共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Recently, Mendes et al. [1] described the use of a liquid tool (water) in captive orangutans. Here, we tested chimpanzees and gorillas for the first time with the same "floating peanut task." None of the subjects solved the task. In order to better understand the cognitive demands of the task, we further tested other populations of chimpanzees and orangutans with the variation of the peanut initially floating or not. Twenty percent of the chimpanzees but none of the orangutans were successful. Additional controls revealed that successful subjects added water only if it was necessary to obtain the nut. Another experiment was conducted to investigate the reason for the differences in performance between the unsuccessful (Experiment 1) and the successful (Experiment 2) chimpanzee populations. We found suggestive evidence for the view that functional fixedness might have impaired the chimpanzees' strategies in the first experiment. Finally, we tested how human children of different age classes perform in an analogous experimental setting. Within the oldest group (8 years), 58 percent of the children solved the problem, whereas in the youngest group (4 years), only 8 percent were able to find the solution. 相似文献
4.
5.
I used a zoological park setting to address food preferences among gorillas (Gorilla gorilla gorill) and chimpanzees (Pan troglodytes). Gorillas and chimpanzees are different sizes, and consequently, have been traditionally viewed as ecologically distinct. Sympatric western gorillas and chimpanzees have proved difficult to study in the wild. Limited field data have provided conflicting information about whether gorillas are fundamentally different from chimpanzees in diet and behavior. Fruit eating shapes the behavior of most apes, but it is unclear whether the large-bodied gorillas are an exception to this rule, specifically whether they are less selective and more opportunistic fruit eaters than chimpanzees are. My research provides experimental observational data to complement field data and to better characterize the diets and food preferences of the African apes. During laboratory research at the San Francisco Zoological Gardens, I examined individual and specific differences in food preferences of captive gorillas and chimpanzees via experimental paired-choice food trials with foods that varied in nutritional content. During the study, I offered 2500 paired-food choices to 6 individual gorillas and 2000 additional pairs to them as a group. I also proffered 600 food pairs to 4 individual chimpanzees. Despite expectations of the implications of body size differences for diet, gorillas and chimpanzees exhibited similar food preferences. Both species preferred foods high in non-starch sugars and sugar-to-fiber ratios, and low in total dietary fiber. Neither species avoided foods containing tannins. These data support other suggestions of African apes sharing a frugivorous adaptation. 相似文献
6.
Alan S. Ryan 《Primates; journal of primatology》1981,22(4):533-550
Anterior dental microwear is shown to be related to diet and to feeding habits in three groups of extant African primates includingPan troglodytes troglodytes, Gorilla gorilla gorilla andPapio hamadryas. Five distinct types of incisal microwear are found in these groups. These include: fine wear striae, polish, small pits, large pits and microflakes. It is demonstrated that each species exhibits a different set of microwear types. Chimpanzees exhibit extensive pitting, mesiodistally oriented fine wear striae and small areas of polish, features of microwear that are probably related to the husking of hard fruit skins and the occasional stripping of leaves. Gorillas show large areas of polish, small pits and labiolingually oriented wear striae, a combination of features that may be associated with the stripping of leaves and pith. Baboons show extensive edge damage involving clusters of large pits and microflakes; this set of microwear types may be related to the initial chewing of gravel-laden seeds, roots and rhizomes. Microwear found on the canine/premolar complex of all three groups corresponds to the puncture-crushing and to the slicing of food. 相似文献
7.
Thurston C. Hicks Roger S. Fouts Deborah H. Fouts 《Journal of applied animal welfare science : JAAWS》2013,16(3):165-188
Currently, the timber company Industrie Forestiére du Batalimo is selectively logging the Ngotto Forest in the Central African Republic. The forest is home to a population of chimpanzees (Pan troglodytes troglodytes) and gorillas (Gorilla gorilla gorilla) and provides the Bofi-speaking people of Grima with food, medicine, housing material, and other commodities. Over a 7-month period, the research team conducted a line-transect survey of the great ape population in the forests to the south of Grima to document their distribution. For comparison purposes, the team also surveyed a section of adjacent forest that had already been logged. Ape nests were significantly rarer in the logged forest than in the unlogged forest, and ape nests were most common in the more pristine forests to the south. This report further discusses the effects of logging and other human activities. 相似文献
8.
Urinary estrogen components were separated, identified and quantified throughout the pregnancy of the gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) and compared to estrogen levels in normal human pregnancies. Fetal and neonatal adrenals from each species were also compared in terms of weight and relative amounts of fetal zone. The results demonstrate that gorillas and chimpanzees excrete 4- to 5-fold less estrogen during pregnancy than the human and orangutan which are similar to each other. The lower estrogen excretion appears to be related to a smaller fetal adrenal in both the gorilla and chimpanzee which reveal both a reduced adrenal weight and increased definitive to fetal zone ratio when compared to either the human or orangutan. 相似文献
9.
