首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize the "portal signal" during physiological glucose delivery, liver glycogen was measured in unrestrained rats during portal (Po) and peripheral (Pe) constant-rate infusion, with minimal differences in hepatic glucose load (HGL) and portal insulin between the delivery routes. Hepatic blood flows were measured by Doppler flowmetry during open surgery. Changes in hepatic glucose, portal insulin, glucagon, lactate, and free fatty acid concentrations were generally similar in either delivery except for glucagon at 4 h. Hepatic glycogen, however, increased continuously in Po and was higher than Pe at 8 and 24 h, although it decreased to the level of Pe upon the removal of Po at 8 h. There was a near-linear relationship between hepatic glycogen and HGL in either delivery, with the slope being twice as high in Po and the intercepts converging to basal HGL. The hepatic response to Po did not alter upon 80% replacement by Pe. These results suggest that negative arterial-portal glucose gradients increase the rate of hepatic glycogen synthesis against the incremental HGL in an all-or-nothing mode.  相似文献   

2.
The glycemic and hormonal responses and net hepatic and nonhepatic glucose uptakes were quantified in conscious 42-h-fasted dogs during a 180-min infusion of glucose at 10 mg. kg(-1). min(-1) via a peripheral (Pe10, n = 5) or the portal (Po10, n = 6) vein. Arterial plasma insulin concentrations were not different during the glucose infusion in Pe10 and Po10 (37 +/- 6 and 43 +/- 12 microU/ml, respectively), and glucagon concentrations declined similarly throughout the two studies. Arterial blood glucose concentrations during glucose infusion were not different between groups (125 +/- 13 and 120 +/- 6 mg/dl in Pe10 and Po10, respectively). Portal glucose delivery made the hepatic glucose load significantly greater (36 +/- 3 vs. 46 +/- 5 mg. kg(-1). min(-1) in Pe10 vs. Po10, respectively, P < 0.05). Net hepatic glucose uptake (NHGU; 1.1 +/- 0. 4 vs. 3.1 +/- 0.4 mg. kg(-1). min(-1)) and fractional extraction (0. 03 +/- 0.01 vs. 0.07 +/- 0.01) were smaller (P < 0.05) in Pe10 than in Po10. Nonhepatic (primarily muscle) glucose uptake was correspondingly increased in Pe10 compared with Po10 (8.9 +/- 0.4 vs. 6.9 +/- 0.4 mg. kg(-1). min(-1), P < 0.05). Approximately one-half of the difference in NHGU between groups could be accounted for by the difference in hepatic glucose load, with the remainder attributable to the effect of the portal signal itself. Even in the absence of somatostatin and fixed hormone concentrations, the portal signal acts to alter partitioning of a glucose load among the tissues, stimulating NHGU and reducing peripheral glucose uptake.  相似文献   

3.
In recent years similarities recognized between porcine and human anatomy and physiology have made the pig an experimental animal of considerable value in biomedical research. We developed a pig model for unrestrained repeated sampling of portal and arterial blood, and selectively of small and large bowel veins. Catheters were inserted, under halothane anesthesia, in ten female crossbred (Yorkshire x Dutch Landrace) piglets (8 weeks; 20 +/- 2 kg). After recovery for at least 3 days the catheters were used for sampling of blood. Aortic and portal catheters patency rates were 60% at day 24. For the small bowel catheters, a patency rate of 30% was seen at day 24. The large bowel patency rate was 30% at day 10. These results are promising because they allow long-term metabolic splanchnic research in unrestrained piglets.  相似文献   

