首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular cloning and expression studies established the existence of three T-type Ca(2+) channel (Ca(v)3) alpha(1) subunits: Ca(v)3.1 (alpha(1G)), Ca(v)3.2 (alpha(1H)), and Ca(v)3.3 (alpha(1I)). Although all three channels are low voltage-activated, they display considerable differences in their kinetics, with Ca(v)3.1 and Ca(v)3.2 channels activating and inactivating much faster than Ca(v)3.3 channels. The goal of the present study was to determine the structural elements that confer the distinctively slow kinetics of Ca(v)3.3 channels. To address this question, a series of chimeric channels between Ca(v)3.1 and Ca(v)3.3 channels were constructed and expressed in Xenopus oocytes. Kinetic analysis showed that the slow activation and inactivation kinetics of the Ca(v)3.3 channel were not completely abolished by substitution with any one portion of the Ca(v)3.1 channel. Likewise, the Ca(v)3.1 channel failed to acquire the slow kinetics by simply adopting one portion of the Ca(v)3.3 channel. These findings suggest that multiple structural elements contribute to the slow kinetics of Ca(v)3.3 channels.  相似文献   

2.
AimsBenidipine, a dihydropyridine Ca2+ channel blocker, has been reported to block T-type Ca2+ channels; however, the mechanism underlying this effect was unclear. In this study, we characterized the mechanism responsible for this blocking activity. Furthermore, the blocking activity was compared between two enantiomers of benidipine, (S, S)- and (R, R)-benidipine.Main methodsHuman Cav3.2 (hCav3.2) T-type Ca2+ channels stably expressed in the human embryonic kidney cell line, HEK-293, were studied in whole-cell patch-clamp recordings and Ca2+ mobilization assay.Key findingsIn whole-cell patch-clamp recordings, benidipine blocked hCav3.2 T-type Ca2+ currents elicited by depolarization to a comparable extent as efonidipine. The block was dependent on stimulation frequency and holding potential, but not test potential. Benidipine significantly shifted the steady-state inactivation curve to the hyperpolarizing direction, but had no effect on the activation curve. Benidipine prolonged the recovery from inactivation of hCav3.2 T-type Ca2+ channels without any effect on the kinetics of activation, inactivation, or deactivation. In the Ca2+ mobilization assay, benidipine was more potent than efonidipine in blocking Ca2+ influx through hCav3.2 T-type Ca2+ channels. (S, S)-Benidipine was more potent than (R, R)-benidipine in blocking hCav3.2 T-type Ca2+ currents, but there was no difference in blocking the Ca2+ influx.SignificanceWe have characterized the blocking activity of benidipine against hCav3.2 Ca2+ channels and revealed the difference between the two enantiomers of benidipine. The blocking action of benidipine could be mediated by stabilizing hCav3.2 Ca2+ channels in an inactivated state.  相似文献   

3.
4.
5.
6.
The effect of angiotensin II (Ang II) on the T- and L-type calcium currents (I(Ca)) in single ventricular heart cells of 18-week-old fetal human and 10-day-old chick embryos was studied using the whole-cell voltage clamp technique. Our results showed that in both, human and chick cardiomyocytes, Ang II (10(-7)M) increased the T-type calcium current and decreased the L-type I(Ca). The effect of Ang II on both types of currents was blocked by the AT1 peptidic antagonist, [Sar1, Ala8] Ang II (2 x 10(-7)M). Protein kinase C activator, phorbol 12,13-dibutyrate, mimicked the effect of Ang II on the T- and L-type calcium currents. These results demonstrate that in fetal human and chick embryo cardiomyocytes Ang II affects the T- and L-type Ca2+ currents differently, and this effect seems to be mediated by the PKC pathway.  相似文献   