10.
11.
A. R. Mitchell H. N. Seuanez Sandra S. Lawrie D. E. Martin J. R. Gosden 《Chromosoma》1977,61(4):345-358
Radioactive RNA with sequences complementary to human DNA satellite III was hybridised in situ to metaphase chromosomes of the chimpanzee (Pan troglodytes), the gorilla (Gorilla gorilla) and the orangutan (Pongo pygmaeus). A quantitative analysis of the radioactivity, and hence of the chromosomal distribution of human DNA satellite III equivalent sequences in the great apes, was undertaken, and the results compared with interspecies chromosome homologies based upon Giemsa banding patterns. In some instances DNA with sequence homology to human satellite III is present on the equivalent (homologous) chromosomes in identical positions in two or more species although quantitative differences are observed. In other cases there appears to be no correspondence between satellite DNA location and chromosome homology determined by banding patterns. These results differ from those found for most transcribed DNA sequences where the same sequence is located on homologous chromosomes in each species. 相似文献
12.
In this study, we tested the corridor illusion in three chimpanzees and five humans, applying a relative size discrimination task to assess pictorial depth perception using linear perspective. The subjects were required to choose the physically larger cylinder of two on a background containing drawn linear perspective cues. We manipulated both background and cylinder size in each trial. Our findings suggest that chimpanzees, like humans, exhibit the corridor illusion. 相似文献
13.
The euchromatic regions of chimpanzee (Pan troglodytes) genome share approximately 98% sequence similarity with the human (Homo sapiens), while the heterochromatic regions display considerable divergence. Positive heterochromatic regions revealed by the CBG-technique are confined to pericentromeric areas in humans, while in chimpanzees, these regions are pericentromeric, telomeric, and intercalary. When human chromosomes are digested with restriction endonuclease AluI and stained by Giemsa (AluI/Giemsa), positive heterochromatin is detected only in the pericentromeric regions, while in chimpanzee, telomeric, pericentromeric, and in some chromosomes both telomeric and centromeric, regions are positive. The DA/DAPI technique further revealed extensive cytochemical heterogeneity of heterochromatin in both species. Nevertheless, the fluorescence in situ hybridization technique (FISH) using a centromeric alpha satellite cocktail probe revealed that both primates share similar pericentromeric alpha satellite DNA sequences. Furthermore, cross-hybridization experiments using chromosomes of gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) suggest that the alphoid repeats of human and great apes are highly conserved, implying that these repeat families were present in their common ancestor. Nevertheless, the orangutan's chromosome 9 did not cross-hybridize with human probe. The euchromatic regions of chimpanzee (Pan troglodytes) genome share approximately 98% sequence similarity with the human (Homo sapiens), while the heterochromatic regions display considerable divergence. Positive heterochromatic regions revealed by the CBG-technique are confined to pericentromeric areas in humans, while in chimpanzees, these regions are pericentromeric, telomeric, and intercalary. When human chromosomes are digested with restriction endonuclease AluI and stained by Giemsa (AluI/Giemsa), positive heterochromatin is detected only in the pericentromeric regions, while in chimpanzee, telomeric, pericentromeric, and in some chromosomes both telomeric and centromeric, regions are positive. The DA/DAPI technique further revealed extensive cytochemical heterogeneity of heterochromatin in both species. Nevertheless, the fluorescence in situ hybridization technique (FISH) using a centromeric alpha satellite cocktail probe revealed that both primates share similar pericentromeric alpha satellite DNA sequences. Furthermore, cross-hybridization experiments using chromosomes of gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) suggest that the alphoid repeats of human and great apes are highly conserved, implying that these repeat families were present in their common ancestor. Nevertheless, the orangutan's chromosome 9 did not cross-hybridize with human probe. © 1995 Wiley-Liss, Inc. 相似文献
14.
