首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Aspergillus nidulans uses an acetamidase enzyme to grow on acetamide as a carbon or as a nitrogen source. Acrylamide is a substrate for the enzyme but does not induce its synthesis. Mutants capable of growing on acrylamide as a nitrogen source have been isolated. Two classes of mutant have been found —amdR c mutants on linkage group II andamdT c on linkage group III.amdR c mutants produce high constitutive acetamidase levels. The enzyme is still inducible by amides, but to a lesser extent than wild type, and is still subject to repression by ammonia and by carbon metabolites derived from glucose.amdR c mutants are semi-dominant to the wild type allele in heterozygous, diploids. TheamdT c mutant is not subject to carbon metabolite repression, of the acetamidase. The enzyme is inducible by amides and repressible by ammonia. TheamdT c mutation also results in reduced ability to grow on formamide as a nitrogen source and to lowered levels of a second amidase enzyme.amdT c is semi-dominant in heterozygous diploids.  相似文献   

2.
Summary Growth of Aspergillus nidulans in the presence of methylammonium leads to lowered levels of the enzymes, acetamidase, formamidase, benzamidase, histidase, nitrate reductase and urate oxidase. This phenomenon is not altered in strains that are insensitive to ammonium repression due to a lesion in the gdhA gene. Similarly repression of acetamidase, formamidase and histidase by high concentrations of caesium ion is not affected in these strains. The results indicate that caesium ion and methylammonium may not act as direct analogues of ammonium in repression of enzyme synthesis.  相似文献   

3.

Background  

The acetamidase of Mycobacterium smegmatis is a highly inducible enzyme. Expression of this enzyme is increased 100-fold when the substrate acetamide is present. The acetamidase gene is found immediately downstream of three open reading frames. Two of these are proposed to be involved in regulation.  相似文献   

4.
Summary The creA204, creB15 and creC27 mutations have been shown to cause carbon catabolite derepression of acetyl CoA synthase and isocitrate lyase in Aspergillus nidulans. A recessive mutation, cre-34, which is linked to the creC gene, results in these enzymes being more sensitive than cre or wildtype strains to catabolite repression. The acetamidase levels of strains containing cre mutations have been investigated and provide support for the hypothesis that an acetate metabolite, rather than acetamide, induces this enzyme.  相似文献   

5.
The acetamidase of Mycobacterium smegmatis is an inducible enzyme which enables the organism to utilise several amides as sole carbon sources. The acetamidase structural gene (amiE) is located downstream of four other genes, of which three form a probable operon with amiE; the fourth (amiC) is divergently transcribed. We constructed deletion mutants in two of these genes in order to determine their role in acetamidase expression. Both AmiC and AmiD were shown to be positive regulators of acetamidase expression required for induction. Combinations of regulatory gene deletions were made which revealed that AmiC interacts with the previously characterised negative regulator AmiA, whereas AmiD does not.  相似文献   

6.
Summary The amdR gene of Aspergillus nidulans regulates a number of structural genes in response to omega amino acid inducers. The site of action of the amdR product on expression of the amdS gene was investigated by studying the effects of changes in the 5 region of amdS, generated in vitro, on the induction, and on responses of an amdS-lacZ fusion gene to an amdR c allele. A sequence was identified that is sufficient for amdR regulation and that shows identity with sequences involved in amdR regulation of the gatA and lam genes. This sequence includes a CCAAT sequence and it was shown that this sequence is an important element in setting the basal level of amdS expression.  相似文献   

7.
《Microbiological research》2014,169(11):873-880
Regulation of gene expression is one of the mechanisms of virulence in pathogenic organisms. In this context, we would like to understand the gene regulation of acetamidase enzyme of Mycobacterium smegmatis, which is the first reported inducible enzyme in mycobacteria. The acetamidase is highly inducible and the expression of this enzyme is increased 100-fold when the substrate acetamide is added. The acetamidase structural gene (amiE) is found immediately downstream of three predicted open reading frames (ORFs). Three of these genes along with a divergently expressed ORF are predicted to form an operon and involved in the regulation of acetamidase enzyme. Here we report expression, purification and functional characterization of AmiA which is one of these predicted ORFs. Electrophoretic mobility shift assays showed that AmiA binds to the region between the amiA and amiD near the predicted promoter (P2). Over-expression of AmiA significantly lowered the expression of acetamidase compared to the wild type as demonstrated by qRT-PCR and SDS-PAGE. We conclude that AmiA binds near P2 promoter and acts as a repressor in the regulation of acetamidase operon. The described work is a further step forward toward broadening the knowledge on understanding of the complex gene regulatory mechanism of Mycobacterium sp.  相似文献   

