首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence and roles of cGMP were investigated in aleurone layers and protoplasts isolated from barley (cv Himalaya) grain. Levels of cGMP in freshly isolated barley aleurone layers ranged from 0.065 to 0.08 pmol/g fresh weight of tissue, and cGMP levels increased transiently after incubation in gibberellic acid (GA). Abscisic acid (ABA) did not increase cGMP levels in aleurone layers. LY 83583 (LY), an inhibitor of guanylyl cyclase, prevented the GA-induced increase in cGMP and inhibited GA-induced [alpha]-amylase synthesis and secretion. The inhibitory effects of LY could be overcome by membrane-permeant analogs of cGMP. LY also prevented GA-induced accumulation of [alpha]-amylase and GAMYB mRNAs. cGMP alone was not sufficient to induce the accumulation of [alpha]-amylase or GAMYB mRNA. LY had a less dramatic effect on the accumulation of mRNAs encoding the ABA-responsive gene Rab21. We conclude that cGMP plays an important role in GA, but not ABA, signaling in the barley aleurone cell.  相似文献   

2.
3.
Optically active forms of abscisic acid (ABA) and their oxygenated metabolites were tested for their biological activity by examining the effects of the compounds on the reversal of gibberellic acid-induced [alpha]-amylase activity in barley (Hordeum vulgare cv Himalaya) aleurone layers and the induction of gene expression in barley aleurone protoplasts transformed with a chimeric construct containing the promoter region of an albumin storage protein gene. Promotion of the albumin storage protein gene response had a more strict stereochemical requirement for elicitation of an ABA response than inhibition of [alpha]-amylase gene expression. The naturally occurring stereoisomer of ABA and its metabolites were more effective at eliciting an ABA-like response. ABA showed the highest activity, followed by 7[prime]-hydroxyABA, with phaseic acid being the least active. Racemic 8[prime]-hydroxy-2[prime],3[prime]-dihydroABA, an analog of 8[prime]-hydroxyABA, was inactive, whereas racemic 2[prime],3[prime]-dihydroABA was as effective as ABA. The differences in response of the same tissue to the ABA enantiomers lead us to conclude that there exists more than one type of ABA receptor and/or multiple signal transduction pathways in barley aleurone tissue.  相似文献   

4.
Modulation of Calmodulin mRNA and Protein Levels in Barley Aleurone   总被引:11,自引:0,他引:11       下载免费PDF全文
Changes in calmodulin (CaM) mRNA and protein were investigated in aleurone layers of barley (Hordeum vulgare L. cv Himalaya) incubated in the presence and absence of calcium, gibberellic acid (GA3), and abscisic acid (ABA). CaM mRNA levels increased rapidly and transiently following incubation of aleurone layers in H2O, CaCl2, or GA3. The increase in CaM mRNA was prevented by ABA. This increase in CaM mRNA was brought about by physical stimulation during removal of the starchy endosperm from the aleurone layer. CaM protein levels did not increase in response to physical stimulation. Only incubation in GA3 plus CaCl2 brought about a rapid increase in CaM protein levels in the aleurone cell. ABA reduced the level of CaM protein below that found at the beginning of the incubation period. The rise in CaM protein preceded increases in the synthesis and secretion of [alpha]-amylase. Immunocytochemistry with monoclonal antibodies to carrot and mung bean CaM was used to localize CaM in aleurone protoplasts. Monoclonal antibodies to tubulin and polyclonal antibodies to tonoplast intrinsic protein and malate synthase were used as controls. CaM was localized to the nucleus, the vacuolar membrane, and the cytosol, but was not associated with microtubules.  相似文献   

