首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize the "portal signal" during physiological glucose delivery, liver glycogen was measured in unrestrained rats during portal (Po) and peripheral (Pe) constant-rate infusion, with minimal differences in hepatic glucose load (HGL) and portal insulin between the delivery routes. Hepatic blood flows were measured by Doppler flowmetry during open surgery. Changes in hepatic glucose, portal insulin, glucagon, lactate, and free fatty acid concentrations were generally similar in either delivery except for glucagon at 4 h. Hepatic glycogen, however, increased continuously in Po and was higher than Pe at 8 and 24 h, although it decreased to the level of Pe upon the removal of Po at 8 h. There was a near-linear relationship between hepatic glycogen and HGL in either delivery, with the slope being twice as high in Po and the intercepts converging to basal HGL. The hepatic response to Po did not alter upon 80% replacement by Pe. These results suggest that negative arterial-portal glucose gradients increase the rate of hepatic glycogen synthesis against the incremental HGL in an all-or-nothing mode.  相似文献   

2.
In recent years similarities recognized between porcine and human anatomy and physiology have made the pig an experimental animal of considerable value in biomedical research. We developed a pig model for unrestrained repeated sampling of portal and arterial blood, and selectively of small and large bowel veins. Catheters were inserted, under halothane anesthesia, in ten female crossbred (Yorkshire x Dutch Landrace) piglets (8 weeks; 20 +/- 2 kg). After recovery for at least 3 days the catheters were used for sampling of blood. Aortic and portal catheters patency rates were 60% at day 24. For the small bowel catheters, a patency rate of 30% was seen at day 24. The large bowel patency rate was 30% at day 10. These results are promising because they allow long-term metabolic splanchnic research in unrestrained piglets.  相似文献   

3.
In the United States alone, the National Heart, Lung, and Blood Institute (NHLBI) has invested several hundred million dollars in pursuit of myocardial infarct-sparing therapies. However, due largely to methodological limitations, this investment has not produced any notable clinical application or cardioprotective therapy. Among the major methodological limitations is the reliance on animal models that do not mimic the clinical situation. In this context, the limited use of conscious animal models is of major concern. In fact, whenever possible, studies of cardiovascular physiology and pathophysiology should be conducted in conscious, complex models to avoid the complications associated with the use of anesthesia and surgical trauma. The mouse has significant advantages over other experimental models for the investigation of infarct-sparing therapies. The mouse is inexpensive, has a high throughput, and presents the ability of one to create genetically modified models. However, successful infarct-sparing therapies in anesthetized mice or isolated mouse hearts may not be successful in more complex models, including conscious mice. Accordingly, a conscious mouse model of myocardial ischemia and reperfusion has the potential to be of major importance for advancing the concepts and methods that drive the development of infarct-sparing therapies. Therefore, we describe, for the first time, the use of an intact, conscious, and unrestrained mouse model of myocardial ischemia-reperfusion and infarction. The conscious mouse model permits occlusion and reperfusion of the left anterior descending coronary artery in an intact, complex model free of the confounding influences of anesthetics and surgical trauma. This methodology may be adopted for advancing the concepts and ideas that drive cardiovascular research.  相似文献   

4.
The daily rhythm of glucose metabolism is governed by the circadian clock, which consists of cell-autonomous clock machineries residing in nearly every tissue in the body. Disruption of these clock machineries either environmentally or genetically induces the dysregulation of glucose metabolism. Although the roles of clock machineries in the regulation of glucose metabolism have been uncovered in major metabolic tissues, such as the pancreas, liver, and skeletal muscle, it remains unknown whether clock function in non-major metabolic tissues also affects systemic glucose metabolism. Here, we tested the hypothesis that disruption of the clock machinery in the heart might also affect systemic glucose metabolism, because heart function is known to be associated with glucose tolerance. We examined glucose and insulin tolerance as well as heart phenotypes in mice with heart-specific deletion of Bmal1, a core clock gene. Bmal1 deletion in the heart not only decreased heart function but also led to systemic insulin resistance. Moreover, hyperglycemia was induced with age. Furthermore, heart-specific Bmal1-deficient mice exhibited decreased insulin-induced phosphorylation of Akt in the liver, thus indicating that Bmal1 deletion in the heart causes hepatic insulin resistance. Our findings revealed an unexpected effect of the function of clock machinery in a non-major metabolic tissue, the heart, on systemic glucose metabolism in mammals.  相似文献   

