首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The delta 5,9 fatty acids (5Z,9Z)-5,9-hexadecadienoic acid, (5Z,9Z)-5,9-nonadecadienoic acid, and (5Z,9Z)-5,9-eicosadienoic acid were synthesized for the first time in four steps (9-12% overall yield) starting from commercially available 2-(2-bromoethyl)-1,3-dioxolane. The synthetic approach provided enough material to corroborate the structure and stereochemistry of (5Z,9Z)-5,9-nonadecadienoic acid which was recently identified in the flowers of Malvaviscus arboreus (Malvaceae). The novel phospholipids 1-hexadecanoyl-2-[(5Z,9Z)-5,9-eicosadienoyl]-sn-glycer o-3-phosphocholine and 1-octadecanoyl-2-[(5Z,9Z)-5,9-eicosadienoyl]-sn- glycero-3-phosphocholine were also synthesized from commercially available L-alpha-phosphatidylcholine (egg yolk) and characterized by positive ion electrospray mass spectrometry. These are the first examples of unsymmetrical phospholipids with saturated fatty acids at the sn-1 position and delta 5,9 fatty acids at the sn-2 position.  相似文献   

2.
The methanol extract of Ehretia dicksonii provided (10E, 12Z, 15Z)-9-hydroxy-10,12,15-octadecatrienoic acid methyl ester (1) which was isolated as an anti-inflammatory compound. Compound 1 suppressed 12-Otetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation on mouse ears at a dose of 500 microg (the inhibitory effect (IE) was 43%). Linolenic acid methyl ester did not inhibit this inflammation at the same dose. However, the related compounds of 1, (9Z,11E)-13hydroxy-9,11-octadecadienoic acid (5) and (9Z,llE)13-oxo-9,11-octadecadienoic acid (6), showed potent activity (IE500 microg of 63% and 79%, respectively). Compounds 1, 4 ((9Z, 12Z, 14E)-16-hydroxy-9,12,14-octadecatrienoic acid), 5 and 6 also showed inhibitory activity toward soybean lipoxygenase at a concentration of 10 microg/ml.  相似文献   

3.
Conjugated linoleic acid (CLA) isomers are present in human foods derived from milk or ruminant meat. To study their metabolism, (9Z,11E)-, (10E,12Z)- and (10Z,12Z)-[1-(14)C]-octadecadienoic acids with high radiochemical and isomeric purities (>98%) were prepared by stereoselective multi-step syntheses involving sequential substitution of 1,2-dichloro-ethene. In the case of the (9Z,11E) isomer, a first metal-catalyzed cross-coupling reaction between (E)-1,2-dichloro-ethene and 2-non-8-ynyloxy-tetrahydro-pyran, obtained from 7-bromo-heptan-1-ol, gave a conjugated chloroenyne. A second coupling reaction with hexylmagnesium bromide provided a heptadecenynyl derivative. Stereoselective reduction of the triple bond and bromination afforded (7E,9Z)-17-bromo-heptadeca-7,9-diene. Formation of the Grignard reagent and carbonation with 14CO(2) gave (9Z,11E)-[1-(14)C]-octadeca-9,11-dienoic acid (overall yield from 7-bromo-heptan-1-ol, 14.4%). (10E,12Z)- and (10Z,12Z)-[1-(14)C]-octadeca-10,12-dienoic acids were synthesized by the same methodology using 1-heptyne, 8-bromo-octan-1-ol and, respectively, (E)-1,2-dichloro-ethene and its (Z) isomer (overall yield from 8-bromo-octan-1-ol, 13.1% (10E,12Z); 17.2% (10Z,12Z)). Impurities (<2% if present) were identified as being (E,E) CLA isomers and were removed by RP-HPLC. Metabolism studies in animal are in progress.  相似文献   

4.
The first total syntheses for the (Z)-15-methyl-10-hexadecenoic acid and the (Z)-13-methyl-8-tetradecenoic acid were accomplished in seven steps and in 31-32% overall yields. The (trimethylsilyl)acetylene was the key reagent in both syntheses. It is proposed that the best synthetic strategy towards monounsaturated iso methyl-branched fatty acids with double bonds close to the omega end of the acyl chain is first acetylide coupling of (trimethylsilyl)acetylene to a long-chain bifunctional bromoalkane followed by a second acetylide coupling to a short-chain iso bromoalkane, since higher yields are thus obtained. Spectral data is also presented for the first time for these two unusual fatty acids with potential as biomarkers and as topoisomerase I inhibitors.  相似文献   