5.
The barley aleurone layer is a terminally differentiated secretory tissue whose activity is hormonally controlled. The plant hormone gibberellic acid (GA) stimulates the secretion of hydrolytic enzymes and triggers the onset of programmed cell death (PCD). Abscisic acid (ABA) antagonizes the effects of GA and inhibits enzyme secretion and PCD. Reactive oxygen species (ROS) are key players in many types of PCD, and data presented here implicate ROS in hormonally regulated death of barley aleurone cells. Incubation of aleurone layers or protoplasts in H(2)O(2)-containing media results in death of GA-treated but not ABA-treated aleurone cells. Cells that are programmed to die are therefore less able to withstand ROS than cells that are programmed to remain alive. Illumination of barley aleurone protoplasts with blue or UV-A light results in a rapid increase in intracellular H(2)O(2) production. GA-treated protoplasts die rapidly in response to this increase in intracellular H(2)O(2) production, but ABA-treated protoplasts do not die. The rate of light-induced death could be slowed by antioxidants, and incubating protoplasts in the dark with the antioxidant butylated hydroxy toluene reduces the rate of hormonally induced death. Taken together, these data demonstrate that GA-treated aleurone protoplasts are less able than ABA-treated protoplasts to tolerate internally generated or exogenously applied H(2)O(2), and strongly suggest that ROS are components of the hormonally regulated cell death pathway in barley aleurone cells.  相似文献   

6.
Many plant ion channels have been identified, but little is known about how these transporters are regulated. We have investigated the regulation of a slow vacuolar (SV) ion channel in the tonoplast of barley aleurone storage protein vacuoles (SPV) using the patch-clamp technique. SPV were isolated from barley aleurone protoplasts incubated with CaCl2 in the presence or absence of gibberellic acid (GA) or abscisic acid (ABA). A slowly activating, voltage-dependent ion channel was identified in the SPV membrane. Mean channel conductance was 26 pS when 100 mM KCl was on both sides of the membrane, and reversal potential measurements indicated that most of the current was carried by K+. Treatment of protoplasts with GA3 increased whole-vacuole current density compared to SPV isolated from ABA- or CaCl2-treated cells. The opening of the SV channel was sensitive to cytosolic free Ca2+ concentration ([Ca2+]i) between 600 nM and 100 [mu]M, with higher [Ca2+]i resulting in a greater probability of channel opening. SV channel activity was reduced greater than 90% by the calmodulin (CaM) inhibitors W7 and trifluoperazine, suggesting that Ca2+ activates endogenous CaM tightly associated with the membrane. Exogenous CaM partially reversed the inhibitory effects of W7 on SV channel opening. CaM also sensitized the SV channel to Ca2+. In the presence of ~3.5 [mu]M CaM, specific current increased by approximately threefold at 2.5 [mu]M Ca2+ and by more than 13-fold at 10 [mu]M Ca2+. Since [Ca2+]i and the level of CaM increase in barley aleurone cells following exposure to GA, we suggest that Ca2+ and CaM act as signal transduction elements mediating hormone-induced changes in ion channel activity.  相似文献   

7.
Skadsen RW 《Plant physiology》1993,102(1):195-203
The physiological and molecular bases for contrasting [alpha]-amylase phenotypes were examined in germinating seeds of two barley (Hordeum vulgare L.) cultivars, Morex and Steptoe. Morex is a high-quality malting barley that develops high [alpha]-amylase activity soon after germination. Steptoe is a feed barley that develops only low [alpha]-amylase activity levels during this period. The expression of all high- and low-isoelectric point (pl) [alpha]-amylase isozymes is reduced in Steptoe. The amount of [alpha]-amylase mRNA per gram of seedling tissue is correspondingly lower in Steptoe. Southern blot analysis revealed that the cultivars have the same copy number and organization for most high- and low-pl genes. Steptoe seedlings or embryoless half-seeds produce little [alpha]-amylase in response to exogenous applications of gibberellic acid (GA3) compared with Morex. However, when isolated aleurones of both cultivars are treated with GA3, they produce similar amounts of high- and low-pl [alpha]-amylase RNAs. This suggests that a factor in the starchy endosperm is responsible for lowered [alpha]-amylase response in Steptoe. The factor is probably not abscisic acid (ABA), since the two cultivars have similar concentrations of ABA during germination.  相似文献   

