首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been proposed (Randall, L. L., and Hardy, S. J. S. (1986) Cell 46, 921-928) that export of protein involves a kinetic partitioning between the pathway that leads to productive export and the pathway that leads to the folding of polypeptides into a stable conformation that is incompatible with export. As predicted from this model, a decrease in the rate of export of maltose-binding protein to the periplasmic space in Escherichia coli resulting from a defect in the leader sequence was able to be partially overcome by a mutation that slowed the folding of the precursor, thereby increasing the time in which the polypeptide was competent for export. (Liu, G., Topping, T. B., Cover, W. H., and Randall, L. L. (1988) J. Biol. Chem. 263, 14790-14793). Here we describe mutations of the gene encoding ribose-binding protein that were selected as suppressors of a defect in export of that protein and that alter the folding pathway. We propose that selection of such suppressors may provide a general method to obtain mutations that affect the folding properties of any protein that can be expressed and exported in E. coli.  相似文献   

2.
Maltose binding protein, like most periplasmic proteins, is resistant to a variety of proteinases. Treatment of pre-maltose binding protein with trypsin, chymotrypsin, or proteinase K removes an amino-terminal domain of the same approximate size as the leader sequence without degrading the mature portion of the protein. In addition, pre-maltose binding protein is as active as mature in binding maltose (Ferenci, T., and Randall, L.L. (1979) J. Biol. Chem. 254, 9979-9981). By these criteria, the precursor and mature proteins are in the same conformation except for the exposed leader sequence on the precursor. We have compared the ability of these proteins to interact with amphipaths, such as detergents. The precursor protein binds to Triton X-100, while the mature protein does not. We propose that the leader domain is responsible for detergent binding. Mutations in the leader region of the precursor which block export in vivo prevent detergent binding in vitro. A mutant with a mild export defect can still bind detergent. This correlation between detergent binding by precursors with related leaders and export efficiency of each precursor suggests that hydrophobic partition of the leader may initiate pre-protein transfer across the membrane.  相似文献   

3.
L L Randall  S J Hardy 《Cell》1986,46(6):921-928
Sensitivity to proteolytic degradation was used to monitor folding of polypeptides in vivo. A correlation between competence for export and lack of stable tertiary structure was established by comparing the kinetics of folding of mutated precursor maltose-binding protein that carries a defective leader peptide with the kinetics of folding of wild-type precursor that is competent for export. It is proposed that during export a kinetic competition exists between productive translocation and folding of precursor intracellularly into a stable conformation that is not compatible with transfer.  相似文献   

4.
In the accompanying paper [Adams, H., Scotti, P.A., de Cock, H., Luirink, J. & Tommassen, J. (2002) Eur. J. Biochem.269, 5564-5571], we showed that the precursor of outer-membrane protein PhoE of Escherichia coli with a Gly to Leu substitution at position -10 in the signal sequence (G-10L) is targeted to the SecYEG translocon via the signal-recognition particle (SRP) route, instead of via the SecB pathway. Here, we studied the fate of the mutant precursor in a prlA4 mutant strain. prlA mutations, located in the secY gene, have been isolated as suppressors that restore the export of precursors with defective signal sequences. Remarkably, the G-10L mutant precursor, which is normally exported in a wild-type strain, accumulated strongly in a prlA4 mutant strain. In vitro cross-linking experiments revealed that the precursor is correctly targeted to the prlA4 mutant translocon. However, translocation across the cytoplasmic membrane was defective, as appeared from proteinase K-accessibility experiments in pulse-labeled cells. Furthermore, the mutant precursor was found to accumulate when expressed in a secY40 mutant, which is defective in the insertion of integral-membrane proteins but not in protein translocation. Together, these data suggest that SecB and SRP substrates are differently processed at the SecYEG translocon.  相似文献   