4.
It has been demonstrated in the conscious dog that portal glucose infusion creates a signal that increases net hepatic glucose uptake and hepatic glycogen deposition. Experiments leading to an understanding of the mechanism by which this change occurs will be facilitated if this finding can be reproduced in the rat. Rats weighing 275-300 g were implanted with four indwelling catheters (one in the portal vein, one in the left carotid artery, and two in the right jugular vein) that were externalized between the scapulae. The rats were studied in a conscious, unrestrained condition 7 days after surgery, following a 24-h fast. Each experiment consisted of a 30- to 60-min equilibration, a 30-min baseline, and a 120-min test period. In the test period, a pancreatic clamp was performed by using somatostatin, insulin, and glucagon. Glucose was given simultaneously either through the jugular vein to clamp the arterial blood level at 220 mg/dl (Pe low group) or at 250 mg/dl (Pe high group), or via the hepatic portal vein (Po group; 6 mg. kg(-1). min(-1)) and the jugular vein to clamp the arterial blood glucose level to 220 mg/dl. In the test period, the arterial plasma glucagon and insulin levels were not significantly different in the three groups (36 +/- 2, 33 +/- 2, and 30 +/- 2 pg/ml and 1.34 +/- 0.08, 1. 37 +/- 0.18, and 1.66 +/- 0.11 ng/ml in Po, Pe low, and Pe high groups, respectively). The arterial blood glucose levels during the test period were 224 +/- 4 mg/dl for Po, 220 +/- 3 for Pe low, and 255 +/- 2 for Pe high group. The liver glycogen content (micromol glucose/g liver) in the two Pe groups was not statistically different (51 +/- 7 and 65 +/- 8, respectively), whereas the glycogen level in the Po group was significantly greater (93 +/- 9, P < 0.05). Because portal glucose delivery also augments hepatic glycogen deposition in the rat, as it does in the dogs, mechanistic studies relating to its function can now be undertaken in this species.  相似文献   

5.
In the United States alone, the National Heart, Lung, and Blood Institute (NHLBI) has invested several hundred million dollars in pursuit of myocardial infarct-sparing therapies. However, due largely to methodological limitations, this investment has not produced any notable clinical application or cardioprotective therapy. Among the major methodological limitations is the reliance on animal models that do not mimic the clinical situation. In this context, the limited use of conscious animal models is of major concern. In fact, whenever possible, studies of cardiovascular physiology and pathophysiology should be conducted in conscious, complex models to avoid the complications associated with the use of anesthesia and surgical trauma. The mouse has significant advantages over other experimental models for the investigation of infarct-sparing therapies. The mouse is inexpensive, has a high throughput, and presents the ability of one to create genetically modified models. However, successful infarct-sparing therapies in anesthetized mice or isolated mouse hearts may not be successful in more complex models, including conscious mice. Accordingly, a conscious mouse model of myocardial ischemia and reperfusion has the potential to be of major importance for advancing the concepts and methods that drive the development of infarct-sparing therapies. Therefore, we describe, for the first time, the use of an intact, conscious, and unrestrained mouse model of myocardial ischemia-reperfusion and infarction. The conscious mouse model permits occlusion and reperfusion of the left anterior descending coronary artery in an intact, complex model free of the confounding influences of anesthetics and surgical trauma. This methodology may be adopted for advancing the concepts and ideas that drive cardiovascular research.  相似文献   

6.
The daily rhythm of glucose metabolism is governed by the circadian clock, which consists of cell-autonomous clock machineries residing in nearly every tissue in the body. Disruption of these clock machineries either environmentally or genetically induces the dysregulation of glucose metabolism. Although the roles of clock machineries in the regulation of glucose metabolism have been uncovered in major metabolic tissues, such as the pancreas, liver, and skeletal muscle, it remains unknown whether clock function in non-major metabolic tissues also affects systemic glucose metabolism. Here, we tested the hypothesis that disruption of the clock machinery in the heart might also affect systemic glucose metabolism, because heart function is known to be associated with glucose tolerance. We examined glucose and insulin tolerance as well as heart phenotypes in mice with heart-specific deletion of Bmal1, a core clock gene. Bmal1 deletion in the heart not only decreased heart function but also led to systemic insulin resistance. Moreover, hyperglycemia was induced with age. Furthermore, heart-specific Bmal1-deficient mice exhibited decreased insulin-induced phosphorylation of Akt in the liver, thus indicating that Bmal1 deletion in the heart causes hepatic insulin resistance. Our findings revealed an unexpected effect of the function of clock machinery in a non-major metabolic tissue, the heart, on systemic glucose metabolism in mammals.  相似文献   

