首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
It is well known that the efficiency of intestinal active calcium transport is regulated by the Vitamin D receptor pathway and Vitamin D analogs seem to exhibit differential effects on intestinal active calcium transport. To investigate the molecular basis for the difference among Vitamin D analogs, we tested three Vitamin D analogs: 1,25-dihydroxyvitamin D(3), 19-nor-1,25-dihydroxyvitamin D(2), and 1alpha-hydroxyvitamin D(2) ex vivo and in vitro. In 5/6 nephrectomized rat intestinal active calcium transport, 19-nor-1,25-dihydroxyvitamin D(2) did not show a significant effects on intestinal active calcium transport at all the concentrations tested, while 1alpha-hydroxyvitamin D(2) at 0.33 and 0.67 microg/kg and 1,25-dihydroxyvitamin D(3) at 1microg/kg significantly stimulated calcium transport. In Caco-2 cells, 19-nor-1,25-dihydroxyvitamin D(2) did not show a significant effect on calcium transport, while 1,25-dihydroxyvitamin D(3) and 1,25-dihydroxyvitamin D(2) (the active form of 1alpha-hydroxyvitamin D(2)) stimulated calcium transport by 934 and 501% at 0.1microM, respectively. 1,25-Dihydroxyvitamin D(2) potently induced the expression of CALB3 and TRPV6 mRNA with an EC(50) of 0.3 and 1.0nM, whereas 19-nor-1,25-dihydroxyvitamin D(2) was 10-fold less potent than 1,25-dihydroxyvitamin D(2) in inducing CALB3 and TRPV6 mRNA. The three Vitamin D analogs had no significant effect on the expression of PMCA1 mRNA. These Vitamin D analogs did not change the expression of Vitamin D receptor (VDR) up to 10nM, but stimulated CYP24A1 expression in a dose-dependent manner with the potency in the order of 1,25-dihydroxyvitamin D(3)>1,25-dihydroxyvitamin D(2)=19-nor-1,25-dihydroxyvitamin D(2). These results suggest that the differential effect of Vitamin D analogs on stimulating intestinal and Caco-2 calcium transport may be in part due to its different effect on stimulating CALB3 and TRPV6 mRNA expression.  相似文献   

2.
3.
The active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is an endocrine hormone whose classic role is the maintenance of calcium homeostasis. It is well documented that 1,25(OH)(2)D(3) also has anti-tumor effects on a number of cancers and cancer cell lines including breast, colorectal, gastric, liver, ovarian, prostate, and non-melanoma skin cancers. Included in the anti-tumor activities of 1,25(OH)(2)D(3) are its ability to cause antiproliferation, prodifferentation and decrease angiogenesis. Furthermore, through regulation of the plaminogen activator (PA) system and a class of proteolytic enzymes called matrix metalloproteinases (MMPs), 1,25(OH)(2)D(3) reduces the invasive spread of tumor cells. Because of the calcemic limitations of using 1,25(OH)(2)D(3) as a therapy, we have tested the effects of a novel Gemini vitamin D analogue, Deuterated Gemini (DG), on mouse colorectal cancer. We demonstrated that DG is more potent in reducing tumor volume and mass, compared to control and 1,25(OH)(2)D(3). DG significantly prevented (100% reduction, p<0.05) the invasive spread of colorectal tumor cells into the surrounding muscle, and had no effect on serum calcium levels. Thus, DG acts as a selective vitamin D receptor modulator (SVDRM) by enhancing select anti-tumor characteristic 1,25(OH)(2)D(3) activities, without inducing hypercalcemia. Thus, DG shows promise in the development of colorectal cancer therapies.  相似文献   

4.
R P Link  H F DeLuca 《Steroids》1988,51(5-6):583-598
The binding activity of four vitamin D metabolites and/or analogs for the intestinal 1,25-dihydroxyvitamin D3 receptor was evaluated after incubation at 25 degrees C for 1 h or at 0-4 degrees C for 18 h. The incubation conditions, which had no effect on the binding of 1,25-dihydroxyvitamin D3, had a dramatic effect on the binding of 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3 and a small but reproducible effect on 24,25-dihydroxyvitamin D3 binding to receptor. Affinities 10- to 20-fold higher were obtained for 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, and affinities 3-fold higher were obtained for 24,25-dihydroxyvitamin D3 at the 0-4 degrees C/18-h incubation. A comparison of intestinal receptor from chick and pig with nine vitamin D compounds showed no major differences between the two species. The relative affinity of the vitamin D analogs to compete with tritiated 1,25-dihydroxyvitamin D3 for the receptor in pig nuclear extract, expressed as ratios of the molar concentration required for 50% binding of the tritiated 1,25-dihydroxyvitamin D3 compared to nonradioactive 1,25-dihydroxyvitamin D3, are as follows: 1,25-dihydroxyvitamin D3 (1) = 1,25-dihydroxyvitamin D2 = 24-homo-1,25-dihydroxyvitamin D3 greater than 1,24,25-trihydroxyvitamin D3 (4) greater than 25-hydroxyvitamin D3 (21) = 10-oxo-19-nor-25-hydroxyvitamin D3 = 1 alpha-hydroxyvitamin D3 (37) greater than 24,25-dihydroxyvitamin D2 (257) much much greater than vitamin D3 (greater than 10(6)).  相似文献   