8.
Summary A procedure has been developed to isolate protoplasts from mature aleurone layers of the malting variety Alexis and four other barley genotypes. It combines induction of endogenous cell wall degrading enzymes together with use of Onuzuka cellulase R 10 and driselase and results in better yields for two varieties than can be obtained with the huskless variety Himalaya. The viability of the freshly isolated protoplasts is greater than 90% and in spite of the presence of gibberellic acid during isolation procedures, most of the protoplasts are at an early developmental stage, as judged by ultrastructure. Gibberellic acid-induced changes in protoplast structure resemble those reported for Himalaya protoplasts. The protoplasts secrete both -amylase (EC 3.2.1.1) and (1-3, 1-4)--glucanase (EC 3.2.1.73) into the surrounding medium. Transfection studies using a low pI -amylase promoter to direct chloramphenicol acetyltransferase expression in aleurone protoplasts from Alexis and Himalaya revealed significant differences in their hormone responsiveness. In the absence of hormones, low levels of expression of the reporter enzyme were obtained in Alexis protoplasts, while high levels were characteristic for Himalaya protoplasts. An 8-fold increase in the expression of the reporter gene was induced by supplying the transfected Alexis protoplasts with gibberellin A3, whereas expression in Himalaya protoplasts remained unchanged. When Himalaya protoplasts were isolated from aleurone layers that had not been incubated with GA3 during the initial stages of protoplasting (the classical procedure), the hormone response of the promoter was 2.5-fold. It is thus possible to optimize the aleurone protoplast isolation procedure for different barley genotypes and mutants of interest in studies of transgenic gene expression and hormone induced secretion of proteins from this unique secretory plant tissue.Abbreviations ABA abscisic acid - APIM aleurone protoplast isolation medium - CAT chloramphenicol acetyltransferase - EDTA ethylenediamine tetraacetic acid - ER endoplasmic reticulum - GA3 gibberellin A3 - IgG immunoglobulin G - MES 2-(N-morpholino)-ethanesulfonic acid - PAGE polyacrylamide gel electrophoresis - PEG polyethylene glycol - pI isoelectric point - PIPES piperazine N,N-bis-(diethanesulfonic acid) - SDS sodium dodecyl sulfate  相似文献   

9.
Barley aleurone cells undergo programmed cell death (PCD) when exposed to gibberellic acid (GA), but incubation in abscisic acid (ABA) prevent PCD. We tested the hypothesis that PCD in aleurone cells occurs by apoptosis, and show that the hallmark of apoptosis, namely DNA cleavage into 180 bp fragments, plasma membrane blebbing, and the formation of apoptotic bodies do not occur when aleurone cells die. We show that endogenous barley aleurone nucleases and nucleases present in enzymes used for protoplast preparation degrade aleurone DNA and that DNA degradation by these nucleases is rapid and can result in the formation of 180 bp DNA ladders. Methods are described that prevent DNA degradation during isolation from aleurone layers or protoplasts. Barley aleurone cells contain three nucleases whose activities are regulated by GA and ABA. CA induction and ABA repression of nuclease activities correlate with PCD in aleurone cells. Cells incubated in ABA remain alive and do not degrade their DNA, but living aleurone cells treated with GA accumulate nucleases and hydrolyze their nuclear DNA. We propose that barley nucleases play a role in DNA cleavage during aleurone PCD.  相似文献   

10.
11.
Phosphorylated derivatives of phosphatidylinositol, in association with phosphatidylinositol 3-kinase (PI3 kinase, EC 2.7.1.137) and phosphatidylinositol 4-kinase (PI4 kinase, EC 2.7.1.67), play a key role in regulation of fundamental cell processes. We present evidence for a relationship between α-amylase (EC 3.2.1.1) secretion regulated by GA and levels of phosphatidylinositol 3-phosphate and phosphatidylinositol 4-phosphate (PtdIns(4)P) in barley ( Hordeum vulgare ). Microsomal membranes were incubated in the presence of [γ-32P]ATP, and radiolabeled membrane lipids were extracted and separated by TLC using a boric acid system. Treatment of aleurone layers with GA for short or long periods of time increased PI4 kinase activity. To evaluate the effect of PtdIns(4)P levels on GA signaling, we used phenylarsine oxide (PAO), an inhibitor of PI4 kinase activity. PAO reversibly reduced the α-amylase secretion and protoplast cell vacuolation in a dose-dependent manner. Wortmannin showed a similar inhibitory effect on α-amylase secretion and PI4 kinase activity. GA evoked only a long-term increase in PI3 kinase activity, which was also affected by PAO. The effect of PAO was suppressed by the reducing agent 2,3-dimercapto-1-propanol (BAL), leading to restoration of secretion, vacuolation and PI4 kinase activity. In contrast, the effect of PAO on PI3 kinase activity was not abolished by BAL, suggesting that PI3 kinase is not involved in the secretion process. Likewise, the compound LY294002 inhibited PI3 kinase but had no effect on the secretion process. These findings indicate that PI4 kinase acts as a positive regulator of early GA signaling in aleurone.  相似文献   