5.
High level expression of TEM beta-lactamase results in the accumulation of precursor and mature protein in the insoluble fraction of Escherichia coli. The mature polypeptide is sequestered in protein aggregates (inclusion bodies) located within the periplasmic space whereas the insoluble precursor is present in the cytoplasm. With the native beta-lactamase, aggregation is observed when the rate of expression exceeds 2.5% of the total protein synthesis rate. Substitution of the native signal sequence with the outer membrane protein A (OmpA) leader peptide results in extensive aggregation of only the mature protein. Furthermore, for OmpA-beta-lactamase, the accumulation of mature insoluble protein is independent of the rate of protein synthesis. These observations cannot be accounted by the kinetics of export of the OmpA-beta-lactamase and the native precursor, therefore suggesting that the signal sequence affects the conformation of the newly secreted mature polypeptide and in turn, the folding pathway. Previously, we have shown that the aggregation of the mature protein secreted using its own signal sequence can be inhibited by growing the cells in the presence of non-metabolizable sugars such as sucrose (Bowden, G., and Georgiou, G. (1988) Biotechnol. Prog. 4, 97-101). We show here that this phenomenon is not related to osmotic effects, changes in beta-lactamase translation or precursor processing. It follows that the addition of sugars exerts a direct effect on the in vivo pathway of aggregation and folding, in analogy with the well characterized effect of sugars in vitro.  相似文献   

6.
Mutations affecting the secB gene of Escherichia coli cause a defect in protein export. This report presents the demonstration that the secB mutations caused a defect in co-translational processing of maltose binding protein (MBP). A significant amount of post-translational processing of pre-MBP occurred within 1 min after termination of pulse labeling; at later time points only a small amount of additional processing occurred. The conformation of the intracellular precursor form of MBP was examined in a secB::Tn5 mutant, using protease sensitivity (Randall, L. L., and Hardy, S. J. S. (1986) Cell 46, 921-928) as the assay. In contrast to the isogenic wild type strain, a population of pre-MBP that had folded into a protease resistant conformation was detected in the secB mutant. In addition, sublethal doses of chloramphenicol did not significantly affect protein export in the secB::Tn5 mutant and the secB::Tn5 mutation did not lead to defects in membrane energization.  相似文献   

7.
Pseudomonas solanacearum is an important phytopathogen that produces a variety of extracellular enzymes. Previous reports suggested that one of these, a 43-kDa beta-1,4-endoglucanase (EGL), is initially synthesized with a 45-residue leader sequence that is removed during export. Experiments with globomycin presented here also suggest that the primary precursor of EGL (ppEGL) has a 45-residue leader sequence but that only the first 19 residues of the leader sequence are removed by signal peptidase II during initial export across the inner membrane. Further analysis suggested that the resultant 46-kDa intermediate precursor (pEGL) is a transient fatty acylated lipoprotein and is located on the periplasmic side of the inner membrane of P. solanacearum. Although Escherichia coli could synthesize ppEGL, modify it with palmitate, and remove the first 19 residues of the leader sequence during export across the inner membrane, only P. solanacearum could export pEGL across the outer membrane and remove the remaining 26 residues of the leader sequence producing the mature, extracellular EGL. The second step of the export process requires export machinery not present in E. coli. To our knowledge this represents the first example of a leader sequence with two distinct parts, one removed during export across the inner membrane and the other removed during export across the outer membrane.  相似文献   

8.
Structure-function relationship of Rous sarcoma virus leader RNA.   总被引:20,自引:4,他引:20       下载免费PDF全文
J L Darlix  M Zuker    P F Spahr 《Nucleic acids research》1982,10(17):5183-5196
Cells infected by RSV synthesize viral 35S RNA as well as subgenomic 28S and 22S RNAs coding for the Env and Src genes respectively. In addition, at least the 5' 101 nucleotides of the leader are also conserved and we have shown previously that this sequence contains a strong ribosome binding site (J.-L. Darlix et al., J. Virol. 29, 597). We now report the RNA sequence of Rous Sarcoma virus (RSV) leader RNA and propose a folding of this 5' untranslated region which brings the Cap, the initiation codon for Gag and the strong ribosome binding site close to each other. We also show that ribosomes protect a sequence just upstream from initiator Aug of Gag in vitro, and believed to interact with part of the strong ribosome binding site according to the folding proposed for the leader RNA.  相似文献   

9.
The partitioning of partially folded polypeptide chains between correctly folded native states and off-pathway inclusion bodies is a critical reaction in biotechnology. Multimeric partially folded intermediates, representing early stages of the aggregation pathway for the P22 tailspike protein, have been trapped in the cold and isolated by nondenaturing polyacrylamide gel electrophoresis (PAGE) (speed MA, Wang DIC, King J. 1995. Protein Sci 4:900-908). Monoclonal antibodies against tailspike chains discriminate between folding intermediates and native states (Friguet B, Djavadi-Ohaniance L, King J, Goldberg ME. 1994. J Biol Chem 269:15945-15949). Here we describe a nondenaturing Western blot procedure to probe the conformation of productive folding intermediates and off-pathway aggregation intermediates. The aggregation intermediates displayed epitopes in common with productive folding intermediates but were not recognized by antibodies against native epitopes. The nonnative epitope on the folding and aggregation intermediates was located on the partially folded N-terminus, indicating that the N-terminus remained accessible and nonnative in the aggregated state. Antibodies against native epitopes blocked folding, but the monoclonal directed against the N-terminal epitope did not, indicating that the conformation of the N-terminus is not a key determinant of the productive folding and chain association pathway.  相似文献   