5.
Hypoglycemia-induced counterregulatory failure is a dangerous complication of insulin use in diabetes mellitus. Controlled hypoglycemia studies in gene knockout models, which require the use of mice, would aid in identifying causes of defective counterregulation. Because stress can influence counterregulatory hormones and glucose homeostasis, we developed glucose clamps with remote blood sampling in conscious, unrestrained mice. Male C57BL/6 mice implanted with indwelling carotid artery and jugular vein catheters were subjected to 2 h of hyperinsulinemic glucose clamps 24 h apart, with a 6-h fast before each clamp. On day 1, blood glucose was maintained (euglycemia, 178 +/- 4 mg/dl) or decreased to 62 +/- 1 mg/dl (hypoglycemia) by insulin (20 mU x kg(-1) x min(-1)) and variable glucose infusion. Donor blood was continuously infused to replace blood sample volume. Baseline plasma epinephrine (32 +/- 8 pg/ml), corticosterone (16.1 +/- 1.8 microg/dl), and glucagon (35 +/- 3 pg/ml) were unchanged during euglycemia but increased significantly during hypoglycemia, with a glycemic threshold of approximately 80 mg/dl. On day 2, all mice underwent a hypoglycemic clamp (blood glucose, 64 +/- 1 mg/dl). Compared with mice that were euglycemic on day 1, previously hypoglycemic mice had significantly higher glucose requirements and significantly lower plasma glucagon and corticosterone (n = 6/group) on day 2. Epinephrine tended to decrease, although not significantly, in repeatedly hypoglycemic mice. Pre- and post-clamp insulin levels were similar between groups. We conclude that counterregulatory responses to acute and repeated hypoglycemia in unrestrained, chronically cannulated mice reproduce aspects of counterregulation in humans, and that repeated hypoglycemia in mice is a useful model of counterregulatory failure.  相似文献   

6.
Arteriovenous difference and tracer ([3-(3)H]glucose) techniques were used in 42-h-fasted conscious dogs to identify any insulin-like effects of intraportally administered glucagon-like peptide 1-(7-36)amide (GLP-1). Each study consisted of an equilibration, a basal, and three 90-min test periods (P1, P2, and P3) during which somatostatin, intraportal insulin (3-fold basal) and glucagon (basal), and peripheral glucose were infused. Saline was infused intraportally in P1. During P2 and P3, GLP-1 was infused intraportally at 0.9 and 5.1 pmol. kg(-1). min(-1) in eight dogs, at 10 and 20 pmol. kg(-1). min(-1) in seven dogs, and at 0 pmol. kg(-1). min(-1) in eight dogs (control group). Net hepatic glucose uptake was significantly enhanced during GLP-1 infusion at 20 pmol. kg(-1). min(-1) [21.8 vs. 13.4 micromol. kg(-1). min(-1) (control), P < 0.05]. Glucose utilization was significantly increased during infusion at 10 and 20 pmol. kg(-1). min(-1) [87.3 +/- 8.3 and 105.3 +/- 12.8, respectively, vs. 62.2 +/- 5.3 and 74.7 +/- 7.4 micromol. kg(-1). min(-1) (control), P < 0.05]. The glucose infusion rate required to maintain hyperglycemia was increased (P < 0.05) during infusion of GLP-1 at 5.1, 10, and 20 pmol. kg(-1). min(-1) (22, 36, and 32%, respectively, greater than control). Nonhepatic glucose uptake increased significantly during delivery of GLP-1 at 5.1 and 10 pmol. kg(-1). min(-1) (25 and 46% greater than control) and tended (P = 0.1) to increase during GLP-1 infusion at 20 pmol. kg(-1). min(-1) (24% greater than control). Intraportal infusion of GLP-1 at high physiological and pharmacological rates increased glucose disposal primarily in nonhepatic tissues.  相似文献   