5.
The major marine sponge phospholipids 1,2-di-(5Z,9Z)-5,9-hexacosadienoyl phosphatidylcholine (PC) and phosphatidyl-ethanolamine (PE) hardly incorporate cholesterol into their liposomal bilayers, as reported earlier. Our previous studies indicated that their synthetic short chain (C18-C24) analogs with the same double bond pattern readily incorporated cholesterol, thus demonstrating the importance of the chain length. In order to investigate the possible role of the unusual delta 5,9 diunsaturation 1,2-di-(6Z,9Z)-6,9-hexacosadienoyl phosphatidylcholine and phosphatidylethanolamine were synthesized and their thermotropic behavior studied. Both analogs shows a transition endoterm at 45 degrees C, while the natural 1,2-di-(5Z,9Z)-5,9-hexacosadienoyl PC and its PE counterpart exhibited it at 42 degrees C. A partial incorporation of cholesterol into liposomal bilayers of 1,2-di-(6Z,9Z)-6,9-hexacosadienoyl PC was observed. Our results suggest that while the chain length is the predominant factor in the interactions of these phospholipids with sterols, the double bond location may also play a contributing role.  相似文献   

6.
The reaction of (13S,9Z,11E)-13-hydroxy-9,11-octadecadienoic acid (1a), one of the major peroxidation products of linoleic acid and an important physiological mediator, with the Fenton reagent (Fe(2+)/EDTA/H(2)O(2)) was investigated. In phosphate buffer, pH 7.4, the reaction proceeded with >80% substrate consumption after 4h to give a defined pattern of products, the major of which were isolated as methyl esters and were subjected to complete spectral characterization. The less polar product was identified as (9Z,11E)-13-oxo-9,11-octadecadienoate (2) methyl ester (40% yield). Based on 2D NMR analysis the other two major products were formulated as (11E)-9,10-epoxy-13-hydroxy-11-octadecenoate (3) methyl ester (15% yield) and (10E)-9-hydroxy-13-oxo-10-octadecenoate (4) methyl ester (10% yield). Mechanistic experiments, including deuterium labeling, were consistent with a free radical oxidation pathway involving as the primary event H-atom abstraction at C-13, as inferred from loss of the original S configuration in the reaction products. Overall, these results provide the first insight into the products formed by oxidation of 1a with the Fenton reagent, and hint at novel formation pathways of the hydroxyepoxide 3 and hydroxyketone 4 of potential (patho)physiological relevance in settings of oxidative stress.  相似文献   

7.
Abstract Several strains of Clostridium bifermentans, Clostridium sporogenes and Clostridium sordellit and one strain of Bacteroides sp. hydrogenate linoleic acid into transvaccenic acid in vitro following the same pathway. Linoleic acid (18:2; 9- cis , 12- cis ) was first isomerised into 9- cis , 11- trans -octadecadienoic acid, after which the 9- cis double bond was reduced. These species also hydrogenated linoleic acid into an octadecenoic acid in vivo when mono-associated with gnotobiotic rats. Several other species of Clostridium and Bacteroides did not hydrogenate linoleic acid.  相似文献   

8.
The fungus Gaeumannomyces graminis metabolized linoleic acid extensively to (8R)-hydroperoxylinoleic acid, (8R)-hydroxylinoleic acid, and threo-(7S,8S)-dihydroxylinoleic acid. When G. graminis was incubated with linoleic acid under an atmosphere of oxygen-18, the isotope was incorporated into (8R)-hydroxylinoleic acid and 7,8-dihydroxylinoleic acid. The two hydroxyls of the latter contained either two oxygen-18 or two oxygen-16 atoms, whereas a molecular species that contained both oxygen isotopes was formed in negligible amounts. Glutathione peroxidase inhibited the biosynthesis of 7,8-dihydroxylinoleic acid. These findings demonstrated that the diol was formed from (8R)-hydroperoxylinoleic acid by intramolecular hydroxylation at carbon 7, catalyzed by a hydroperoxide isomerase. The (8R)-dioxygenase appeared to metabolize substrates with a saturated carboxylic side chain and a 9Z-double bond. G. graminis also formed omega 2- and omega 3-hydroxy metabolites of the fatty acids. In addition, linoleic acid was converted to small amounts of nearly (65% R) racemic 10-hydroxy-8,12-octadecadienoic acid by incorporation of atmospheric oxygen. An unstable metabolite, 11-hydroxylinoleic acid, could also be isolated as well as (13R,13S)-hydroxy-(9E,9Z), (11E)-octadecadienoic acids and (9R,9S)-hydroxy-(10E), (12E,12Z)-octadecadienoic acids. In summary, G. graminis contains a prominent linoleic acid (8R)-dioxygenase, which differs from the lipoxygenase family of dioxygenases by catalyzing the formation of a hydroperoxide without affecting the double bonds of the substrate.  相似文献   