7.
Two types of voltage-dependent Ca(2+) channels have been identified in heart: high (I(CaL)) and low (I(CaT)) voltage-activated Ca(2+) channels. In guinea pig ventricular myocytes, low voltage-activated inward current consists of I(CaT) and a tetrodotoxin (TTX)-sensitive I(Ca) component (I(Ca(TTX))). In this study, we reexamined the nature of low-threshold I(Ca) in dog atrium, as well as whether it is affected by Na(+) channel toxins. Ca(2+) currents were recorded using the whole-cell patch clamp technique. In the absence of external Na(+), a transient inward current activated near -50 mV, peaked at -30 mV, and reversed around +40 mV (HP = -90 mV). It was unaffected by 30 microM TTX or micromolar concentrations of external Na(+), but was inhibited by 50 microM Ni(2+) (by approximately 90%) or 5 microM mibefradil (by approximately 50%), consistent with the reported properties of I(CaT). Addition of 30 microM TTX in the presence of Ni(2+) increased the current approximately fourfold (41% of control), and shifted the dose-response curve of Ni(2+) block to the right (IC(50) from 7.6 to 30 microM). Saxitoxin (STX) at 1 microM abolished the current left in 50 microM Ni(2+). In the absence of Ni(2+), STX potently blocked I(CaT) (EC(50) = 185 nM) and modestly reduced I(CaL) (EC(50) = 1.6 microM). While TTX produced no direct effect on I(CaT) elicited by expression of hCa(V)3.1 and hCa(V)3.2 in HEK-293 cells, it significantly attenuated the block of this current by Ni(2+) (IC(50) increased to 550 microM Ni(2+) for Ca(V)3.1 and 15 microM Ni(2+) for Ca(V)3.2); in contrast, 30 microM TTX directly inhibited hCa(V)3.3-induced I(CaT) and the addition of 750 microM Ni(2+) to the TTX-containing medium led to greater block of the current that was not significantly different than that produced by Ni(2+) alone. 1 microM STX directly inhibited Ca(V)3.1-, Ca(V)3.2-, and Ca(V)3.3-mediated I(CaT) but did not enhance the ability of Ni(2+) to block these currents. These findings provide important new implications for our understanding of structure-function relationships of I(CaT) in heart, and further extend the hypothesis of a parallel evolution of Na(+) and Ca(2+) channels from an ancestor with common structural motifs.  相似文献   

8.
A small molecule library of piperazinylalkylisoxazole derivatives containing about 600 compounds was designed, synthesized and evaluated for blocking effects on T-type Ca(2+) channel. Several ligands were identified to possess high inhibitory activity against the T-type Ca(2+) channel. The compound 21 with trifluoromethyl substituents at C(3)-position of phenyl group (R(1)) and C(2)-position of phenyl group (R(2)) showed the highest inhibitory activity with IC(50) value of 1.02 microM, which is comparable to that of mibefradil.  相似文献   

9.
In order to further clarify the role of T-type Ca2+ channels in cell proliferation, we have measured the growth inhibition of human cancer cells by using our potent T-type Ca2+ channel blockers. As a result, KYS05090, a most potent T-type Ca2+ channel blocker, was found to be as potent as doxorubicin against some human cancer cells without acute toxicity. Therefore, this letter provides the biological results that T-type calcium channel is important in regulating the important cellular phenotype transition leading to cell proliferation, and thus novel T-type Ca2+ channel blocker presents new prospects for cancer treatment.  相似文献   

10.
Cav3.1 T-type Ca2+ channels play pivotal roles in neuronal low-threshold spikes, visceral pain, and pacemaker activity. Phosphorylation has been reported to potently regulate the activity and gating properties of Cav3.1 channels. However, systematic identification of phosphorylation sites (phosphosites) in Cav3.1 channel has been poorly investigated. In this work, we analyzed rat Cav3.1 protein expressed in HEK-293 cells by mass spectrometry, identified 30 phosphosites located at the cytoplasmic regions, and illustrated them as a Cav3.1 phosphorylation map which includes the reported mouse Cav3.1 phosphosites. Site-directed mutagenesis of the phosphosites to Ala residues and functional analysis of the phospho-silent Cav3.1 mutants expressed in Xenopus oocytes showed that the phospho-silent mutation of the N-terminal Ser18 reduced its current amplitude with accelerated current kinetics and negatively shifted channel availability. Remarkably, the phospho-silent mutations of the C-terminal Ser residues (Ser1924, Ser2001, Ser2163, Ser2166, or Ser2189) greatly reduced their current amplitude without altering the voltage-dependent gating properties. In contrast, the phosphomimetic Asp mutations of Cav3.1 on the N- and C-terminal Ser residues reversed the effects of the phospho-silent mutations. Collectively, these findings demonstrate that the multiple phosphosites of Cav3.1 at the N- and C-terminal regions play crucial roles in the regulation of the channel activity and voltage-dependent gating properties.  相似文献   