Claudia Menzel Andrew Fowler Claudio Tennie Josep Call 《International journal of primatology》2013,34(3):533-553
Researchers have described apparently self-medicative behaviors for a variety of nonhuman species including birds and primates. Wild chimpanzees, bonobos, and gorillas have been observed to swallow rough leaves without chewing, a behavior proposed to be self-medicative and to aid control of intestinal parasites. Researchers have hypothesized that the presence of hairs on the leaf surface elicits the behavior. We investigated the acquisition and the underlying mechanisms of leaf swallowing. We provided 42 captive great apes (24 chimpanzees, six bonobos, six gorillas, and six orangutans) with both rough-surfaced and hairless plants. None of the subjects had previously been observed to engage in leaf swallowing behavior and were therefore assumed naïve. Two chimpanzees and one bonobo swallowed rough-surfaced leaves spontaneously without chewing them. In a social setup six more chimpanzees acquired the behavior. None of the gorillas or orangutans showed leaf swallowing. Because this behavior occurred in naïve individuals, we conclude that it is part of the behavioral repertoire of chimpanzees and bonobos. Social learning is thus not strictly required for the acquisition of leaf swallowing, but it may still facilitate its expression. The fact that apes always chewed leaves of hairless control plants before swallowing, i.e., normal feeding behavior, indicates that the surface structure of leaves is indeed a determinant for initiating leaf swallowing in apes where it occurs. 相似文献
15.
A census was made of gorilla and chimpanzee populations throughout Gabon between December 1980 and February 1983. The aim of the census was to estimate the total numbers of both species and describe their distributions. The method was based on nest counts from line transects which allowed the calculation of population densities of all individuals except suckling infants. Fifteen types of habitat were recognized and defined in terms of their structural features. In the initial phase of the study we did transects in each habitat-type and computed mean densities for each species in each habitat-type. In the second phase of the study we estimated the sizes of gorilla and chimpanzee populations throughout the country by extrapolation from these population density values. We did transects in all areas of the country and conducted interviews to check the accuracy of the population totals obtained by extrapolation. Corrections were made to the extrapolated totals to take into account different levels of hunting pressure and other human activities found to modify ape population densities. Total populations of 34,764 gorillas and 64,173 chimpanzees were estimated. An error of ± 20% was associated with the estimated population totals, which allows the conclusion that Gabon contains 35,000 ± 7,000 gorillas and 64,000 ± 13,000 chimpanzees. The figure for gorillas is much larger than previous estimates. This seems to be because (1) gorillas occur in almost all types of forest and are not restricted to man-made secondary forest as had been though; and (2) the geographical distribution of gorillas in Gabon is wider than previously believed. Gabon's large areas of undisturbed primary forest offer exceptional potential for conservation, not only of gorillas and chimpanzees, but also of the intact tropical rain forest ecosystems which they inhabit. 相似文献
16.
Monitoring populations of endangered species over time is necessary to guide and evaluate conservation efforts. This is particularly important for nonprotected areas that ensure connectivity between protected populations but are prone to uncontrolled hunting pressure. We investigated whether use of transects by local people and transect reuse for repeated surveys influence great ape nesting and bias results. We conducted simultaneous marked nest count surveys over 12 mo on established and newly opened transects in a nonprotected area subject to traditional heavy use by local people and recorded forest composition and signs of human activity. Chimpanzee and gorilla density estimates and encounter rates per kilometer were lower on established transects than on new ones. A generalized linear model indicated that hunting activity, distance to a regularly used forest trail, and transect type (old or new) predicted chimpanzee nest abundance, and distance to the trail and transect type predicted gorilla nest abundance, with no effect of habitat type (percentage suitable habitat) for either species. We, therefore, suggest that the difference in great ape nesting is a result of high levels of hunting by local people on established transects and forest trails. Our results support the use of repeated line transect surveys for monitoring great ape populations in many circumstances, although we advocate taking precautions in nonprotected areas, to avoid the bias imposed by use of established transects for hunting. 相似文献
17.
Great apes and humans use their hands in fundamentally different ways, but little is known about joint biomechanics and internal bone variation. This study examines the distribution of mineral density in the third metacarpal heads in three hominoid species that differ in their habitual joint postures and loading histories. We test the hypothesis that micro-architectural properties relating to bone mineral density reflect habitual joint use. The third metacarpal heads of Pan troglodytes, Pongo pygmaeus, and Homo sapiens were sectioned in a sagittal plane and imaged using backscattered electron microscopy (BSE-SEM). For each individual, 72 areas of subarticular cortical (subchondral) and trabecular bone were sampled from within 12 consecutive regions of the BSE-SEM images. In each area, gray levels (representing relative mineralization density) were quantified.Results show that chimpanzee, orangutan, and human metacarpal III heads have different gray level distributions. Weighted mean gray levels (WMGLs) in the chimpanzee showed a distinct pattern in which the ‘knuckle-walking’ regions (dorsal) and ‘climbing’ regions (palmar) are less mineralized, interpreted to reflect elevated remodeling rates, than the distal regions. Pongo pygmaeus exhibited the lowest WMGLs in the distal region, suggesting elevated remodeling rates in this region, which is loaded during hook grip hand postures associated with suspension and climbing. Differences among regions within metacarpal heads of the chimpanzee and orangutan specimens are significant (Kruskal–Wallis, p < 0.001). In humans, whose hands are used for manipulation as opposed to locomotion, mineralization density is much more uniform throughout the metacarpal head. WMGLs were significantly (p < 0.05) lower in subchondral compared to trabecular regions in all samples except humans. This micro-architectural approach offers a means of investigating joint loading patterns in primates and shows significant differences in metacarpal joint biomechanics among great apes and humans. 相似文献
18.
