首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The subcellular localization of ERKs in cells, which is important for proper signaling, may be regulated through protein-protein interactions. We found that inactive ERK2 interacts with a large number of proteins through its cytosolic retention sequence/common docking domain, whereas the phospho-ERK2 interacts with only few substrates. Varying calcium concentrations significantly modified the repertoire of ERK2-interacting proteins, of which many were identified. The effect of calcium on ERK interactions also influenced the localization of ERKs, as calcium chelators enhanced nuclear translocation, whereas elevated calcium levels prevented it. This effect of calcium was apparent upon lysophosphatidic acid stimulation, where ERKs translocation was delayed compared with that induced by EGF in a calcium-dependent manner. In vitro translocation assay revealed that high calcium concentrations affect ERK translocation by preventing the shuttling machinery through the nuclear envelope, probably due to higher binding to nuclear pore proteins. These results are consistent with a model in which ERKs in quiescent cells are bound to several cytoplasmic proteins. Upon stimulation, ERKs are phosphorylated and released from cytoplasmic anchors to allow shuttling toward the nucleus. This translocation is delayed when calcium levels are increased, and this modifies the localization of ERKs and, therefore, also their spatiotemporal regulation. Thus, calcium regulates ERK localization, which is important for the compartmentalization of ERKs with their proper substrates and thereby their signaling specificity.  相似文献   

2.
The extracellular signal-regulated kinases (ERK) 1 and 2 (ERK1/2) are members of the mitogen-activated protein kinase [MAPK] family. Upon stimulation, these kinases translocate from the cytoplasm to the nucleus, where they induce physiological processes such as proliferation and differentiation. The mechanism of translocation of this kinase involves phosphorylation of two Ser residues within a nuclear translocation signal (NTS), which allows binding to importin7 and a subsequent penetration via nuclear pores. Here we show that the phosphorylation of both Ser residues is mediated mainly by casein kinase 2 (CK2) and that active ERK may assist in the phosphorylation of the N-terminal Ser. We also demonstrate that the phosphorylation is dependent on the release of ERK from cytoplasmic anchoring proteins. Crystal structure of the phosphomimetic ERK revealed that the NTS phosphorylation creates an acidic patch in ERK. Our model is that in resting cells ERK is bound to cytoplasmic anchors, which prevent its NTS phosphorylation. Upon stimulation, phosphorylation of the ERK TEY domain releases ERK and allows phosphorylation of its NTS by CK2 and active ERK to generate a negatively charged patch in ERK, binding to importin 7 and nuclear translocation. These results provide an important role of CK2 in regulating nuclear ERK activities.  相似文献   

3.
4.
5.
Spatial regulation of ERK1/2 MAP kinases is an essential yet largely unveiled mechanism for ensuring the fidelity and specificity of their signals. Mxi2 is a p38alpha isoform with the ability to bind ERK1/2. Herein we show that Mxi2 has profound effects on ERK1/2 nucleocytoplasmic distribution, promoting their accumulation in the nucleus. Downregulation of endogenous Mxi2 by RNAi causes a marked reduction of ERK1/2 in the nucleus, accompanied by a pronounced decline in cellular proliferation. We demonstrate that Mxi2 functions in nuclear shuttling of ERK1/2 by enhancing the nuclear accumulation of both phosphorylated and unphosphorylated forms in the absence of stimulation. This process requires the direct interaction of both proteins and a high-affinity binding of Mxi2 to ERK-binding sites in nucleoporins, In this respect, Mxi2 acts antagonistically to PEA15, displacing it from ERK1/2 complexes. These results point to Mxi2 as a key spatial regulator for ERK1/2 and disclose an unprecedented stimulus-independent mechanism for ERK nuclear import.  相似文献   

6.
The non-beta-oxidisable tetradecylthioacetic acid (TTA) is incorporated into cellular membranes when C3H/10T1/2 cells are cultured in TTA-containing medium. We here demonstrate that this alteration in cellular membranes affect the nuclear translocation of proteins involved in signal transduction. Analysis of cellular fatty acid composition shows that TTA and TTA:1n-8 constitute approximately 40 mol% of total fatty acids in cellular/nuclear membranes. Activation of c-fos expression is significantly inhibited in TTA-treated cells but the enzymatic activation of mitogen activated protein kinase (ERK) is not affected. Immunofluorescence and confocal microscopy studies demonstrate that in mitogene-stimulated TTA-treated cells, the translocation of phosphorylated ERK1/2, protein kinase C alpha (PKC alpha), and PKC beta(1) from the cytoplasm into the nucleus is considerably decreased and delayed. Concomitant with a decreased nuclear import, ERK1/2 dephosphorylation is decreased in TTA-treated cells. There is no TTA-induced inhibition of nuclear import of proteins with a classical nuclear localization signal (NLS), as seen by in vitro nuclear import experiments of BSA fused to the NLS from SV40 large T, or in vivo studies of hnRNP A1 nuclear import. The expression levels of Importin alpha, Importin beta, Importin 7, and NTF2 are not altered in the TTA-treated cells. Taken together, our data indicate that TTA treatment causes changes in cellular fatty acid composition that negatively affect NLS-independent mechanisms of protein translocation through the nuclear pore complex.  相似文献   

