首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Retinoic acid (RA), through nuclear retinoid receptors, regulates the expression of numerous genes. However, little is known of the biochemical mechanisms that regulate RA concentration in vivo. CYP26 (P450RAI), a novel cytochrome P450, is expressed during embryonic development, induced by all-trans RA, and capable of catalyzing the oxidation of [3H]RA to polar retinoids including 4-oxo-RA. Here we report that CYP26 expression in adult liver is regulated by all-trans RA and dietary vitamin A, and is correlated with the metabolism of all-trans RA to polar metabolites. In normal mouse and rat liver, CYP26 mRNA was barely detectable; however, after acute treatment with all-trans RA CYP26 mRNA and RA metabolism by liver microsomes were significantly induced. Aqueous-soluble RA metabolites were detected, but their formation was not induced. The expression of retinoid receptors, RAR-gamma and RXR-alpha, was not changed after RA treatment in vivo. In a model of chronic vitamin A ingestion during aging, CYP26 mRNA expression, determined by Northern blot and RT-PCR analysis, increased progressively with dietary vitamin A (P<0.0001; marginal < control < supplemented) and age (P<0.003). The relative expression of CYP26 mRNA was positively correlated with liver total retinol (log10), ranging from undetectable CYP26 expression at liver retinol concentrations below approximately 20 nmol/g to a three- to fourfold elevation at concentrations >10,000 nmol/g (r=0.90, P<0.0001). We conclude that CYP26 expression and RA metabolism are regulated in adult liver not only acutely by RA administration, as may be relevant to retinoid therapy, but under chronic dietary conditions relevant to vitamin A nutrition in humans.  相似文献   

2.
Vitamin A status and turnover were examined in rats that had been exposed to chronic dietary treatment of 3,4,5,3',4',5'-hexachlorobiphenyl (HCB), 1 mg/kg diet. HCB caused hepatic depletion and renal accumulation of vitamin A, and a 1.7-fold increase in the serum retinol concentration. Intravenously administered [3H]retinol bound to retinol binding protein-transthyretin complex (RBP-TTR complex) was used to study the dynamics of circulatory retinol in these rats. In HCB-treated rats, the plasma turnover rate of retinol was increased compared to vitamin A-adequate untreated controls. HCB caused a 50% reduction of total radioactivity in liver, and, except for 0.5 h after the [3H]retinol-RBP-TTR dose, the specific activity of the hepatic retinyl ester pool was greater compared to control rats. The kidneys of HCB-treated rats accumulated radioactivity in the retinyl ester fraction. HCB also caused a 50% reduction in adrenal radioactivity compared with control rats. Urinary and fecal excretion of radioactivity was 3-fold higher in HCB-treated rats as compared to controls. Our findings demonstrate that chronic HCB feeding results in expansion of plasma vitamin A mass, in changes of liver and kidney retinol and retinyl ester pool dynamics and in an increased metabolism of vitamin A.  相似文献   

3.
A study was conducted on the incorporation of [11-3H]retinyl acetate into various retinyl esters in liver tissues of rats either vitamin A-sufficient, vitamin A-deficient or vitamin A-deficient and maintained on retinoic acid. Further, the metabolism of [11-3H]retinyl acetate to polar metabolites in liver tissues of these three groups of animals was investigated. Retinol metabolites were analyzed by high-performance liquid chromatography. In vitamin A-sufficient rat liver, the incorporation of radioactivity into retinyl palmitate and stearate was observed at 0.25 h after the injection of the label. The label was further detected in retinyl laurate, myristate, palmitoleate, linoleate, pentadecanoate and heptadecanoate 3 h after the injection. The specific radioactivities (dpm/nmol) of all retinyl esters increased with time. However, the rate of increase in the specific radioactivity of retinyl laurate was found to be significantly higher (66-fold) than that of retinyl palmitate 24 h after the injection of the label. 7 days after the injection of the label, the specific radioactivity between different retinyl esters were found to be similar, indicating that newly dosed labelled vitamin A had now mixed uniformly with the endogenous pool of vitamin A in the liver. The esterification of labelled retinol was not detected in liver tissues of vitamin A-deficient or retinoic acid-supplemented rats at any of the time point studied. Among the polar metabolites analyzed, the formation of [3H]retinoic acid from [3H]retinyl acetate was found only in vitamin A-deficient rat liver 24 h after the injection of the label. A new polar metabolite of retinol (RM) was detected in liver of the three groups of animals. The formation of 3H-labelled metabolite RM from [3H]retinyl acetate was not detected until 7 days after the injection of the label in the vitamin A-sufficient rat liver, suggesting that metabolite RM could be derived from a more stable pool of vitamin A.  相似文献   