10.
The in vivo accumulation of polypeptide chains in the form of aggregated non-native states is a problem in many applications of biotechnology. In the maturation pathway of the thermostable P22 tailspike endorhamnosidase, the folding and chain association intermediates can be distinguished from the native tailspikes in crude extracts of phage-infected Salmonella cells. Temperature-sensitive folding mutations, at many sites in the chain, destabilize these conformational intermediates preventing the formation of native tailspikes at restrictive temperatures (Goldenberg, D. P., Smith, D. H., and King, J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 7060-7064). We report here that both wild type and mutant tailspike polypeptide chains which fail to reach the native state accumulate in an aggregated state. These off-pathway aggregates form from a thermolabile intermediate in the productive folding pathway. These aggregation reactions are suppressed by lowering the temperature of maturation. Similar off-pathway steps from folding intermediates may account for the non-native aggregates often found in the expression of cloned genes in heterologous hosts.  相似文献   

11.
In the accompanying paper (Altman, E., Bankaitis, V.A., and Emr, S.D. (1990) J. Biol. Chem. 265, 18148-18153) a putative SecB binding site was identified in the mature LamB protein. The export of wild-type LamB was unperturbed when this region was removed, however, suggesting the presence of a second site of interaction between SecB and LamB. In this paper we show that the interference caused by export-defective LamB proteins is influenced by the amount of signal sequence that is present. If a large portion of the signal sequence is deleted then the interference levels are significantly reduced. This result suggests that a region of the signal sequence contributes to the interaction of SecB with the LamB protein. Using anti-SecB affinity chromatography, we demonstrated directly that the association of SecB protein with precursor LamB is dependent on the presence of both the LamB signal sequence and the interfering region which maps to amino acids 320-380 of mature LamB. Although the interfering region is not necessary for the export of wild-type LamB under normal conditions, when the signal sequence is mutationally altered the interfering region is required to promote the efficient export of LamB protein. Also, deletion of the interfering region eliminates the ability of wild-type LamB precursor to be maintained in an export competent conformation in vivo. Collectively, our results indicate that efficient export of the LamB protein is achieved by an interaction with SecB that involves both the LamB signal sequence and the interfering region in mature LamB.  相似文献   

12.
Full-length cDNA clones for succinyltransferase of the rat alpha-ketoglutarate dehydrogenase complex were isolated from rat heart cDNA libraries in lambda gt11. The cDNA clones were identified as those for rat succinyltransferase by the identity of their predicted amino acid sequence with the NH2-terminal amino acid sequence of rat succinyltransferase determined by protein chemical analysis and the known amino acid sequence of bovine succinyltransferase. The clone with the longest cDNA consisted of 2747 base pairs and coded for a leader peptide of 56 amino acid residues and a mature protein of 386 amino acid residues. The primary structure of rat succinyltransferase showed close similarity to Escherichia coli and Azotobacter vinelandii succinyltransferases, in the COOH-terminal part forming the lipoyl-binding domain and the NH2-terminal part forming the inner core-catalytic domain. However, the rat succinyltransferase did not contain a sequence motif that has been found as an E3- and/or E1-binding site in the dihydrolipoamide acyltransferases of three alpha-ketoacid dehydrogenase complexes (Hummel, K. B., Litwer, S., Bradford, A. P., Aitken, A., Danner, D. J., and Yeaman, S. J. (1988) J. Biol. Chem. 263, 6165-6168, Reed, L. J., and Hackert, M. L. (1990) J. Biol. Chem. 265, 8971-8974). The absence of this sequence was confirmed by direct sequencing of the polymerase chain reaction product of rat heart mRNA and by computer analysis. These results show that the rat succinyltransferase does not have the sequence motif of the putative E3- and/or E1-binding site.  相似文献   