7.
A method is described for comprehensive hemodynamic study of undisturbed baboons (Papio hamadryas) that incorporates cardiac output measurement by thermodilution. Instrumentation includes arterial, aortic, and central venous catheterization by a surgical technique that does not require entry to peritoneal or thoracic cavities. It provides a means for right atrial indicator delivery with aortic temperature recording of thermodilution curves. Accuracy was confirmed by comparison to measurement by Swan-Ganz catheters. Diurnal variations of systemic arterial pressure in long-term study of conscious baboons were shown to result from significant increases in cardiac output by day (P less than 0.001), despite concomitant falls in systemic vascular resistance. The cardiac output values obtained were 0.13 l.min-1.kg-1 at night and 0.16 l.min-1.kg-1 by day. Comparison of these results to previous reports of cardiac output in baboons highlights the inadequacies of methods that require physical restraint or anesthesia. This technique also leaves the baboons intact for subsequent breeding or experimental use after catheter removal without the need for further surgery.  相似文献   

8.
Hypoglycemia-induced counterregulatory failure is a dangerous complication of insulin use in diabetes mellitus. Controlled hypoglycemia studies in gene knockout models, which require the use of mice, would aid in identifying causes of defective counterregulation. Because stress can influence counterregulatory hormones and glucose homeostasis, we developed glucose clamps with remote blood sampling in conscious, unrestrained mice. Male C57BL/6 mice implanted with indwelling carotid artery and jugular vein catheters were subjected to 2 h of hyperinsulinemic glucose clamps 24 h apart, with a 6-h fast before each clamp. On day 1, blood glucose was maintained (euglycemia, 178 +/- 4 mg/dl) or decreased to 62 +/- 1 mg/dl (hypoglycemia) by insulin (20 mU x kg(-1) x min(-1)) and variable glucose infusion. Donor blood was continuously infused to replace blood sample volume. Baseline plasma epinephrine (32 +/- 8 pg/ml), corticosterone (16.1 +/- 1.8 microg/dl), and glucagon (35 +/- 3 pg/ml) were unchanged during euglycemia but increased significantly during hypoglycemia, with a glycemic threshold of approximately 80 mg/dl. On day 2, all mice underwent a hypoglycemic clamp (blood glucose, 64 +/- 1 mg/dl). Compared with mice that were euglycemic on day 1, previously hypoglycemic mice had significantly higher glucose requirements and significantly lower plasma glucagon and corticosterone (n = 6/group) on day 2. Epinephrine tended to decrease, although not significantly, in repeatedly hypoglycemic mice. Pre- and post-clamp insulin levels were similar between groups. We conclude that counterregulatory responses to acute and repeated hypoglycemia in unrestrained, chronically cannulated mice reproduce aspects of counterregulation in humans, and that repeated hypoglycemia in mice is a useful model of counterregulatory failure.  相似文献   