5.
Williams KB  DeLuca HF 《Steroids》2008,73(12):1277-1284
Chronic kidney disease results in a reduction in 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) synthesis and an accumulation of phosphorus in the blood, leading to secondary hyperparathyroidism and renal osteodystrophy. Vitamin D analogs that retain the ability to suppress PTH but that are less calcemic and phosphatemic than the native hormone are preferred therapies for secondary hyperparathyroidism. However, even the most favored analog currently approved for the treatment of chronic kidney disease patients, i.e. 1,25-dihydroxy-19-nor-vitamin D2 (19-nor-D2, Zemplar), still retains some ability to stimulate intestinal absorption of calcium and phosphate. A recently described analog of vitamin D3, 2-methylene-19-nor-20(S)-1alpha-hydroxy-bishomopregnacalciferol [20(S)-2MbisP], suppresses PTH levels, but is unable to stimulate intestinal calcium absorption or bone resorption in rats. The present study shows that 20(S)-2MbisP is unable to stimulate intestinal phosphate absorption at levels known to suppress PTH secretion. Further, 19-nor-vitamin D2 under the same circumstances does stimulate phosphate absorption. Thus, 2MbisP has significant potential in the management of secondary hyperparathyroidism of renal failure.  相似文献   

6.
The available evidence suggests that vitamin D has cardiovascular effects besides regulating calcium homeostasis. To examine the effect of 1,25-dihydroxyvitamin D(3), the major metabolite of vitamin D, on endothelium-dependent contractions, aortic rings of spontaneously hypertensive rats (SHR) were suspended in organ chambers for isometric force measurements. Rings were incubated with N(omega)-nitro-l-arginine methyl ester (l-NAME) and then exposed to increasing concentrations of acetylcholine, ATP, or the calcium ionophore to trigger contractions. This was done in the absence or presence of 1,25-dihydroxyvitamin D(3). The release of prostacyclin after acetylcholine or A-23187 stimulation was also measured. The cytosolic-free calcium concentration was measured by confocal microscopy after incubation with the fluorescent dyes fluo-4 and fura red. The presence of vitamin D receptors was confirmed using immunohistochemistry. Acetylcholine- and ATP-induced endothelium-dependent contractions were significantly reduced compared with those obtained in the absence of the drug. This effect was not present if A-23187 was used as an agonist. The acetylcholine- but not the A-23187-induced release of prostacyclin was reduced by the acute administration of 1,25-dihydroxyvitamin D(3). Exposure to 1,25-dihydroxyvitamin D(3) reduced the increase in cytosolic-free calcium concentration caused by acetylcholine but not by A-23187 in cells. Vitamin D receptors were densely distributed in the endothelium. Inecalcitol (19-nor-14-epi-23-yne-1,25-dihydroxyvitamin D(3)), a synthetic analog of vitamin D, caused a comparable depression of endothelium-dependent contractions as 1,25-dihydroxyvitamin D(3). These results demonstrate that vitamin D(3) modulates vascular tone by reducing calcium influx into the endothelial cells and hence decreasing the production of endothelium-derived contracting factors.  相似文献   

7.
Vitamin D and its metabolites are best known for their actions in calcium and bone metabolism. However, epidemiological studies have suggested that an increased prostate cancer risk is associated with decreased production of vitamin D. In vitro and in vivo studies have shown that the biologically active form of vitamin D, 1alpha,25-dihydroxyvitamin D3 (1,25D), inhibits proliferation of cancer cells derived from multiple tissues, including the prostate. Although the mechanisms underlying the growth inhibitory effects of 1,25D have not been fully elucidated, in prostate cancer cells 1,25D reduces cell growth via a number of cellular pathways, including cell cycle arrest, induction of apoptosis, and altered activation of growth factor signaling. The hypercalcemia induced by 1,25D in vivo limits its use clinically as a therapeutic agent. However, several 1,25D analogs have been developed that reduce prostate tumor growth in rodent xenograft models without causing hypercalcemia. Additional studies are required in order to determine whether these 1,25D analogs will be useful therapeutic agents for the treatment of prostate cancer.  相似文献   