9.
An unstable fatty acid allene oxide, 12,13(S)-epoxy-9(Z),11-octadecadienoic acid, was recently identified as the product formed from 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoic acid in the presence of corn (Zea mays L.) hydroperoxide dehydrase (M. Hamberg (1987) Biochim. Biophys. Acta 920, 76-84). The present paper is concerned with the spontaneous decomposition of 12,13(S)-epoxy-9(Z),11-octadecadienoic acid in acetonitrile solution. Two major products were isolated and characterized, i.e. macrolactones 12-keto-9(Z)-octadecen-11-olide and 12-keto-9(Z)-octadecen-13-olide.  相似文献   

10.
To study the metabolic fate of conjugated linoleic acid isomers, we synthesized, in seven steps, from 1-heptyne, (6Z,10E,12Z)-octadeca-6,10,12-trienoic acid, (8Z,12E,14Z)-eicosa-8,12,14-trienoic acid, and their [1-(14)C]-analogs. In the case of (6Z,10E,12Z)-octadecatrienoic acid, a series of palladium-catalyzed cross-coupling reactions between 1-heptyne and (E)-1,2-dichloro-ethene, a coupling reaction with a Grignard reagent and cleavage of the dioxolane gave (E)-dodec-4-en-6-ynal 3. Stereoselective Wittig reaction between aldehyde 3 and triphenyl-[5-(tetrahydro-pyran-2-yloxy)-pentyl]-phosphonium provided a dienyne. Stereocontrolled reduction of the triple bond and replacement of the tetrahydropyranyl group by a bromine gave (5Z,9E,11Z)-1-bromo-heptadeca-5,9,11-triene 10. Formation of the alkenyl lithium derivative and carbonation with CO(2) furnished (6Z,10E,12Z)-octadecatrienoic acid. (8Z,12E,14Z)-eicosa-8,12,14-trienoic acid was obtained by the same route but using triphenyl-[5-(tetrahydro-pyran-2-yloxy)-heptyl]-phosphonium iodide for the Wittig reaction. [1-(14)C]-analogs were obtained from the bromides by carbonation with (14)CO2. In all cases, chemical or radiochemical purities were found to be better than 95% after purification by flash chromatography on silica gel (>99% after additional purification by RP-HPLC). Metabolism studies in animals are in progress.  相似文献   

11.
The two long chain fatty acids common in marine demosponges, (5Z, 9Z)-5,9-hexacosadienoic (delta 5,9-26:2) and (5Z, 9Z, 19Z)-5,9,19-hexacosatrienoic (delta 5,9,19-26:3) acids), were identified also as the major phospholipid components in the freshwater sponge Ephydatia fluviatilis. Whereas the typical marine sponge Microciona prolifera biosynthesizes the delta 5,9,19-26:3 acid solely by homologation of exogenous palmitoleic acid (delta 9-16:1) and subsequent desaturation at positions 5 and 9, it was found that the freshwater sponge could further desaturate the delta 5,9-26:2 acid to the triene, indicating for the first time the existence of delta 19 -desaturase activity in a living organism.  相似文献   

12.
Aims:  Bio-process development for isomer selective and efficient production of cis -9, trans -11-octadecadienoic acid (CLA) from trans -vaccenic acid ( t -VA, trans -11-octadecenoic acid) through microbial fatty acid Δ9-desaturation reaction.
Methods and Results:  A total of 550 strains of fungi and yeasts were screened for CLA production from t -VA through Δ9 desaturation. Delacroixia coronata IFO 8586 was selected as a potent producer of CLA from t -VA. Efficient CLA production was observed during cultivation in medium supplemented with the methyl ester of t -VA ( t -VAME). Under the optimal conditions with 33·3 mg ml−1 of t -VAME as substrate, 10·5 mg ml−1 CLA was produced by D. coronata IFO 8586 after 7 days of cultivation in the medium containing dextrin (5·0%), tryptone (2·0%) and thiourea (0·83 μmol ml−1). The strain produced the cis -9, trans -11 isomer of CLA selectively (98% of total CLA), with a small amount of the trans -9, trans -11 isomer (2% of total CLA), mainly in the form of triacylglycerols (69% of total CLA).
Conclusions:  A practical bio-process for selective production of cis -9, trans -11 isomer of CLA using filamentous fungus D. coronata IFO 8586 was successfully established.
Significance and Impact of the Study:  Isomer selective bio-process for the practical production of cis -9, trans -11-CLA was first established. The process is benefitable for expanding the application of CLA for medicinal and nutraceutical purposes.  相似文献   