9.
Arteriovenous difference and tracer ([3-(3)H]glucose) techniques were used in 42-h-fasted conscious dogs to identify any insulin-like effects of intraportally administered glucagon-like peptide 1-(7-36)amide (GLP-1). Each study consisted of an equilibration, a basal, and three 90-min test periods (P1, P2, and P3) during which somatostatin, intraportal insulin (3-fold basal) and glucagon (basal), and peripheral glucose were infused. Saline was infused intraportally in P1. During P2 and P3, GLP-1 was infused intraportally at 0.9 and 5.1 pmol. kg(-1). min(-1) in eight dogs, at 10 and 20 pmol. kg(-1). min(-1) in seven dogs, and at 0 pmol. kg(-1). min(-1) in eight dogs (control group). Net hepatic glucose uptake was significantly enhanced during GLP-1 infusion at 20 pmol. kg(-1). min(-1) [21.8 vs. 13.4 micromol. kg(-1). min(-1) (control), P < 0.05]. Glucose utilization was significantly increased during infusion at 10 and 20 pmol. kg(-1). min(-1) [87.3 +/- 8.3 and 105.3 +/- 12.8, respectively, vs. 62.2 +/- 5.3 and 74.7 +/- 7.4 micromol. kg(-1). min(-1) (control), P < 0.05]. The glucose infusion rate required to maintain hyperglycemia was increased (P < 0.05) during infusion of GLP-1 at 5.1, 10, and 20 pmol. kg(-1). min(-1) (22, 36, and 32%, respectively, greater than control). Nonhepatic glucose uptake increased significantly during delivery of GLP-1 at 5.1 and 10 pmol. kg(-1). min(-1) (25 and 46% greater than control) and tended (P = 0.1) to increase during GLP-1 infusion at 20 pmol. kg(-1). min(-1) (24% greater than control). Intraportal infusion of GLP-1 at high physiological and pharmacological rates increased glucose disposal primarily in nonhepatic tissues.  相似文献   

10.
A surgical technique is described for chronic arterial and venous catheterization of unrestrained adult baboons. Vascular access was achieved through a small (5 cm) abdominal incision and an extraperitoneal approach to the iliac vessels, which minimizes postoperative morbidity, discomfort, and restriction of movement. The method permits secure but nonocclusive catheterization, confirmed by angiography. Catheters were removed without further surgery, leaving the baboons intact for reuse. Catheters placed in the distal common or proximal external iliac vessels were all patent when removed at 46-61 days. The results demonstrate arterial pressure, pulse rates, drug administration, blood sampling, and plasma volume measurement as examples of the technique's application in conscious unrestrained baboons.  相似文献   

11.
12.
We assessed basal glucose metabolism in 16 female nonpregnant (NP) and 16 late-pregnant (P) conscious, 18-h-fasted dogs that had catheters inserted into the hepatic and portal veins and femoral artery approximately 17 days before the experiment. Pregnancy resulted in lower arterial plasma insulin (11 +/- 1 and 4 +/- 1 microU/ml in NP and P, respectively, P < 0.05), but plasma glucose (5.9 +/- 0.1 and 5.6 +/- 0.1 mg/dl in NP and P, respectively) and glucagon (39 +/- 3 and 36 +/- 2 pg/ml in NP and P, respectively) were not different. Net hepatic glucose output was greater in pregnancy (42.1 +/- 3.1 and 56.7 +/- 4.0 micromol. 100 g liver(-1).min(-1) in NP and P, respectively, P < 0.05). Total net hepatic gluconeogenic substrate uptake (lactate, alanine, glycerol, and amino acids), a close estimate of the gluconeogenic rate, was not different between the groups (20.6 +/- 2.8 and 21.2 +/- 1.8 micromol. 100 g liver(-1). min(-1) in NP and P, respectively), indicating that the increment in net hepatic glucose output resulted from an increase in the contribution of glycogenolytically derived glucose. However, total glycogenolysis was not altered in pregnancy. Ketogenesis was enhanced nearly threefold by pregnancy (6.9 +/- 1.2 and 18.2 +/- 3.4 micromol. 100 g liver(-1).min(-1) in NP and P, respectively), despite equivalent net hepatic nonesterified fatty acid uptake. Thus late pregnancy in the dog is not accompanied by changes in the absolute rates of gluconeogenesis or glycogenolysis. Rather, repartitioning of the glucose released from glycogen is responsible for the increase in hepatic glucose production.  相似文献   