11.
For LVA T-type Ca2+ channel blockers, 3,4-dihydroquinazoline derivatives as new scaffolds were prepared and evaluated for the inhibitory activity against two members of the recombinant T-type Ca2+ channel family. Among them, 8a (KYS05001, IC50=0.9 microM) was nearly equipotent with mibefradil (IC50=0.84 microM) and inhibited LVA T-type Ca2+ channel with greater efficacy than HVA Ca2+ channel.  相似文献   

12.
Morpholin-2-one-5-carboxamide derivatives were prepared by using the one-pot Ugi multicomponent reaction and evaluated for blocking effects on T- and N-type Ca(2+) channels. Among them, compound 5i produced the highest potency (IC(50)=0.45+/-0.02 microM), while compounds 5d, 5f, 5k, 5n, 5o, and 6m produced relatively high potency as well as selectivity on T-type Ca(2+) channels. These novel scaffolds showed potent and selective T-type Ca(2+) channel blocking activities.  相似文献   

13.
Efonidipine is a dihydropyridine Ca2+ antagonist with inhibitory effects on both L-type and T-type Ca2+ channels and potent bradycardiac activity especially in patients with high heart rate. In the present study, we examined the frequency dependence of efonidipine action on the T-type Ca2+ channel in isolated guinea-pig ventricular myocytes. The potency of efonidipine to inhibit the T-type Ca2+ current was higher under higher stimulation frequencies. The IC50 values were 1.3 x 10(-8), 2.0 x 10(-6) and 6.3 x 10(-6) M under stimulation frequencies of 1, 0.2 and 0.05 Hz, respectively. The reduction of T-type Ca2+ current amplitude was not accompanied by change in the time course of current decay. Efonidipine (10 microM) inhibited T-type Ca2+ current elicited by depolarization from holding potentials ranging from -90 to -30 mV by about 30%; the voltage-dependence of steady-state inactivation was not changed by the drug. Efonidipine slowed the recovery from inactivation following an inactivating prepulse. In conclusion, efonidipine was shown to have frequency-dependent inhibitory effects on the T-type Ca2+ channel, which could be explained by slow dissociation of the drug from the inactivated state of the channel.  相似文献   

14.
In the present study, the whole-cell voltage clamp technique was used in order to record the T- and L-type Ca2+ currents in single heart cells of newborn and young normal and hereditary cardiomyopathic hamsters. Our results showed that the I/V relationship curve as well as the kinetics of the L-type Ca2+ currents (ICa(L)) in both normal and cardiomyopathic heart cells were the same. However, the proportion of myocytes from normal heart hamster that showed L-type ICa was less than that of heart cells from cardiomyopathic hamster. The I/V relationship curve of the T-type ICa (ICa(T)) was the same in myocytes of both normal and cardiomyopathic hamsters. The main differences between ICa(T) of cardiomyopathic and normal hamster are a larger window current and the proportion of ventricular myocytes that showed this type of current in cardiomyopathic hamster. The high density of ICa(T) as well as the large window current and proportion of myocytes showing ICa(T) may explain in part Ca2+ overload observed in cardiomyopathic heart cells of the hamster.  相似文献   

15.
16.
Sperm-specific CatSper1 and CatSper2 proteins are critical to sperm-hyperactivated motility and male fertility. Although architecturally resembling voltage-gated ion channels, neither CatSper1 nor CatSper2 alone forms functional ion channels in heterologous expression systems, which may be related to the absence of yet unidentified accessory subunits. Here we isolated CatSper1- and CatSper2-associated protein(s) from human sperm and analyzed their identities by a multidimensional protein identification technology approach. We identified the T-type voltage-gated calcium channel Ca(v)3.3 as binding to both CatSper1 and CatSper2. The specificity of their interactions was verified by co-immunoprecipitation in transfected mammalian cells. Electrophysiological studies revealed that the co-expression of CatSper1 or CatSper2 specifically inhibited the amplitude of Ca(v)3.3-evoked T-type calcium current without altering other biophysical properties of Ca(v)3.3. Immunostaining studies revealed co-localization of CatSper1 and Ca(v)3.3 on the principal piece of human sperm tail. Furthermore, fluorescence resonance energy transfer analysis revealed close proximity and physical association of these two proteins on the sperm tail. These studies demonstrate that CatSper1 and CatSper2 can associate with and modulate the function of the Ca(v)3.3 channel, which might be important in the regulation of sperm function.  相似文献   