8.
Identification of ten genes that control ribosome formation in yeast   总被引:46,自引:0,他引:46  
Summary Twenty-three temperature-sensitive mutants of Saccharomyces cerevisiae, all of which undergo a rapid cessation of net RNA accumulation following a shift from the permissive (23°) to the restrictive temperature (36°), have been characterized. Genetic studies demonstrate that these mutants belong to ten different complementation groups and that, in most cases, their properties are the result of a single, recessive mutation in a nuclear gene. Although the mutants were isolated for heat sensitivity, mutants from 2 of the complementation groups are cold sensitive (at 13°) as well. The mutants continue to synthesize protein, including an enzyme, alkaline phosphatase, for two to four hours following a shift from 23° to 36°, suggesting that they are capable of messenger RNA synthesis and the translation of messenger RNA with fidelity at the restrictive temperature. The small amount of RNA that is synthesized in these mutants at the restrictive temperature has been examined on sucrose gradients and by acrylmide gel electrophoresis; in addition, the RNA components in polyribosomes have been fractionated by a new technique that separates messenger RNA from ribosomal RNA. As a result of these analyses we conclude that these mutants are strongly inhibited in the accumulation of 5S, 7S, 17S, and 25S RNA components but are only slight if at all inhibited in the synthesis of messenger RNA and 4S RNA. The results reported here define ten genes, designated rna 2 through rna 11, that play an essential role in the formation or maturation of ribosomes in yeast.  相似文献   

9.
Summary The acetamidase of Aspergillus nidulans is induced by sources of acetyl CoA, benzoate and benzamide and by -alanine and other -amino acids. The effects of these groups of inducers are approximately additive. The cis-acting control site mutant, amdI9, affects induction by sources of acetyl-CoA specifically. Lesions in the amdR and gatA genes affect induction by -amino acids specifically. Mutations in the amdA gene can lead to elevated acetamidase levels which still respond to the various inducers. The induction controls act independently of repression control by nitrogen metabolites and are not altered by the areA102 mutation. The properties of double mutants with lesions affecting the different control mechanisms also indicate their independence of each other. It is suggested that the acetamidase is subject to complex control by multiple regulatory circuits and that functionally independent control sites adjacent to the structural gene occur.  相似文献   

10.
Summary The gamma-amino-n-butyrate transaminase gene (gatA) of Aspergillus nidulans is one of several genes under positive control by the regulatory gene amdR (also called intA). The gatA gene has been cloned from a cosmid library by complementation of a gatA mutation. The sequence of a 2.6 kb genomic fragment containing gatA has been determined. An open reading frame of 1497 bp within this sequences is interrupted by three putative introns and predicts a protein of 55 kDa. Northern analysis confirms control of gatA RNA levels by amdR and also indicates that gatA is not strongly regulated by areA-mediated nitrogen metabolite repression. A. nidulans transformants containing multiple copies of a plasmid carrying an 88 bp fragment from the 5 untranscribed region of gatA grew poorly on substrates whose utilisation is dependent on genes controlled by amdR. This indicated titration of limiting amounts of the amdR gene product by this 88 bp fragment. Comparison of this sequence with the 5 region of the coregulated gene, amdS, reveals probable sites of action for the amdR protein.  相似文献   

11.
Summary Seven temperature-sensitive mutants have been isolated in Saccharomyces cerevisiae which show a reproducible defect in DNA synthesis at the restrictive temperature. One of these is allelic with rnal1 (Hartwell et al., 1970) but the remaining mutants define six complementation groups and probably represent six different genes. The gene symbol dds (for depressed DNA synthesis) is proposed.At the restrictive temperature, rnal1-2, dds2-1 and dds6-1 show a rapid and almost total cessation of DNA and RNA synthesis, whilst protein synthesis continues for several hours. The remaining dds mutants show a reduced rate of DNA synthesis from the time of temperature shift (dds1, dds3, dds4) or a cessation of DNA synthesis at a later time (dds5). In some cases, RNA synthesis is affected concomitantly with, or soon after, the depression in DNA synthesis. Possible reasons for the phenotypes of these mutants, and for the relative absence of yeast mutants which are unambiguously and specifically affected in DNA synthesis, are discussed.In addition, we report the isolation of seven new alleles of known cdc genes and ten new mutants with a cell cycle phenotype that complement those already known.  相似文献   