13.
Microbial hydroxylation of (+/-)-(2Z,4E)-5-(1',2'-epoxy-2',6',6'-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid (3a) with Cercospora cruenta, a fungus producing (+)-abscisic acid, gave a four-stereoisomeric mixture consisting of (+)- and (-)-xanthoxin acid (4a), and (+)- and (-)-epi-xanthoxin acid (5a) by an HPLC analysis with a chiral column. Screening of the microorganisms capable of oxidizing (+/-)-3a showed that Cunninghamella echinulata stereoselectively oxidized (+/-)-3a to xanthoxin acid (4a) with the some degree of enantioselectivity as (-)-3a to (-)-4a.  相似文献   

14.
We have carried out a study of the reaction of 13-hydroperoxy-9-cis,11-trans-octadecadienoic acid (linoleic acid hydroperoxide) with hematin. The major products are erythro-11-hydroxy-12,13-epoxy-9-octadecenoic acid, threo-11-hydroxy-12,13-epoxy-9-octadecenoic acid, 9,12,13-trihydroxy-10-octadecenoic acid, 13-keto-9,11-octadecadienoic acid, and 13-hydroxy-9,11-octadecadienoic acid. Several minor products have also been identified, including 9-hydroxy-12,13-epoxyoctadecenoic acid, 11-hydroxy-9,10-epoxy-12-octadecenoic acid, 9-hydroxy-10,12-octadecadienoic acid, and 9-keto-10,12-octadecadienoic acid. Oxygen labeling studies indicate that the observed products arise by at least two pathways. In the major pathway, hematin reduces 13-hydroperoxy-9,11-octadecadienoic acid by one electron to an alkoxyl radical that cyclizes to an adjacent double bond to form an epoxy allylic radical. The allylic radical either couples to the hydroxyl radical coordinated to hematin or diffuses from the solvent cage and couples to O2, forming a peroxyl radical. In the minor pathway, the hydroperoxide is oxidized by one electron to a 13-peroxyl radical that undergoes beta-scission to a pentadienyl radical and O2. Exchange of hydroperoxide-derived O2 for dissolved O2 occurs at this stage followed by coupling of O2 to either terminus of the pentadienyl radical. Both pathways of hydroperoxide metabolism generate significant quantities of peroxyl radicals that epoxidize the isolated double bonds of dihydroaromatic molecules. The products of hydroperoxide reaction with hematin and the oxygen labeling patterns are very similar to the products of unsaturated fatty acid hydroperoxide metabolism by platelets, aorta, and lung. Our results not only provide a mechanism for the formation of a series of mammalian metabolites of linoleic and arachidonic acids but also offer an estimate of the yield of peroxyl radicals generated during the process.  相似文献   

15.
Hamberg M 《The FEBS journal》2005,272(3):736-743
Incubations of [8(R)-2H]9(S)-hydroperoxy-10(E),12(Z)-octadecadienoic acid, [14(R)-2H]13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid and [14(S)-2H]13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid were performed with preparations of plant tissues containing divinyl ether synthases. In agreement with previous studies, generation of colneleic acid from the 8(R)-deuterated 9(S)-hydroperoxide was accompanied by loss of most of the deuterium label (retention, 8%), however, the opposite result (98% retention) was observed in the generation of 8(Z)-colneleic acid from the same hydroperoxide. Formation of etheroleic acid and 11(Z)-etheroleic acid from the 14(R)-deuterated 13(S)-hydroperoxide was accompanied by loss of most of the deuterium (retention, 7-8%), and, as expected, biosynthesis of these divinyl ethers from the corresponding 14(S)-deuterated hydroperoxide was accompanied by retention of deuterium (retention, 94-98%). Biosynthesis of omega5(Z)-etheroleic acid from the 14(R)- and 14(S)-deuterated 13(S)-hydroperoxides showed the opposite results, i.e. 98% retention and 4% retention, respectively. The experiments demonstrated that biosynthesis of divinyl ether fatty acids from linoleic acid 9- and 13-hydroperoxides takes place by a mechanism that involves stereospecific abstraction of one of the two hydrogen atoms alpha to the hydroperoxide carbon. Furthermore, a consistent relationship between the absolute configuration of the hydrogen atom eliminated (R or S) and the configuration of the introduced vinyl ether double bond (E or Z) emerged from these results. Thus, irrespective of which hydroperoxide regioisomer served as the substrate, divinyl ether synthases abstracting the pro-R hydrogen generated divinyl ethers having an E vinyl ether double bond, whereas enzymes abstracting the pro-S hydrogen produced divinyl ethers having a Z vinyl ether double bond.  相似文献   