7.
8.
We assessed basal glucose metabolism in 16 female nonpregnant (NP) and 16 late-pregnant (P) conscious, 18-h-fasted dogs that had catheters inserted into the hepatic and portal veins and femoral artery approximately 17 days before the experiment. Pregnancy resulted in lower arterial plasma insulin (11 +/- 1 and 4 +/- 1 microU/ml in NP and P, respectively, P < 0.05), but plasma glucose (5.9 +/- 0.1 and 5.6 +/- 0.1 mg/dl in NP and P, respectively) and glucagon (39 +/- 3 and 36 +/- 2 pg/ml in NP and P, respectively) were not different. Net hepatic glucose output was greater in pregnancy (42.1 +/- 3.1 and 56.7 +/- 4.0 micromol. 100 g liver(-1).min(-1) in NP and P, respectively, P < 0.05). Total net hepatic gluconeogenic substrate uptake (lactate, alanine, glycerol, and amino acids), a close estimate of the gluconeogenic rate, was not different between the groups (20.6 +/- 2.8 and 21.2 +/- 1.8 micromol. 100 g liver(-1). min(-1) in NP and P, respectively), indicating that the increment in net hepatic glucose output resulted from an increase in the contribution of glycogenolytically derived glucose. However, total glycogenolysis was not altered in pregnancy. Ketogenesis was enhanced nearly threefold by pregnancy (6.9 +/- 1.2 and 18.2 +/- 3.4 micromol. 100 g liver(-1).min(-1) in NP and P, respectively), despite equivalent net hepatic nonesterified fatty acid uptake. Thus late pregnancy in the dog is not accompanied by changes in the absolute rates of gluconeogenesis or glycogenolysis. Rather, repartitioning of the glucose released from glycogen is responsible for the increase in hepatic glucose production.  相似文献   

9.
10.
The aim of this study was to determine whether the elimination of the hepatic arterial-portal (A-P) venous glucose gradient would alter the effects of portal glucose delivery on hepatic or peripheral glucose uptake. Three groups of 42-h-fasted conscious dogs (n = 7/group) were studied. After a 40-min basal period, somatostatin was infused peripherally along with intraportal insulin (7.2 pmol x kg(-1) x min(-1)) and glucagon (0.65 ng x kg(-1) x min(-1)). In test period 1 (90 min), glucose was infused into a peripheral vein to double the hepatic glucose load (HGL) in all groups. In test period 2 (90 min) of the control group (CONT), saline was infused intraportally; in the other two groups, glucose was infused intraportally (22.2 micromol x kg(-1) x min(-1)). In the second group (PD), saline was simultaneously infused into the hepatic artery; in the third group (PD+HAD), glucose was infused into the hepatic artery to eliminate the negative hepatic A-P glucose gradient. HGL was twofold basal in each test period. Net hepatic glucose uptake (NHGU) was 10.1 +/- 2.2 and 12.8 +/- 2.1 vs. 11.5 +/- 1.6 and 23.8 +/- 3.3* vs. 9.0 +/- 2.4 and 13.8 +/- 4.2 micromol x kg(-1) x min(-1) in the two periods of CONT, PD, and PD+HAD, respectively (* P < 0.05 vs. same test period in PD and PD+HAD). NHGU was 28.9 +/- 1.2 and 39.5 +/- 4.3 vs. 26.3 +/- 3.7 and 24.5 +/- 3.7* vs. 36.1 +/- 3.8 and 53.3 +/- 8.5 micromol x kg(-1) x min(-1) in the first and second periods of CONT, PD, and PD+HAD, respectively (* P < 0.05 vs. same test period in PD and PD+HAD). Thus the increment in NHGU and decrement in extrahepatic glucose uptake caused by the portal signal were significantly reduced by hepatic arterial glucose infusion. These results suggest that the hepatic arterial glucose level plays an important role in generation of the effect of portal glucose delivery on glucose uptake by liver and muscle.  相似文献   

