts, L-cells and J774 macrophages, the apolipoprotein C complexes gave significantly longer t 1/2 than complexes of egg PC with either apolipoprotein A-I or HDL apolipoprotein which gave the same t 1/2. An analysis based on the theory of fast coagulation of colloid particles to describe collisions between desorbed cholesterol molecules and acceptor particles predicts that the dependence of t 1/2 for cholesterol efflux from a given cell to different acceptors should be normalized when the extracellular level of acceptors is expressed in terms of the product of the radius of the particle times the number concentration of acceptor particles. The decrease in t 1/2 for cholesterol efflux from fibroblasts when the egg PC acceptor was changed from an SUV to an apolipoprotein HDL discoidal complex is consistent with the above concepts. The primary effect of the apolipoproteins in promoting cellular cholesterol efflux seems to be the solubilization of PC so that the PC is present in the extracellular medium as many small particles.  相似文献   

20.
Procedures for the isolation of two lipoprotein fractions from plasma high-density lipoproteins (HDL), characterized by apolipoprotein A-I and apolipoprotein A-I together with apolipoprotein A-II, have been elaborated. Apolipoprotein A-I was identified as the protein moiety of one of these fractions (lipoprotein A-I) with polyacrylamide gel electrophoresis (at basic and acidic pH, as well as in the presence of sodium dodecyl sulphate), immuno-double-diffusion, and amino acid analysis. Apolipoproteins A-I and A-II were identified as the protein moiety of the other fraction (lipoprotein A) with polyacrylamide gel electrophoresis (basic and acidic pH) and immuno-double-diffusion. Lipoprotein A-I consisted of spherical particles with a diameter similar to that of HDL as judged from negative strains in the transmission electron microscope. The diameter was estimated to be 8.7 nm from gel chromatography. Lipoprotein A-I migrated in the HDL position on crossed immunoelectrophoresis. On iso-electric focusing lipoprotein A-I appeared as multiple bands in the pH range 5.05-5.55. Lipoprotein A-I had the density of an HDL-2 fraction (rho: 1.063-1.105). Lipoprotein A consisted of spherical particles with a diameter similar to that of HDL, as judged from negative strains in the transmission electron microscope. The diameter was estimated to be 7.9 nm from gel chromatography. The molar ratio between the A-I and A-II polypeptides was estimated to 1.3:1 with electroimmunoassay and calculations from the amino acid compositions. Lipoprotein A migrated in the position of HDL on crossed immuno-electrophoresis. On iso-electric focusing lipoprotein A appeared as one major and two minor bands in the pH range 5.10-5.30. Lipoprotein A had the hydrated density of an HDL-2 fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号