13.
《The Journal of cell biology》1996,132(6):999-1010
Aminopeptidase I (API) is a soluble leucine aminopeptidase resident in the yeast vacuole (Frey, J., and K.H. Rohm. 1978. Biochim. Biophys. Acta. 527:31-41). The precursor form of API contains an amino-terminal 45-amino acid propeptide, which is removed by proteinase B (PrB) upon entry into the vacuole. The propeptide of API lacks a consensus signal sequence and it has been demonstrated that vacuolar localization of API is independent of the secretory pathway (Klionsky, D.J., R. Cueva, and D.S. Yaver. 1992. J. Cell Biol. 119:287-299). The predicted secondary structure for the API propeptide is composed of an amphipathic alpha- helix followed by a beta-turn and another alpha-helix, forming a helix- turn-helix structure. With the use of mutational analysis, we determined that the API propeptide is essential for proper transport into the vacuole. Deletion of the entire propeptide from the API molecule resulted in accumulation of a mature-sized protein in the cytosol. A more detailed examination using random mutagenesis and a series of smaller deletions throughout the propeptide revealed that API localization is severely affected by alterations within the predicted first alpha-helix. In vitro studies indicate that mutations in this predicted helix prevent productive binding interactions from taking place. In contrast, vacuolar import is relatively insensitive to alterations in the second predicted helix of the propeptide. Examination of API folding revealed that mutations that affect entry into the vacuole did not affect the structure of API. These data indicate that the API propeptide serves as a vacuolar targeting determinant at a critical step along the cytoplasm to vacuole targeting pathway.  相似文献   

14.
We have previously reported that the DsbA signal sequence promotes efficient, cotranslational translocation of the cytoplasmic protein thioredoxin-1 via the bacterial signal recognition particle (SRP) pathway. However, two commonly used signal sequences, those of PhoA and MalE, which promote export by a posttranslational mechanism, do not export thioredoxin. We proposed that this difference in efficiency of export was due to the rapid folding of thioredoxin in the cytoplasm; cotranslational export by the DsbA signal sequence avoids the problem of cytoplasmic folding (C. F. Schierle, M. Berkmen, D. Huber, C. Kumamoto, D. Boyd, and J. Beckwith, J. Bacteriol. 185:5706-5713, 2003). Here, we use thioredoxin as a reporter to distinguish SRP-dependent from non-SRP-dependent cleavable signal sequences. We screened signal sequences exhibiting a range of hydrophobicity values based on a method that estimates hydrophobicity. Successive iterations of screening and refining the method defined a threshold hydrophobicity required for SRP recognition. While all of the SRP-dependent signal sequences identified were above this threshold, there were also a few signal sequences above the threshold that did not utilize the SRP pathway. These results suggest that a simple measure of the hydrophobicity of a signal sequence is an important but not a sufficient indicator for SRP recognition. In addition, by fusing a number of both classes of signal sequences to DsbA, we found that DsbA utilizes an SRP-dependent signal sequence to achieve efficient export to the periplasm. Our results suggest that those proteins found to be exported by SRP-dependent signal sequences may require this mode of export because of their tendency to fold rapidly in the cytoplasm.  相似文献   

15.
It has been shown that the synthesis of an export-defective protein can interfere with the normal export process in Escherichia coli by limiting the availability of SecB protein, a component of the export apparatus (Collier, D.N., Bankaitis, V.A., Weiss, J.B., and Bassford, P.J. (1988) Cell 53, 273-283). Consistent with this observation, we find that the interference elicited by an export-defective LamB protein is a titratable response resulting from the limitation of a single ligand. We have mapped the interfering region in LamB to between amino acids 320 and 380 of the mature protein. Expression of this sequence in the form of a LacZ-LamB-LacZ fusion protein elicits the export interference phenotype. Deletion of the sequence from an export-defective LamB protein eliminates the ability of this protein to interfere with the export of other secreted proteins. Together, these findings show that this sequence is both necessary and sufficient to cause export interference. Surprisingly, deletion of this sequence from an otherwise wild-type LamB protein does not cause the mutant LamB product to exhibit any obvious export defect. Based on our results, we propose that SecB interacts with both amino acids 320-380 of mature LamB and the LamB signal sequence during initiation of the export process.  相似文献   