12.
Acetamide, a nitrogen and carbon source for Chlamydomonas reinhardtii, is hydrolyzed by acetamidase to ammonium and acetate. It also induces urea pathway activities. Fluoroacetamide (F-acetamide) is toxic to wild-type through conversion to F-citrate, a respiratory inhibitor. Resistant mutants were selected on plates of F-acetamide plus urea. When tested on acetamide plates two mutant classes were obtained, acm+ (utilized acetamide as sole N source) and acm-. All acm+ isolates had acetamidase activity and were obligate phototrophs (i.e. dark-diers). Acm- isolates had either normal urea assimilation (ure+) or lacked all urea pathway activities, namely transport, urea carboxylase and allophanate hydrolase (ure-). Inheritance patterns for both types indicated single nuclear gene mutations. The acm- ure+ type presumably resulted from a defective acetamidase gene, and the acm- ure- strains might be regulatory gene mutants. Temperature conditional F-acetamide tolerant mutants were also obtained. Acetamidase extracted from one such strain was more thermolabile than the wild-type enzyme, indicating a mutation in the coding region. The hypothesis that acetamidase is involved in urea assimilation was not supported by the genetic and biochemical evidence.Abbreviations F-acetamide fluoroacetamide - F-acetate fluoroacetate - TAP tris-acetate-phosphate medium - CDB Chlamydomonas dilution buffer - TCA trichloroacetic acid - AH allophanate hydrolase - UC urea carboxylase - PAR photosynthetically active radiation - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

13.
Summary Assay conditions are described which permit detection of cryptic temperature sensitive RNA polymerases in vitro. RNA polymerase was prepared from fifteen different temperature sensitive mutants of Salmonella typhimurium chosen at random from a larger group isolated by localized mutagenesis and uridine suicide techniques. The dependence of enzyme activity on temperature, ionic strength and pH was studied in vitro. Assays at higher ionic strength (0.23 M) and temperature (50°C) distinguish three classes of mutants (Table 2). Activity of seven mutant RNA polymerases (called Class 1) under these conditions was 1% to 5% that of the parental RNA polymerase. Five mutant RNA polymerases (called Class 2) had 18% to 64% of the parental activity and three were not distinguishable from the parental enzyme under these conditions. Mixing experiments showed that the defect in Class 1 mutant enzymes is a property of the enzymes and not due to a diffusible inhibitor. In one case the lesion was shown to reside in the core enzyme. Class 1 mutant RNA polymerases were shown to be irreversibly inactivated during the assay at higher temperature and ionic strength. This suggests that the Class 1 enzymes may be more thermolabile than the wild type enzyme or may fail to be protected from thermal denaturation by formation of a ternary complex with template and product. We conclude that the method used to isolate these mutants (Young et al., 1976) and the assay described here (Table 2) are efficient ways to isolate and detect temperature sensitive RNA polymerase mutants of Salmonella typhimurium.  相似文献   

14.
Summary From cultures of sensitive bacteria, treated with the antibiotic streptozotocin, two classes of resistant mutants can be isolated: 1) mutants, resistant under all the conditions tested to even the highest doses of the antibiotic. These are either pleiotropicdefective, pts-mutants, or more frequently, mutants lacking a transport system (enzyme IINag-complex of the PEP-dependent phosphotransferase system) encoded by the gene nagE. This gene is inducible by N-acetyl-glucosamine and seems to be part of the nag operon. The transport system in question is responsible for the uptake of N-acetyl-glucosamine, of D-glucosamine and of streptozotocin; 2) conditional resistant mutants which are unable to energize or to synthesize the streptozotocin transport system under certain growth conditions but do have the transport activity under other conditions. These include a) mutants auxotrophic for amino acids, vitamins, or nucleotides, b) mutants negative or sensitive to carbohydrates in the medium, and c) mutants with defects in energy metabolism such as PEP synthesis.  相似文献   

15.
Summary The dnaP strains of Bacillus subtilis are altered in the initiation of DNA replication at high temperature (Riva et al., 1975). Fine mapping of the gene shows that it is located very close to the dnaF gene, described by Karamata and Gross (1970) and mapped by Love et al. (1976) in the polC region. The phenotype of both mutants is indistinguishable: the DNA synthesis stops at non permissive temperature after synthesizing an amount of DNA equivalent to the completion of the rounds of replication already initiated; at permissive temperature they are abnormally sensitive to MMS and are reduced in the ability to be transformed. Both mutants are to be considered as belonging to the dnaF locus.The dnaF gene is very close to the polC gene, which specifies the DNA polymerase III of B. subtilis. The DNA polymerase III of the dnaF mutants is not temperature sensitive in vitro, however, the level of this enzyme is lower by a factor of 4 or 5 in the dnaF mutants, at the permissive temperature. Following shift of dnaF cultures to the non permissive temperature, the level of DNA polymerase III activity specifically decreases further by a factor of at least 10 in the mutant, whereas the DNA polymerase I level is unaffected.The possible roles of the dnaF gene in the control of the cellular level of the DNA polymerase III, and the possibility of a regulatory role of DNA polymerase III in the initiation of DNA replication in bacteria are discussed.Abbreviations and symbols HPUra 6-(p-hydroxyphenylazo)-uracil; mic, minimum inhibitory concentration - MMS methyl-methanesufonate - Pol I Pol II and Pol III: DNA polymerase I, II and III respectively - PCMB parachloro-mercuri-benzoate  相似文献   