11.
Improved method for bile collection in unrestrained conscious rats.   总被引:1,自引:0,他引:1  
We describe an improved method for continuous collection of bile from unrestrained rats. Use of an externally accessible, continuous-loop cannula when cannulating the common bile duct allows for full recovery from anesthetic effects and maintenance of a normal bile salt pool until the cannula loop is cut. Bile resulting from the cut cannula is diverted into a surgically implanted glass collection vessel and removed periodically via an externalized sampling port. Bile flow over a 24-hour collection period averaged 0.98 +/- 0.04 ml/hr (Mean +/- SEM, n = 9) with no gross pathological changes noted upon necropsy. This technique offers the capability of reestablishing conditions as close to physiologic as possible postsurgery to minimize potential artifacts during bile collection.  相似文献   

12.
Insulin sensitivity regulated by feeding in the conscious unrestrained rat   总被引:1,自引:0,他引:1  
Hepatic insulin sensitizing substance (HISS), a putative hormone released from the liver in response to insulin in fed animals, accounts for 50-60% of insulin action. HISS release is regulated by permissive control of the hepatic parasympathetic nerves. The objectives were to develop the rapid insulin sensitivity test (RIST) in conscious rats, and to assess the effects of anesthesia, atropine, feeding, and fasting on insulin action. The RIST index, expressed as milligrams glucose per kilogram body weight required to maintain euglycemia after a 50 mU/kg bolus of insulin, was similar in conscious and anesthetized rats (238.6+/-42.5 vs. 225.3+/-30.4 mg/kg). Atropine produced a 56% inhibition of insulin action in fed rats. After a 24 h fast, full HISS-dependent insulin resistance had developed as shown by a low RIST index that was not reduced further by atropine. Fasting caused a 10.5% decrease in insulin action per hour over six hours. HISS-dependent insulin resistance in 24-h fasted rats was reversed 4 h after re-feeding (90.9+/-12.3 vs. 204.5+/-30.5 mg/kg). We conclude that HISS-dependent and HISS-independent insulin action, as assessed by the RIST, is similar in conscious and pentobarbital-anesthetized rats. Pharmacological blockade of HISS-dependent insulin action and physiological regulation of HISS action by feeding-fasting is confirmed. Re-feeding fasted rats reversed HISS-dependent insulin resistance. Merits of use of the RIST in conscious versus anesthetized rats are discussed.  相似文献   

13.
Administration of supplemental glucose and/or insulin is postulated to improve the outcome from myocardial ischemia by increasing the heart's relative utilization of glucose as an energy substrate. To examine the degree to which circulating glucose and insulin levels actually influence myocardial substrate preference in vivo, we infused conscious, chronically catheterized rats with D-[1-(13)C]glucose and compared steady-state (13)C enrichment of plasma glucose with that of myocardial glycolytic ([3-(13)C]alanine) and oxidative ([4-(13)C]glutamate) intermediary metabolites. In fasting rats, [3-(13)C]alanine-to-[1-(13)C]glucose and [4-(13)C]glutamate-to-[3-(13)C]alanine ratios averaged 0.16 +/- 0.12 and 0.14 +/- 0.03, respectively, indicating that circulating glucose contributed 32% of myocardial glycolytic flux, whereas subsequent flux through pyruvate dehydrogenase contributed 14% of total tricarboxylic acid (TCA) cycle activity. Raising plasma glucose to 11 mmol/l, or insulin to 500 pmol/l, increased these contributions equivalently. At supraphysiological (>6,500 pmol/l) insulin levels, the plasma glucose contribution to glycolysis increased further, and addition of hyperglycemia made it the sole glycolytic substrate, yet [4-(13)C]glutamate-to-[3-(13)C]alanine ratios remained /=40% of myocardial TCA cycle flux.  相似文献   