16.
NCA (nonspecific cross-reacting antigen), a glycoprotein found in normal lung and spleen, is immunologically related to carcinoembryonic antigen (CEA), which is found in over 95% of colon adenocarcinomas. From a human genomic library, we previously cloned part of an NCA gene and showed that the amino-terminal region has extensive sequence homology to CEA (Thompson, J. A., Pande, H., Paxton, R. J., Shively, L., Padma, A., Simmer, R. L., Todd, Ch. W., Riggs, A. D., and Shively, J.E. (1987) Proc. Natl. Acad. Sci. U. S.A. 84, 2965-2969). We now present the nucleotide sequence of a cDNA clone, containing the entire coding region of NCA (clone 9). The clone was obtained from a lambda gt 10 library made from the colon carcinoma cell line SW 403; the clone contains a 34-amino acid leader sequence, 310 amino acids for the mature protein, and 1.4 kilobases of 3'-untranslated region of the NCA gene. A comparison of the NCA sequence to the CEA sequence (Oikawa, S., Nakazato, H., and Kosaki, G. (1987) Biochem. Biophys. Res. Commun. 142, 511-518; Zimmerman, W., Ortlieb, B., Friedrich, R., and von Kleist, S. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 2690-2694) shows that both proteins contain doublets of an immunoglobulin-like domain, of which there are one copy in NCA and three copies in CEA, a 108-amino acid amino-terminal domain with no cysteine residues, and a carboxyl-terminal hydrophobic domain of sufficient length to anchor the glycoproteins in the cell membrane. Overall, the corresponding coding regions possess 85% sequence homology at the amino acid level and 90% homology at the nucleotide level. Forty nucleotides 3' of their stop codons, the CEA and NCA cDNAs become dissimilar. The 108-amino acid amino-terminal region together with part of the leader peptide sequence corresponds exactly to a single exon described in our previous work. The data presented here further demonstrate the likelihood that CEA recently evolved from NCA by gene duplication, including two duplications of the immunoglobulin-like domain doublet of NCA.  相似文献   

17.
Excretion of the egl gene product of Pseudomonas solanacearum.   总被引:8,自引:6,他引:2       下载免费PDF全文
  相似文献   

18.
We report here that the human interleukin-1 beta precursor (proIL-1 beta) protein as well as several interleukin-1 beta (IL-1 beta) subpeptides bind cellular receptors specifically and exhibit biological activity by stimulating proliferation of helper T-cells. IL-1 beta polypeptides have been synthesized by in vitro translation of mRNAs transcribed from plasmid vectors containing the bacteriophage SP6 promoter joined to the complete IL-1 beta cDNA or to deletion constructs. The quantity of IL-1 beta in vitro translation products was increased significantly by replacing the cognate IL-1 beta untranslated leader sequence with a 37-nucleotide plant viral untranslated leader. Translation of chimeric mRNAs followed by direct bioactivity assay demonstrated that mature IL-1 beta-(117-269), proIL-1 beta-(1-269), and peptide IL-1-(71-269) were all biologically active. Specific binding to cellular receptors was observed with these three IL-1 beta molecules; moreover, several peptides with minimal biological activity also bound receptor specifically. The biological activity and receptor binding properties of the IL-1 beta proteins reported here contrast with those described by Mosley et al. (Mosley, B., Urdal, D. L., Prickett, K. S., Larsen, A., Cosman, D., Conlon, P. J., Gillis, S., and Dower, S. K. (1987) J. Biol. Chem. 262, 2941-2944; Mosley, B., Dower, S. K., Gillis, S., and Cosman, D. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4572-4576), who reported that proIL-1 beta-(1-269) had no biological activity and does not bind receptor. Our results indicate that proIL-1 beta is active at a relatively high concentration, and analysis of the proIL-1 beta-(1-269) and IL-1-(71-269) bioactivity data suggests a possible relationship with membrane-bound IL-1.  相似文献   

19.
The precursor to rat liver mitochondrial aspartate aminotransferase has been expressed in Escherichia coli JM105 using the pKK233-2 expression vector. This mammalian natural precursor has been isolated as a soluble dimeric protein. The amino-terminal sequence and the amino acid composition of the isolated protein correspond to those predicted from the inserted cDNA (Mattingly, J. R., Jr., Rodriguez-Berrocal, F. J., Gordon, J., Iriarte, A., and Martinez-Carrion, M. (1987) Biochem. Biophys. Res. Commun. 149, 859-865). The isolated precursor contains bound pyridoxal phosphate and shows catalytic activity with a specific activity equal to that of the mature form of the enzyme. This precursor can also be processed by mitochondria into a form with the sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility of mature enzyme. The isolation of this precursor as a stable and catalytically active entity indicates that the presequence peptide does not necessarily interfere with much of the folding and basic structural properties of the mature protein component.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号