8.
The active form of vitamin D(3), 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], modulates proliferation and induces differentiation of many cancer cells. A new class of analogs of vitamin D(3) has been synthesized, having two side-chains attached to carbon-20 (Gemini) and deuterium substituted on one side-chain. We have examined six of these analogs for their ability to inhibit growth of myeloid leukemia (HL-60), prostate (LNCaP, PC-3, DU145), lung (H520), colon (HT-29), and breast (MCF-7) cancer cell lines. Dose-response clonogenic studies showed that all six analogs had greater antiproliferative activities against cancer cells than 1,25(OH)(2)D(3). Although they had similar potency, the most active of these analogs was BXL-01-0120. BXL-01-0120 was 529-fold more potent than 1,25(OH)(2)D(3) in causing 50% clonal growth inhibition (ED(50)) of HL-60 cells. Pulse-exposure studies demonstrated that exposure to BXL-01-120 (10(-9)M, 48h) resulted in 85% clonal inhibition of HL-60 growth. BXL-01-0120 (10(-11)M, 4 days) induced the differentiation marker, CD11b. Also, morphologically differentiation was more prominent compared to 1,25(OH)(2)D(3). Annexin V assay showed that BXL-01-0120 (10(-10)M, 4 days) induced significantly (p<0.05) more apoptosis than 1,25(OH)(2)D(3). In summary, these analogs have a unique structure resulting in extremely potent inhibition of clonal proliferation of various types of cancer cells, especially HL-60 cells.  相似文献   

9.
Cholate-solubilized chick kidney mitochondria that 1-hydroxylated 25-hydroxyvitamin-D3 (25-OH-D3) upon reconstitution also produced 10-oxo-19-nor-25-OH-D3, which co-eluted with 1,25-dihydroxyvitamin D3 (1,25-(OH)2-D3) on normal phase high performance liquid chromatography (HPLC) with hexane:propanol-2 (9:1), the traditional chromatographic system for isolating 1,25-(OH)2-D3. The 10-oxo derivative was separated from 1,25-(OH)2-D3 by normal phase HPLC with dichloromethane:propanol-2 (19:1) or by reverse phase HPLC with methanol:water (4:1). Unlike 1,25-(OH)2-D3 production, formation of 10-oxo-19-nor-25-OH-D3 did not require a source of reducing equivalents and was blocked by the antioxidants, diphenyl-rho-phenylenediamine, and butylated hydroxytoluene, implicating a free radical or peroxidative synthetic mechanism. Rat kidney mitochondria solubilized with cholate or with cholate and Emulgen 911 produced 10-oxo-19-nor-25-OH-D3 but no detectable 1 alpha,25-(OH)2-D3. These results stress the importance of careful identification of vitamin D metabolites produced in vitro and suggest the use of alternate chromatographic conditions for isolating 1,25-(OH)2-D3 or inclusion of antioxidants in the assay of solubilized 1 alpha-hydroxylase to eliminate contamination of 1,25-dihydroxyvitamin D3 with 10-oxo-19-nor-25-OH-D3.  相似文献   

10.
A study has been made in the chick of the stereostructural requirements of A-ring-functionalized vitamin D analogs which elicit vitamin D3 and 1,25-(OH)2D3-dependent biological responses of intestinal calcium absorption (ICA) and bone calcium mobilization (BCM). Ring expansion of vitamin D3 to produce (1S,4S), (1S,4R), or (1R,4S)-(7E)-1,4-dihydroxy-3-deoxy-A-homo-19-nor-9,10-secocholesta-5,7-dienes resulted in the loss of both ICA and BCM biological activity at dose levels of steroid of up to 650 nmol/0.1 kg birds. Accordingly the three A-homo analogs of vitamin D3 were assessed for their ability to inhibit or increase the ICA or BCM responses of D3 and 1,25-(OH)2D3. Only (1R,4S)-(7E)-diol-C, maintaining a cis-β,β-hydroxyl orientation showed antagonistic biological activity. Intraperitoneal doses (65–325 nmol) of diol-C administered in conjunction with D3 (0.8–3.25 nmol) inhibited the BCM responses selectively and had no effect on the ICA response. Doses of analog-C (16.3-3.25 nmol) injected before and after the active hormone 1,25-(OH)2D3 (0.13–01.30 nmol) stimulated the ICA response of the latter above its normal levels (a synergistic response) when administered alone.  相似文献   