14.
The influence of mu-selective opioid agonists on neonatal thermoregulatory mechanisms has received little attention. Opioid treatment in adult subjects can cause either hyper- or hypothermia, depending on the experimental conditions, the strain of rat used, and the dose and route of administration of the drug. The present study assessed the effect of two mu opioid agonists on body temperature in neonatal Wistar rats aged 2 to 13 days. Rat pups were administered either saline or one of the two mu-selective opioid agonists, dermorphin (0.4 mg/kg) or fentanyl (0.06 mg/kg), by subcutaneous injection. Continuous rectal temperatures were measured both prior to and following drug or saline injection in freely moving, conscious animals. Ambient temperature in a plethysmograph chamber was maintained within or close to the thermoneutral zone for pups (32 degrees C). To distinguish between mu-1 and mu-2 effects, all animals received either saline or 10 mg/kg of the irreversible mu-1 antagonist naloxonazine (NALZ) 1 day prior to agonist administration. NALZ on its own had no effect on body temperature. Dermorphin and fentanyl both caused a fall in body temperature in pups of all age groups. The temperature decreases ranged from 0.8 degrees -2.2 degrees C. These opioid-induced changes were inhibited by NALZ pretreatment. Although there was no evidence for endogenous mu-1 opioid activity, this study indicated that stimulation of mu-1 opioid receptors causes a decrease in body temperature in conscious, unrestrained neonatal rats under or close to thermoneutral conditions.  相似文献   

15.
16.
The pancreas releases insulin in a pulsatile manner; however, studies assessing the liver's response to insulin have used constant infusion rates. Our aims were to determine whether the secretion pattern of insulin [continuous (CON) vs. pulsatile] in the presence of hyperglycemia 1) influences net hepatic glucose uptake (NHGU) and 2) entrains NHGU. Chronically catheterized conscious dogs fasted for 42 h received infusions including peripheral somatostatin, portal insulin (0.25 mU x kg(-1) x min(-1)), peripheral glucagon (0.9 ng x kg(-1) x min(-1)), and peripheral glucose at a rate double the glucose load to the liver. After the basal period, insulin was infused for 210 min at either four times the basal rate (1 mU x kg(-1) x min(-1)) or an identical amount in pulses of 1 and 4 min duration, followed by intervals of 11 and 8 min (CON, 1/11, and 4/8, respectively) in which insulin was not infused. A variable peripheral glucose infusion containing [3H]glucose clamped glucose levels at twice the basal level ( approximately 200 mg/dl) throughout each study. Hepatic metabolism was assessed by combining tracer and arteriovenous difference techniques. Arterial plasma insulin (microU/ml) either increased from basal levels of 6 +/- 1 to a constant level of 22 +/- 4 in CON or oscillated from 5 +/- 1 to 416 +/- 79 and from 6 +/- 1 to 123 +/- 43 in 1/11 and 4/8, respectively. NHGU (-0.8 +/- 0.3, 0.4 +/- 0.2, and -0.9 +/- 0.4 mg x kg(-1) x min(-1)) and net hepatic fractional extraction of glucose (0.04 +/- 0.01, 0.04 +/- 0.01, and 0.05 +/- 0.01 mg x kg(-1) x min(-1)) were similar during the experimental period. Spectral analysis was performed to assess whether a correlation existed between the insulin secretion pattern and NHGU. NHGU was not augmented by pulsatile insulin delivery, and there is no evidence of entrainment in hepatic glucose metabolism. Thus the loss of insulin pulsatility per se likely has little or no impact on the effectiveness of insulin in regulating liver glucose uptake.  相似文献   

17.
Dun XP  Li FF  Wang JH  Chen ZW 《Peptides》2008,29(6):891-897
Pea albumin 1F (PA1F), a plant peptide isolated from pea seeds, can dramatically increase blood glucose concentration by subcutaneous injection with a dosage of 5 or 10 μg/g (body weight) in normal and type II diabetic mice (KK/upj-Ay). The voltage-dependent anion channel 1 (VDAC-1) has been identified as the PA1F binding protein from mice pancreatic cell membrane, which may be involved in the regulation of enhancing blood glucose in response to PA1F binding. The results clearly show that peptide-signaling molecules from plants can affect mammalian physiological functions, especially, in association with glucose metabolism.  相似文献   