13.
14.
The aim of this study was to determine whether the elimination of the hepatic arterial-portal (A-P) venous glucose gradient would alter the effects of portal glucose delivery on hepatic or peripheral glucose uptake. Three groups of 42-h-fasted conscious dogs (n = 7/group) were studied. After a 40-min basal period, somatostatin was infused peripherally along with intraportal insulin (7.2 pmol x kg(-1) x min(-1)) and glucagon (0.65 ng x kg(-1) x min(-1)). In test period 1 (90 min), glucose was infused into a peripheral vein to double the hepatic glucose load (HGL) in all groups. In test period 2 (90 min) of the control group (CONT), saline was infused intraportally; in the other two groups, glucose was infused intraportally (22.2 micromol x kg(-1) x min(-1)). In the second group (PD), saline was simultaneously infused into the hepatic artery; in the third group (PD+HAD), glucose was infused into the hepatic artery to eliminate the negative hepatic A-P glucose gradient. HGL was twofold basal in each test period. Net hepatic glucose uptake (NHGU) was 10.1 +/- 2.2 and 12.8 +/- 2.1 vs. 11.5 +/- 1.6 and 23.8 +/- 3.3* vs. 9.0 +/- 2.4 and 13.8 +/- 4.2 micromol x kg(-1) x min(-1) in the two periods of CONT, PD, and PD+HAD, respectively (* P < 0.05 vs. same test period in PD and PD+HAD). NHGU was 28.9 +/- 1.2 and 39.5 +/- 4.3 vs. 26.3 +/- 3.7 and 24.5 +/- 3.7* vs. 36.1 +/- 3.8 and 53.3 +/- 8.5 micromol x kg(-1) x min(-1) in the first and second periods of CONT, PD, and PD+HAD, respectively (* P < 0.05 vs. same test period in PD and PD+HAD). Thus the increment in NHGU and decrement in extrahepatic glucose uptake caused by the portal signal were significantly reduced by hepatic arterial glucose infusion. These results suggest that the hepatic arterial glucose level plays an important role in generation of the effect of portal glucose delivery on glucose uptake by liver and muscle.  相似文献   

15.
Insulin sensitivity regulated by feeding in the conscious unrestrained rat   总被引:1,自引:0,他引:1  
Hepatic insulin sensitizing substance (HISS), a putative hormone released from the liver in response to insulin in fed animals, accounts for 50-60% of insulin action. HISS release is regulated by permissive control of the hepatic parasympathetic nerves. The objectives were to develop the rapid insulin sensitivity test (RIST) in conscious rats, and to assess the effects of anesthesia, atropine, feeding, and fasting on insulin action. The RIST index, expressed as milligrams glucose per kilogram body weight required to maintain euglycemia after a 50 mU/kg bolus of insulin, was similar in conscious and anesthetized rats (238.6+/-42.5 vs. 225.3+/-30.4 mg/kg). Atropine produced a 56% inhibition of insulin action in fed rats. After a 24 h fast, full HISS-dependent insulin resistance had developed as shown by a low RIST index that was not reduced further by atropine. Fasting caused a 10.5% decrease in insulin action per hour over six hours. HISS-dependent insulin resistance in 24-h fasted rats was reversed 4 h after re-feeding (90.9+/-12.3 vs. 204.5+/-30.5 mg/kg). We conclude that HISS-dependent and HISS-independent insulin action, as assessed by the RIST, is similar in conscious and pentobarbital-anesthetized rats. Pharmacological blockade of HISS-dependent insulin action and physiological regulation of HISS action by feeding-fasting is confirmed. Re-feeding fasted rats reversed HISS-dependent insulin resistance. Merits of use of the RIST in conscious versus anesthetized rats are discussed.  相似文献   

16.
Improved method for bile collection in unrestrained conscious rats.   总被引:1,自引:0,他引:1  
We describe an improved method for continuous collection of bile from unrestrained rats. Use of an externally accessible, continuous-loop cannula when cannulating the common bile duct allows for full recovery from anesthetic effects and maintenance of a normal bile salt pool until the cannula loop is cut. Bile resulting from the cut cannula is diverted into a surgically implanted glass collection vessel and removed periodically via an externalized sampling port. Bile flow over a 24-hour collection period averaged 0.98 +/- 0.04 ml/hr (Mean +/- SEM, n = 9) with no gross pathological changes noted upon necropsy. This technique offers the capability of reestablishing conditions as close to physiologic as possible postsurgery to minimize potential artifacts during bile collection.  相似文献   