11.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D] has been shown to inhibit development of dextran sodium sulfate (DSS)-induced colitis in mice but can also cause hypercalcemia. The aim of this study was to evaluate whether β-glucuronides of vitamin D could deliver 1,25(OH)(2)D to the colon to ameliorate colitis while reducing the risk of hypercalcemia. Initial studies demonstrated that bacteria residing in the lower intestinal tract were capable of liberating 1,25(OH)(2)D from 1,25-dihydroxyvitamin D(3)-25-β-glucuronide [β-gluc-1,25(OH)(2)D]. We also determined that a much greater upregulation of the vitamin D-dependent 24-hydroxylase gene (Cyp24) was induced in the colon by treatment of mice with an oral dose of β-gluc-1,25(OH)(2)D than 1,25(OH)(2)D, demonstrating targeted delivery of 1,25(OH)(2)D to the colon. We then tested β-glucuronides of vitamin D in the mouse DSS colitis model in two studies. In mice receiving DSS dissolved in distilled water and treated with 1,25(OH)(2)D or β-gluc-1,25(OH)(2)D, severity of colitis was reduced. Combination of β-gluc-1,25(OH)(2)D with 25-hydroxyvitamin D(3)-25-β-glucuronide [β-gluc-25(OH)D] resulted in the greatest reduction of colitis lesions and symptoms in DSS-treated mice. Plasma calcium concentrations were lower in mice treated with β-gluc-1,25(OH)(2)D alone or in combination with β-gluc-25(OH)D than in mice treated with 1,25(OH)(2)D, which were hypercalcemic at the time of death. β-Glucuronides of vitamin D compounds can deliver 1,25(OH)(2)D to the lower intestine and can reduce symptoms and lesions of acute colitis in this model.  相似文献   

12.
We tested the influence of daily subcutaneous injections of 12.5 and 25 pmol of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the growth of tumors arising from intracutaneous inoculations of athymic nude mice with rat osteogenic sarcoma cells (ROS) and human melanoma cells. Both doses of 1,25(OH)2D3 increased plasma calcium levels after 3 weeks and produced a striking enhancement in tumor weight when the mice received 1,25(OH)2D3 receptor-rich ROS17/2.8 cells. In contrast, 1,25(OH)2D3 caused no consistent effect on tumor weight in mice given G-361 melanoma cells with low receptor copy number or receptor deficient ROS 24/1 cells. Thus, 1,25(OH)2D3 stimulated tumor growth in a receptor dependent fashion, in vivo, instead of inhibiting it as predicted from the reduction of proliferation of cultured cells in the presence of 1,25(OH)2D3.  相似文献   

13.
14.
15.
16.
A series of analogs of 1,25-dihydroxycholecalciferol was obtained with an additional chiral center at the terminus of the aliphatic side chain (C-25). The analogs were obtained from (+)-(R)- and (-)-(S)-2-methylglycidols, by opening of the oxirane ring with the carbanions derived from vitamin D C23a,24- or C22-sulfones. The diastereomeric purity of the analogs was determined by high-performance liquid chromatography on a chiral stationary phase. The binding affinity of analogs for the calf thymus intracellular vitamin D receptor (VDR) was two orders of magnitude lower than that of the lead compound of this group, 24a,24b-dihomo-1,25-dihydroxycholecalciferol, and it was comparable to the affinity of analogs of 24-nor-1,25-dihydroxycholecalciferol. However, a twofold difference was observed for analogs diastereomeric at C-25 in their affinity for VDR. The diastereodifferentiation of the binding affinity was found to be specific for vitamin D vicinal 25,26-diols as it disappears for analogs where 26-hydroxyl, neighboring the C-25 chiral center, is replaced with methyl.  相似文献   