16.
Summary The ino1 locus of yeast has been demonstrated to be the structural gene for the repressible enzyme, L-myo-inositol-1-phosphate synthase (Donahue and Henry 1981 a). We have screened a large number of allelic representatives of the ino1 locus for the presence of protein which cross reacts with antibody produced in response to purified wild type inositol-1-phosphate synthase. Approximately 50% of all ino1 representatives screened by immunoprecipitation produce a protein of 62,000 molecular weight, identical in size to the wild type enzyme subunit. These mutants (termed crm+) were tested for expression of the 62,000 MW protein under conditions which are repressing for the wild type enzyme (greater than 25 M exogenous inositol). The protein produced by the crm+ mutants, like the active enzyme in wild type yeast, is repressed in the presence of high levels of exogenous inositol. In addition, we have reassessed the interallelic complementation pattern observed among mutants at the ino1 locus. The entire pattern of interallelic complementation is temperature sensitive.  相似文献   

17.
Summary A collection of Schizosaccharomyces pombe mutants has been obtained which restore activity to a nonsense suppressing tRNA sup3–5 whose suppressing function has been inactivated by second site mutations within the sup3–5 gene. These mutants were screened for those that were temperature sensitive in suppressing the opal nonsense allele ade6-704. Some of these map within or close to sup3 itself and others define two allosuppressor genes sal2 and sal3. The temperature sensitive mutants fail to efficiently suppress any other opal nonsense alleles although one mutant, sup3–5, r57, rr2, weakly does so at the low temperature. sal2 and sal3 mutants have a pleiotropic effect on the cell cycle causing a transient or complete blockage of mitosis. This blockage and the allosuppressor phenotypes are both eliminated by the presence of wee mutations in wee1 or cdc2. Mutants in sal2 are allelic with cdc25, a gene required for successful completion of mitosis. It is suggested that sal3 and cdc25 influence the mechanism that links the growth rate of the cell with the initiation of mitosis. Mutants in these genes may disturb tRNA biosynthesis or protein synthesis and this disruption may have an effect on both nonsense suppression and the growth rate control over mitosis.  相似文献   

18.
Growth tests and enzyme determinations strongly suggest that the acetamidase of Aspergillus nidulans is induced by a product of acetate metabolism rather than the substrate, acetamide. The cis-dominant mutation, amdI9, which is closely linked to amdS, the structural gene for the acetamidase, results in greatly increased sensitivity to induction by acetate metabolism. Propionate, L-threonine, and ethanol also result in acetamidase induction. Mutations in the facA, facB, and facC genes, which lead to low levels of acetyl-coenzyme A synthase, are epistatic to the amdI9 mutation for strong growth on acetamide medium and abolish acetamide and propionamide induction of the acetamidase and isocitrate lyase enzymes. Acetate, L-threonine, and ethanol, however, can induce these enzymes in strains containing facA and facC lesions but not in strains containing a facB lesion. The evidence suggests that acetamidase and isocitrate lyase may be induced by a similar mechanism.  相似文献   

19.
Summary Twenty seven recessive temperature sensitive mutants have been isolated in Schizosaccharomyces pombe which are unable to complete the cell division cycle at the restrictive temperature. These mutants define 14 unlinked genes which are involved in DNA synthesis, nuclear division and cell plate formation. The products from most of these genes complete their function just before the cell cycle event in which they are involved. Physiological characterisation of the mutants has shown that DNA synthesis and nuclear division form a cycle of mutually dependent events which can operate in the absence of cell plate formation. Cell plate formation itself is usually dependent upon the completion of nuclear division.  相似文献   

20.
Summary Polar mutations of the galactose operon of both, nonsense and insertion type have been studied in a system for DNA-dependent synthesis of the galactose enzymes of Escherichia coli. In vivo, these mutations reduce to different degrees the level of expression of the gene located on the promoter-distal side of the mutation. No such polar effects are observed in vitro. This relief of polarity is neither due to the action of nonsense suppressors, nor to random initiation of mRNA synthesis.A special aspect of this study concerns those insertion mutations which carry a segment of DNA of foreign origin inserted near the control region of the galactose operon. In vivo, mutants of this type produce only one percent or less of the three galactose enzymes as compared to the wildtype. The residual enzyme synthesis is not or only slightly affected by inducer. In contrast, DNA carrying such insertion mutations is fully active in the cell-free enzyme synthesis and sensitive to the controls exerted by the galactose repressor and by the catabolite gene activator protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号