12.
Increasing evidence shows that sugars can act as signals affecting plant metabolism and development. Some of the effects of sugars on plant growth and development suggest an interaction of sugar signals with hormonal regulation. We investigated the effects of sugars on the induction of [alpha]-amylase by gibberellic acid in barley embryos and aleurone layers. Our results show that sugar and hormonal signaling interact in the regulation of gibberellic acid-induced gene expression in barley grains. The induction of [alpha]-amylase by gibberellic acid in the aleurone layer is unaffected by the presence of sugars, but repression by carbohydrates is effective in the embryo. [alpha]-Amylase expression in the embryo is localized to the scutellar epithelium and is hormone and sugar modulated. The effects of glucose are independent from the effects of sugars on gibberellin biosynthesis. They are not due to an osmotic effect, they are independent of abscisic acid, and only hexokinase-phosphorylatable glucose analogs are able to trigger gene repression. Overall, the results suggest the existence of an interaction between the hormonal and metabolic regulation of [alpha]-amylase genes in barley grains.  相似文献   

13.
It is well known that abscisic acid (ABA) antagonizes gibberellin (GA)-promoted seed germination. Recent circumstantial evidence suggests that salicylic acid (SA) also inhibits seed germination in maize and Arabidopsis. Our study shows that SA blocks barley seed germination in a dosage dependent manner. As an initial effort to addressing the mechanism controlling the crosstalk of SA, GA and ABA signaling in barley, we studied the regulation of α-amylases by SA and a WRKY gene whose expression is modulated by these hormones. Assays of α-amylase activity reveal that GA-induced α-amylase production in aleurone cells is inhibited by bioactive SA, but not its analogs, 3-hydroxybenzoic acid and 4-hydroxybenzoic acid. This inhibitory effect is unlikely due to repressing α-amylase secretion or inhibiting α-amylase enzyme activities. Northern blot analyses indicate that SA suppresses GA-induced expression of a barley low pI α-amylase gene (Amy32b). Because our previous data indicate that ABA-inducible and GA-suppressible WRKY genes inhibit the expression of α-amylase genes in rice, we studied the steady state mRNA levels of a barley WRKY gene, HvWRKY38. The expression of HvWRKY38 in barley aleurone cells is down-regulated by GA, but up-regulated by SA and ABA. However, the regulation of HvWRKY38 by SA appears to be different from that of ABA in term of the kinetics and levels of induction. Over-expression of HvWRKY38 in aleurone cells by particle bombardment blocks GA induction of the Amy32b promoter reporter construct (Amy32b-GUS). Therefore, HvWRKY38 might serve as a converging node of SA and ABA signal pathways involved in suppressing GA-induced seed germination. Zhen Xie and Zhong-Lin Zhang contributed equally to this work.  相似文献   

14.
15.
During germination of barley grains, DNA fragmentation was observed in the aleurone. The appearance of DNA fragmentation in the aleurone layer, observed by TUNEL staining in aleurone sections, started near the embryo and extended to the aleurone cells far from the embryo in a time dependent manner. The same spatial temporal activities of hydrolytic enzymes such as -amylase were observed in aleurone. DNA fragmentation could also be seen in vitro under osmotic stress, in isolated aleurone. During aleurone protoplast isolation, a very enhanced and strong DNA fragmentation occurred which was not seen in protoplast preparations of tobacco leaves. ABA was found to inhibit DNA fragmentation occurring in barley aleurone under osmotic stress condition and during protoplast isolation, while the plant growth regulator gibberellic acid counteracted the effect of ABA. Addition of auxin or cytokinin had no significant effect on DNA fragmentation in these cells. To study the role of phosphorylation in ABA signal transduction leading to control of DNA fragmentation (apoptosis), the effects of the phosphatase inhibitor okadaic acid and of phenylarisine oxide on apoptosis were studied. We hypothesize that the regulation of DNA fragmentation in aleurone plays a very important role in spatial and temporal control of aleurone activities during germination. The possible signal transduction pathway of ABA leading to the regulation of DNA fragmentation is discussed.  相似文献   