7.
8.
9.
10.
11.
Beta-arrestin mediates desensitization and internalization of beta-adrenergic receptors (betaARs), but also acts as a scaffold protein in extracellular signal-regulated kinase (ERK) cascade. Thus, we have examined the role of beta-arrestin2 in the betaAR-mediated ERK signaling pathways. Isoproterenol stimulation equally activated cytoplasmic and nuclear ERK in COS-7 cells expressing beta1AR or beta2AR. However, the activity of nuclear ERK was enhanced by co-expression of beta-arrestin2 in beta2AR-but not beta1AR-expressing cells. Pertussis toxin treatment and blockade of Gbetagamma action inhibited beta-arrestin2-enhanced nuclear activation of ERK, suggesting that beta-arrestin2 promotes nuclear ERK localization in a Gbetagamma dependent mechanism upon receptor stimulation. beta2AR containing the carboxyl terminal region of beta1AR lost the beta-arrestin2-promoted nuclear translocation. As the carboxyl terminal region is important for beta-arrestin binding, these results demonstrate that recruitment of beta-arrestin2 to carboxyl terminal region of beta2AR is important for ERK localization to the nucleus.  相似文献   

12.
13.
Herein, we report that insulin‐activated extracellular signal‐regulated kinase (ERK) is translocated to the nuclear envelope by caveolin‐2 (cav‐2) and associates with lamin A/C in the inner nuclear membrane in response to insulin. We identified that the Ser154–Val155–Ser156 domain on the C‐terminal of cav‐2 is essential for insulin‐induced phosphorylation and nuclear targeting of ERK and cav‐2. In human embryonic kidney 293T cells, ERK was not activated and translocated to the nucleus by insulin in comparison to insulin‐like growth factor‐1 (IGF‐1). However, insulin‐stimulated activation of ERK was induced by exogenous addition of cav‐2. The activated ERK associated and translocated with the cav‐2 to the nucleus. In turn, cav‐2 promoted phospho‐ERK interaction with lamin A/C in the inner nuclear membrane. In contrast, ERK, but not cav‐2, was phosphorylated and translocated to the nucleus by IGF‐1. The nuclear targeted phospho‐ERK failed to localize in the nuclear envelope in response to IGF‐1. Together, our data demonstrate that translocation of phospho‐ERK to the nuclear envelope is mediated by Ser154–Val155–Ser156 domain of cav‐2 and this event is an insulin‐specific action.  相似文献   

14.
15.
An abundance of microfibril-associated glycoprotein 3-like (MFAP3L) significantly correlates with distant metastasis in colorectal cancer (CRC), although the mechanism has yet to be explained. In this study, we observed that MFAP3L knock-down resulted in reduced CRC cell invasion and hepatic metastasis. We evaluated the cellular location and biochemical functions of MFAP3L and found that this protein was primarily localized in the nucleus of CRC cells and acted as a protein kinase. When EGFR translocated into the nucleus upon stimulation with EGF, MFAP3L was phosphorylated at Tyr287 within its SH2 motif, and the activated form of MFAP3L phosphorylated ERK2 at Thr185 and Tyr187. Moreover, the metastatic behavior of CRC cells in vitro and in vivo could be partially explained by activation of the nuclear ERK pathway through MFAP3L phosphorylation. Hence, we experimentally demonstrated for the first time that MFAP3L likely participates in the nuclear signaling of EGFR and ERK2 and acts as a novel nuclear kinase that impacts CRC metastasis.  相似文献   

16.
The NIa protein of certain plant potyviruses localizes to the nucleus of infected cells. Previous studies have shown that linkage of NIa to reporter protein beta-glucuronidase (GUS) is sufficient to direct GUS to the nucleus in transfected protoplasts and in cells of transgenic plants. In this study, we mapped sequences in NIa that confer karyophilic properties. A quantitative transport assay using transfected protoplasts, as well as in situ localization technique using epidermal cells from transgenic plants, were employed. Two domains within NIa, one between amino acid residues 1 to 11 (signal domain I) and the other between residues 43 to 72 (signal domain II), were found to function additively for efficient localization of fusion proteins to the nucleus, although either region independently could facilitate a low level of translocation. Like signals from animal cells, both nuclear transport domains of NIa contain a high concentration of basic (arginine and lysine) residues. Nuclear transport signal domain II overlaps or is very near Tyr62, which is the residue that mediates covalent attachment of a subset of NIa molecules to the 5' terminus of viral RNA within infected cells. The nature of the NIa nuclear transport signal and the possibility for regulation of NIa translocation are discussed.  相似文献   

17.
The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta- galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号