17.
18.
Previous studies have demonstrated that the slope of the function relating the action potential duration (APD) and the diastolic interval, known as the APD restitution curve, plays an important role in the initiation and maintenance of ventricular fibrillation. Since the APD restitution slope critically depends on the kinetics of the L-type Ca(2+) current, we hypothesized that manipulation of the subunit composition of these channels may represent a powerful strategy to control cardiac arrhythmias. We studied the kinetic properties of the human L-type Ca(2+) channel (Ca(v)1.2) coexpressed with the alpha(2)delta-subunit alone (alpha(1C) + alpha(2)delta) or in combination with beta(2a), beta(2b), or beta(3) subunits (alpha(1C) + alpha(2)delta + beta), using Ca(2+) as the charge carrier. We then incorporated the kinetic properties observed experimentally into the L-type Ca(2+) current mathematical model of the cardiac action potential to demonstrate that the APD restitution slope can be selectively controlled by altering the subunit composition of the Ca(2+) channel. Assuming that beta(2b) most closely resembles the native cardiac L-type Ca(2+) current, the absence of beta, as well as the coexpression of beta(2a), was found to flatten restitution slope and stabilize spiral waves. These results imply that subunit modification of L-type Ca(2+) channels can potentially be used as an antifibrillatory strategy.  相似文献   

19.
Ca2+ channels are involved in the regulation of vascular functions. Angiotensin II is implicated in the development of atherosclerosis and vascular remodeling. In this study, we demonstrated that angiotensin II preferentially increased the expression of alpha1G, a T-type Ca2+ channel subunit, via AT1 receptors in endothelial cells. Angiotensin II-induced expression of alpha1G was inhibited by pretreatment with atorvastatin and the MEK1/2 inhibitor, PD98059. The effect of atorvastatin was reversed by mevalonate and farnesyl pyrophosphate which implicates the activation of the small GTP-binding protein, Ras. Our data indicate that angiotensin II induces alpha1G expression in endothelial cells via AT1 receptors, Ras and MEK. Angiotensin II-induced migration of endothelial cells in a wound healing model was inhibited by incubation with mibefradil, a T-type Ca2+ channel blocker. Our data indicate that angiotensin II induces T-type Ca2+ channels in endothelial cells, which may play a role in the development of vascular disorders.  相似文献   

20.
Arachidonic acid (AA) modulates T-type Ca(2+) channels and is therefore a potential regulator of diverse cell functions, including neuronal and cardiac excitability. The underlying mechanism of modulation is unknown. Here we analyze the effects of AA on the T-type Ca(2+) channel alpha(1G) heterologously expressed in HEK-293 cells. AA inhibited alpha(1G) currents within a few minutes, regardless of preceding exposure to inhibitors of AA metabolism (ETYA and 17-ODYA). Current inhibition was also observed in cell-free inside-out patches, indicating a membrane-delimited interaction of AA with the channel. AA action was consistent with a decrease of the open probability without changes in the size of unitary currents. AA shifted the inactivation curve to more negative potentials, increased the speed of macroscopic inactivation, and decreased the extent of recovery from inactivation at -80 mV but not at -110 mV. AA induced a slight increase of activation near the threshold and did not significantly change the deactivation kinetics or the rectification pattern. We observed a tonic current inhibition, regardless of whether the channels were held in resting or inactivated states during AA perfusion, suggesting a state-independent interaction with the channel. Model simulations indicate that AA inhibits T-type currents by switching the channels into a nonavailable conformation and by affecting transitions between inactivated states, which results in the negative shift of the inactivation curve. Slow-inactivating alpha(1G) mutants showed an increased affinity for AA with respect to the wild type, indicating that the structural determinants of fast inactivation are involved in the AA-channel interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号