16.
Gibberellic Acid Induces Vacuolar Acidification in Barley Aleurone   总被引:4,自引:0,他引:4       下载免费PDF全文
Swanson SJ  Jones RL 《The Plant cell》1996,8(12):2211-2221
The roles of gibberellic acid (GA3) and abscisic acid (ABA) in the regulation of vacuolar pH (pHv) in aleurone cells of barley were investigated using the pH-sensitive fluorescent dye 2[prime],7[prime]-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). BCECF accumulated in vacuoles of aleurone cells, but sequestration of the dye did not affect its sensitivity to pH. BCECF-loaded aleurone cells retained their ability to respond to both GA3 and ABA. The pHv of freshly isolated aleurone cells is 6.6, but after incubation in GA3, the pHv fell to 5.8. The pHv of cells not incubated in hormones or in the presence of ABA showed little or no acidification. The aleurone tonoplast contains both vacuolar ATPase and vacuolar pyrophosphatase, but the levels of pump proteins were not affected by incubation in the presence or absence of hormones. We conclude that GA3 affects the pHv in aleurone cells by altering the activities of tonoplast H+ pumps but not the amounts of pump proteins.  相似文献   

17.
The effect of temperature on α-amylase synthesis and secretion from barley (c.v. Himalaya) half-seeds and aleurone layers is reported. Barley half-seeds incubated at 15 C in gibberellic acid (GA) concentrations of 0.5 and 5 micromolar for 16 hours do not release α-amylase. Similarly, isolated aleurone layers of barley do not release α-amylase when incubated for 2 or 4 hours at temperatures of 15 C or below following 12 hours incubation at 25 C at GA concentrations from 50 nanomolar to 50 micromolar. There is an interaction between temperature and GA concentration for the process of α-amylase release from aleurone layers; thus, with increasing GA concentration, there is an increase in the Q10 of this process. A thermal gradient bar was used to resolve the temperature at which the rate of α-amylase release changes; thermal discontinuity was observed between 19 and 21 C. The time course of the response of aleurone tissue to temperature was determined using a continuous monitoring apparatus. Results show that the effect of low temperature is detectable within minutes, whereas recovery from exposure to low temperature is also rapid. Although temperature has a marked effect on the amount of α-amylase released from isolated aleurone layers, it does not significantly affect the accumulation of α-amylase within the tissue. At all GA concentrations above 0.5 nanomolar, the level of extractable α-amylase is unaffected by temperatures between 10 and 28 C. It is concluded that the effect of temperature on α-amylase production from barley aleurone layers is primarily on the process of enzyme secretion.  相似文献   

18.
19.
The plant hormones GA, ABA, and auxin differ from the majority of animal hormones in that they are hydrophobic weak acids. They are soluble in the inter- and intra-cellular environments of plant tissues and their neutral species can cross the plasma membrane by passive diffusion. Auxin transport is mediated by specific uptake and efflux carriers in plasma membranes, and there is some evidence for carrier-mediated uptake of GA and ABA. Because these plant hormones can cross the plasma membrane it is not a prerequisite that receptors for them should be at the protoplast surface. Nevertheless, there is substantial evidence that auxin acts at the plasma membrane, and evidence suggesting that GA may be perceived at the plasma membrane of A. fatua aleurone protoplasts has been reviewed here. It is conceivable that the plant plasma membrane might provide the means to integrate, transduce, and amplify these signals, and that such properties of the plasma membrane, rather than the permeability characteristics of these ligands, may determine the site of perception. Further progress in our understanding of signal transduction pathways that may be involved in the actions of plant hormones is likely to shed light on these questions. It has been proposed that GA receptors involved in cell elongation may be soluble rather than membrane bound. The soluble 50 kDa GA-binding protein observed in aleurone by GA4 photoaffinity labelling may be a good candidate for a soluble GA receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号