18.
目的探讨雷帕霉素对葡萄糖代谢水平影响的特点、机制。方法选择4周龄、雄性C57BL/6小鼠,高热量、高脂饮食喂养8周后为肥胖组(HF,n=18),普通饲料喂养为正常组(NC,n=18)。两组小鼠分别给予安慰剂(n=6)、腹腔注射雷帕霉素(2 mg/kg,隔日1次,n=6)、喂饮2.37%亮氨酸水(n=6),2周后分别行灌胃葡萄糖耐量试验(glucose tolerance test,GTT)、胰岛素耐受性试验(insulin tolerance test,ITT)以及胰岛组织病理学检查。结果正常组小鼠腹腔注射雷帕霉素后葡萄糖负荷30min血糖水平显著升高(与安慰剂组比P=0.038,与亮氨酸组比P=0.035)。肥胖组小鼠腹腔注射雷帕霉素后空腹血糖水平显著高于安慰剂组(P=0.031),葡萄糖负荷30 min血糖显著高于安慰剂组(P=0.013)、亮氨酸组(P=0.041)。仅正常组小鼠胰岛素敏感性与安慰剂组相比显著降低(P=0.039)。雷帕霉素干预后腹腔脂肪量显著减少(正常组与安慰剂组比P0.001,肥胖组与安慰剂组比P=0.013)。结论雷帕霉素对哺乳动物糖代谢水平有显著影响,正常小鼠与机体胰岛素敏感性下降有关;肥胖小鼠与胰岛素分泌功能受损、胰岛素抵抗相关。  相似文献   

19.
The effects of different sensitization and allergen provocation regimens on the development of allergen-induced bronchial hyperreactivity (BHR) to histamine were investigated in conscious, unrestrained guinea-pigs. Similar early and late phase asthmatic reactions, BHR for inhaled histamine after the early (6 h) as well as after the late reaction (24 h), and airway inflammation were observed after a single allergen provocation in animals sensitized to produce mainly IgG or IgE antibodies, respectively. Repeating the allergen provocation in the IgE-sensitized animals after 7 days, using identical provocation conditions, resulted in a similar development of BHR to histamine inhalation. Repetition of the allergen provocation during 4 subsequent days resulted in a decreased development of BHR after each provocation, despite a significant increase in the allergen provocation dose necessary to obtain similar airway obstruction. The number of inflammatory cells in the bronchoalveolar lavage was not significantly changed after repeated provocation, when compared with a single allergen provocation. Finally, we investigated allergen-induced bronchial hyperreactivity by repetition of the sensitization procedure at day 7 and 14 (booster), followed by repeated allergen provocation twice a week for 5 weeks. Surprisingly, no BHR to histamine could be observed after either provocation, while the number of inflammatory cells in the bronchoalveolar lavage fluid after 5 weeks was enhanced compared with controls. These data indicate that both IgE and IgG sensitized guinea-pigs may develop bronchial hyperreactivity after a single allergen provocation. Repeated allergen exposure of IgE sensitized animals causes a gradual fading of the induced hyperreactivity despite the on-going presence of inflammatory cells in the airways, indicating a mechanism of reduced cellular activation.  相似文献   

20.
In physiological experiments, it is essential to measure arterial pressure (AP) and heart rate (HR) in animals. Tail cuff pressure (TCP) measurement using photoelectric volume oscillometry has been commonly used. We designed a new technique for continuous measurement of AP and HR in conscious, unrestrained rats. This is based on the observation that fixation of the rat's tail with tape keeps the animal in position without struggling. The animal is free to move its body. To test the accuracy of this new technique, Sprague-Dawley rats underwent four AP and HR measurement techniques. These included a new unrestrained method (UR), which was compared to the following three methods: traditional restrained TCP method with restrainer, direct monitoring of AP and HR with femoral artery catheterization and a combination of photoelectric volume oscillometry (with body heating to 37 degrees C) and femoral arterial recording. The results show that the modified UR measurement provides accurate data on AP and HR. This method obtains a lower value of HR and similar mean AP when compared to direct monitoring from femoral arterial catheterization. Accordingly, the modified unrestrained TCP measurement can be used in conscious rats as a noninvasive method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号