16.
The (R)-enantiomer (1) of methyl (5Z,9Z)-17-methylnonadeca-5,9-dienoate, the structure proposed for a metabolite of the Philippine sponge, Plakinastrella sp., was synthesized. The 1H- and 13C-NMR spectra of the synthetic material were different from those reported for the natural product. The proposed structure 1 is therefore incorrect.  相似文献   

17.
Several grams of labelled trans linoleic and linolenic acids with high chemical and isomeric purities (>97%) have been prepared for human metabolism studies. A total of 12.5 g of (9Z, 12E)-[1-(13)C]-octadeca-9,12-dienoic acid and 6.3 g of (9Z,12Z, 15E)-[1-(13)C]-octadeca-9,12,15-trienoic acid were obtained in, respectively, seven steps (7.8% overall yield) and 11 steps (7% overall yield) from 7-bromo-heptan-1-ol. The trans bromo precursors used for the labelling were synthesised by using copper-catalysed couplings. The trans fatty acids were then obtained via the nitrile derivatives. A total of 23.5 g of (9Z,12Z)-[1-(13)C]-octadeca-9, 12-dienoic acid and 10.4 g of (9Z,12Z,15Z)-[1-(13)C]-octadeca-9,12, 15-trienoic acid were prepared in five steps in, respectively, 32 and 18% overall yield. Large quantities of bromo and chloro precursors were synthesised from the commercially available acid according to Barton's procedure. In all cases, the main impurities (>0.5%) of each labelled fatty acid have been characterised.  相似文献   

18.
In order to study the metabolic pathway and the physiological effects of 9c,11t-18:2 (major isomer of conjugated linoleic acid) and its C(18:3) and C(20:3) metabolites, 6c,9c,11t-18:3 and 8c,11c,13t-20:3 and their [1-(14)C]-radiolabeled analogs were prepared stereoselectively by total synthesis. The 8c,11c,13t-20:3 was obtained in 11 steps. The synthesis involves a highly stereoselective Wittig reaction between 3-(t-butyldiphenylsilyloxy)propanal and the ylide of 7-(2-tetrahydropyranyloxy)heptanylphosphonium salt which gave (3Z)-1-(t-butyldiphenylsilyloxy)-10-(2-tetrahydropyranyloxy)dec-3-ene in a first step. Then the t-butyldiphenylsilyl derivative was deprotected selectively and the resulting alcohol function was converted via a bromide into a phosphonium salt. The second stereoselective Wittig condensation between the phosphonium salt and commercial (2E)-non-2-enal under cis-olefinic conditions using Lithium hexamethyldisilazide as base afforded the (7Z,10Z,12E)-1-(2-tetrahydropyranyloxy)nonadeca-7,10,12-triene in a very good isomeric purity. The intermediate product was brominated and transformed by reaction with magnesium into Grignard reagent, which was one-carbon elongated by unlabeled or labeled carbon dioxide to obtain the 8c,11c,13t-20:3 in good isomeric purity (95%) and high radiochemical purity for its [1-(14)C]-radiolabeled analog (99%). 6c,9c,11t-18:3 was synthesized in a similar way by using 5-(2-tetrahydropyranyloxy)pentanylphosphonium salt in place of 7-(2-tetrahydropyranyloxy)heptanylphosphonium salt in a first step. Other reactions were unchanged and products were obtained in similar yields. Similar to 8c,11c,13t-20:3, the 6c,9c,11t-18:3 was obtained in a very good isomeric purity (95%) and its [1-(14)C]-radiolabeled analog in a high radiochemical purity (95%).  相似文献   

19.
The (R)-enantiomer (1) of methyl (5Z,9Z)-17-methyl-nonadeca-5,9-dienoate, the structure proposed for a metabolite of the Philippine sponge, Plakinastrella sp., was synthesized. The 1H- and 13C-NMR spectra of the synthetic material were different from those reported for the natural product. The proposed structure 1 is therefore incorrect.  相似文献   

20.
When linoleic and linolenic acid were incubated with a crude enzyme of marine green alga Ulva conglobata, the corresponding (R)-9-hydroperoxy-(10E, 12Z)-10, 12-octadecadienoic acid [(R)-9-HPODE] and (R)-9-hydroperoxy-(10E, 12Z, 15Z)-10, 12, 15-octadecatrienoic acid [(R)-9-HPOTrE] were formed with a high enantiomeric excess (>99%), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号