17.
Administration of supplemental glucose and/or insulin is postulated to improve the outcome from myocardial ischemia by increasing the heart's relative utilization of glucose as an energy substrate. To examine the degree to which circulating glucose and insulin levels actually influence myocardial substrate preference in vivo, we infused conscious, chronically catheterized rats with D-[1-(13)C]glucose and compared steady-state (13)C enrichment of plasma glucose with that of myocardial glycolytic ([3-(13)C]alanine) and oxidative ([4-(13)C]glutamate) intermediary metabolites. In fasting rats, [3-(13)C]alanine-to-[1-(13)C]glucose and [4-(13)C]glutamate-to-[3-(13)C]alanine ratios averaged 0.16 +/- 0.12 and 0.14 +/- 0.03, respectively, indicating that circulating glucose contributed 32% of myocardial glycolytic flux, whereas subsequent flux through pyruvate dehydrogenase contributed 14% of total tricarboxylic acid (TCA) cycle activity. Raising plasma glucose to 11 mmol/l, or insulin to 500 pmol/l, increased these contributions equivalently. At supraphysiological (>6,500 pmol/l) insulin levels, the plasma glucose contribution to glycolysis increased further, and addition of hyperglycemia made it the sole glycolytic substrate, yet [4-(13)C]glutamate-to-[3-(13)C]alanine ratios remained /=40% of myocardial TCA cycle flux.  相似文献   

18.
The influence of mu-selective opioid agonists on neonatal thermoregulatory mechanisms has received little attention. Opioid treatment in adult subjects can cause either hyper- or hypothermia, depending on the experimental conditions, the strain of rat used, and the dose and route of administration of the drug. The present study assessed the effect of two mu opioid agonists on body temperature in neonatal Wistar rats aged 2 to 13 days. Rat pups were administered either saline or one of the two mu-selective opioid agonists, dermorphin (0.4 mg/kg) or fentanyl (0.06 mg/kg), by subcutaneous injection. Continuous rectal temperatures were measured both prior to and following drug or saline injection in freely moving, conscious animals. Ambient temperature in a plethysmograph chamber was maintained within or close to the thermoneutral zone for pups (32 degrees C). To distinguish between mu-1 and mu-2 effects, all animals received either saline or 10 mg/kg of the irreversible mu-1 antagonist naloxonazine (NALZ) 1 day prior to agonist administration. NALZ on its own had no effect on body temperature. Dermorphin and fentanyl both caused a fall in body temperature in pups of all age groups. The temperature decreases ranged from 0.8 degrees -2.2 degrees C. These opioid-induced changes were inhibited by NALZ pretreatment. Although there was no evidence for endogenous mu-1 opioid activity, this study indicated that stimulation of mu-1 opioid receptors causes a decrease in body temperature in conscious, unrestrained neonatal rats under or close to thermoneutral conditions.  相似文献   

19.
20.
Dun XP  Li FF  Wang JH  Chen ZW 《Peptides》2008,29(6):891-897
Pea albumin 1F (PA1F), a plant peptide isolated from pea seeds, can dramatically increase blood glucose concentration by subcutaneous injection with a dosage of 5 or 10 μg/g (body weight) in normal and type II diabetic mice (KK/upj-Ay). The voltage-dependent anion channel 1 (VDAC-1) has been identified as the PA1F binding protein from mice pancreatic cell membrane, which may be involved in the regulation of enhancing blood glucose in response to PA1F binding. The results clearly show that peptide-signaling molecules from plants can affect mammalian physiological functions, especially, in association with glucose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号