17.
18.
In vitro incubation of 24-epi-25-hydroxyvitamin D2 with chicken kidney homogenate produced several compounds, one of which had an affinity equal to that of 1,25-dihydroxyvitamin D2 for the chick intestinal receptor. The affinity of 24-epi-1,25-dihydroxyvitamin D2 for the same receptor was found to be half that of 1,25-dihydroxyvitamin D2. The unknown compound was produced only when homogenate was prepared from pooled kidneys taken from both vitamin D deficient and replete chickens. The compound has been tentatively identified as 1,25-dihydroxy-22-dehydro-26-homovitamin D3 by ultraviolet absorption spectrophotometry and mass spectrometry. Chemical synthesis of 1,25-dihydroxy-22-dehydro-26-homovitamin D3 provided additional evidence for the structure. Administration of this 26-homologue of 1,25-dihydroxyvitamin D3 at the dose level of 650 pmol/rat stimulated bone calcium mobilization in the hypocalcemic rat equal to that of 1,25-dihydroxyvitamin D3. Thus, this paper demonstrates unique methyl migration on the side chain of 24-epi-1,25-dihydroxyvitamin D3 to form a more biologically potent analogue.  相似文献   

19.
Interleukin (IL)-2 knockout (KO) mice, which spontaneously develop symptoms of inflammatory bowel disease similar to ulcerative colitis in humans, were made vitamin D deficient (D-) or vitamin D sufficient (D+) or were supplemented with 1,25-dihydroxyvitamin D(3) (1,25D3). 1,25-Dihydroxyvitamin D3 supplementation, but not vitamin D supplementation, reduced the early mortality of IL-2 KO mice. However, colitis severity was not different in D-, D+, or 1,25D3 IL-2 KO mice. Cells from D- IL-2 KO mice produced more interferon (IFN)-gamma than cells from all other mice. Con A-induced proliferation was upregulated in IL-2 KO mice and downregulated in wildtype (WT) mice fed 1,25D3. All other measured immune responses in cells from IL-2 KO mice were unchanged by vitamin D status. In vitro addition of 1,25-dihydroxyvitamin D3 significantly reduced the production of IL-10 and IFN-gamma in cells from D- and D+ WT mice. Conversely, IFN-gamma and IL-10 production in cells from IL-2 KO mice were refractory to in vitro 1,25-dihydroxyvitamin D3 treatments. In the absence of IL-2, vitamin D was ineffective for suppressing colitis and ineffective for the in vitro downregulation of IL-10 or IFN-gamma production. One target of 1,25-dihydroxyvitamin D3 in the immune system is the IL-2 gene.  相似文献   

20.
Deficiency in Vitamin D and its metabolites leads to a failure in bone formation primarily caused by dysfunctional mineralization, suggesting that Vitamin D analogs might stimulate osteoblastic bone formation and mineralization. In this study, we compare the effect of selected Vitamin D analogs and active metabolite, 1alpha,25-dihydroxyvitamin D(3), 19-nor-1alpha, 25-dihydroxyvitamin D(2), and 1alpha-hydroxyvitamin D(2) or 1alpha,25-dihydroxyvitamin D(2) on bone formation and resorption. In a mouse calvariae bone primary organ culture system, all Vitamin D analogs and metabolite tested-stimulated collagen synthesis in a dose-dependent manner and 19-nor-1alpha, 25-dihydroxyvitamin D(2) was the most efficacious among three. 19-nor-1alpha, 25-dihydroxyvitamin D(2) and 1alpha,25-dihydroxyvitamin D(2) showed similar potencies and 1alpha,25-dihydroxyvitamin D(3) was less potent than others. Osteocalcin was also up-regulated in a dose-dependent manner, suggesting that the three Vitamin D analogs have the equal potencies on bone formation. 25-Hydroxyvitamin D-24-hydroxylase expression was induced in a dose-dependent manner and 19-nor-1alpha, 25-dihydroxyvitamin D(2) was less potent than other two compounds. In a mouse calvariae organ culture, all induced a net calcium release from calvariae in a dose-dependent manner, but the potency is in the order of 1alpha,25-dihydroxyvitamin D(2) congruent with1alpha,25-dihydroxyvitamin D(3)>19-nor-1alpha, 25-dihydroxyvitamin D(2). In a Vitamin D/calcium-restricted rat model, all caused an elevation in serum calcium in a dose-dependent manner. There is no significant difference between 1alpha,25-dihydroxyvitamin D(3) and 1alpha-hydroxyvitamin D(2) in potencies, but 19-nor-1alpha, 25-dihydroxyvitamin D(2) is at least 10-fold less potent than the other two compounds. Our results suggest that Vitamin D analogs have direct effects on bone resorption and formation, and 19-nor-1alpha, 25-dihydroxyvitamin D(2) may be more effective than 1alpha,25-dihydroxyvitamin D(3) and 1alpha-hydroxyvitamin D(2) on stimulating anabolic bone formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号