Sympatric populations of lowland gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in the Lopé Reserve in central Gabon consumed insects at similar average frequencies over a 7-year period (30% versus 31% feces contained insect remains). Data came mostly from fecal analysis supplemented by observation and trail evidence. The weaver ant (Oecophylla longinoda) was the species eaten most frequently by both gorillas and chimpanzees. Other species of insects wore eaten but there was virtually no overlap: Chimpanzees used tools to eat Apis bees (and their honey) and two large species of ants; gorillas ate three species of small ants. Thus, despite their shared habitat, the esources utilized were not identical as gorillas do not show the tool-use “technology” of chimpanzees. The frequency of insect-eating by both species of ape varied seasonally and between years but in different ways. This variation did not seem to be related to the ratio of fruit to foliage in their diets. Gorillas of all age-classes ate insects at similar rates. Comparisons with insectivory by other populations of gorillas indicate differences exist. Mountain gorillas (Gorilla g. beringei) in the Virunga Volcanoes, Rwanda, consume thousands of invertebrates daily, eating them inadvertently with handfuls of herbaceous foods but they deliberately ingest insect-foods only rarely. Lowland gorillas at Lopé habitually ate social insects, and their selective processing of herbaceous foods probably minimizes inadvertent consumption of other invertebrates. Gorillas at Belinga in northeastern Gabon, 250 km from Lop6, ate social insects at similar rates but ignored weaver ants in favor of Cubitermes sulcifrons, a small species of termite that occurs at Lopé but was not eaten by gorillas. This indicates that local traditions similar to those reported for chimpanzees also exist amongst populations of gorillas. © 1992 Wiley-Liss, Inc. 相似文献
19.
To examine the evolutionary differences between hominoid locomotor systems, a number of observations concerning the growth of the pelvis among the great apes as compared to modern and fossil hominids are reported. We are interested in the size and shape of the coxal bones at different developmental stages across species that may elucidate the relationship between ontogeny and phylogeny (i.e., heterochrony) in the hominoid pelvis. Our hypotheses are: (1) do rates of absolute growth differ?, (2) do rates of relative growth differ?, and (3) does heterochrony explain these differences? Bivariate and multivariate analyses of pelvic dimensions demonstrate both the diversity of species-specific ontogenetic patterns among hominoids, and an unequivocal separation of hominids and the great apes. Heterochrony alone fails to account for the ontogenetic differences between hominids and the great apes. Compared to recent Homo,Australopithecus can be described as 'hyper-human' from the relative size of the ischium, and short but broad ilium. Australopithecus afarensis differs from Australopithecus africanus by its relatively long pubis. In multivariate analyses of ilium shape, the most complete coxal bone attributed to Homo erectus, KNM-ER 3228, falls within the range of juvenile and adult Australopithecus, whereas Broken Hill falls within the range of modern Homo, suggesting that the modern human ilium shape arose rather recently. Among the great apes, patterns of pelvic ontogeny do not exclusively separate the African apes from Pongo. 相似文献
20.
Human satellite DNAs I, II and IV were transcribed to yield radioactive complementary RNAs (cRNAs). These cRNAs were hybridised to metaphase chromosomes of man, chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla) and orang utan (Pongo pygmaeus). The results of this in situ hybridisation were analysed quantitatively and compared with accepted chromosome homologies based on Giemsa banding patterns. The cRNA to satellite II (cRNAII) did not hybridise to chimpanzee chromosomes, although its hybridisation to chromosomes of gorilla and orang utan yielded more autoradiograph grains than hybridisation to human chromosomes, and cRNAIV hybridised to many chromosomes of gorilla and chimpanzee but was almost entirely restricted to the Y chromosome in orang utan. Most sites of hybridisation were located on homologous chromosomes in all four species, but there were a number of sites which showed no correspondence between satellite DNA location and chromosome banding patterns, and others where a given chromosomal location hybridised with different cRNAs in each species. These results are in contrast to those found for many transcribed DNA sequences, where the same sequence is usually located at homologous chromosome sites in different species, and appear to cast doubt on many proposed models of satellite DNA function. 相似文献