4.
5.
Vitamin A (VA) kinetics was studied in rats with marginal VA stores before, during, and after inflammation. Rats received orally [11,12-(3)H(N)]retinol ([(3)H]VA; day 0), and inflammation was induced on day 21 with lipopolysacchride (LPS) for 3 days (n = 5) or recombinant human interleukin-6 (rhIL-6) for 7 days (n = 5). Both the fraction of [(3)H]VA and retinol concentrations in plasma were reduced significantly by LPS or rhIL-6. Compartmental analysis using the Windows version of Simulation, Analysis, and Modeling software was applied to group mean data, and non-steady-state models were developed. After absorption, VA kinetics was described by a three-compartment model that included plasma, kidney/interstitium, and liver/carcass. Four mechanisms decreasing plasma retinol were investigated: increased urinary excretion, increased irreversible loss, increased movement into interstitium, and decreased hepatic mobilization. Modeling demonstrated that a 79% reduction in hepatic mobilization of retinol (from 4.3 to 0.9 nmol/h) by 15 h after LPS best accounted for the observed changes in plasma VA kinetics (sum of squares = 9.05 x 10(-07)). rhIL-6 caused an earlier reduction (75% by 5.6 h). These models predicted a return to control values by 10 days after inflammation. If prolonged, inflammation-induced hyporetinolemia can render hepatic retinol unavailable to extrahepatic tissues, possibly leading to their impaired function, as observed in VA-deficient children with measles infection.  相似文献   

6.
7.
Because only retinol and not all-trans-retinoic acid (atRA) can satisfy all of the functions of vitamin A, we have investigated the retinol metabolites in tissues of vitamin A-deficient (VAD) rats responding to a radioactive dose of [20-(3)H]all-trans-retinol. As expected, atRA is the major vitamin A metabolite present in the target tissues of VAD rats given a physiological dose (1 microg) of [20-(3)H]all-trans-retinol (atROL). Both atROL and atRA were detected by high-performance liquid chromatographic (HPLC) analysis of the radioactivity extracted from the liver, kidney, small intestine, lung, spleen, bone, skin, or testis of these animals. Novel retinol metabolites were observed in the aqueous extracts from the testis, lung, and skin. However, these metabolites were detected in very small amounts and were not characterized further. Importantly, neither 9-cis-retinoic acid (9cRA), 9-cis-retinol (9cROL), nor 13-cis-retinoic acid (13cRA) was present in detectable amounts. The amounts of atRA varied in each tissue, ranging from 0.29 +/- 0.05 fmol of RA/g of tissue in the femurs to 12.9 +/- 4.3 fmol of RA/g of tissue in the kidneys. The absence of 9cRA in vivo was not due to degradation of this retinoid during the extraction procedure or HPLC analysis of the extracted radioactivity. As atROL completely fulfills all of the physiological roles of vitamin A, and 9cRA is not detected in any of the tissues analyzed, these results suggest that 9cRA may have no physiological relevance in the rat.  相似文献   

8.
3H-labelled metabolites were determined in the perchloric acid-soluble fraction of blood plasma and liver of adult male Wistar rats, following the application of [5 - 3H]uridine. Ten minutes after the injection of uridine, only 20% of the total 3H activity of the plasma could be attributed to [3H]uridine. The remaining radioactivity was found chiefly in [3H]uracil (40%) and 3H2O (20%). In the liver, at 10 min, [3H]-uridine and [3H]uracil together accounted for less than 0.5% of the total radioactivity; about 70% of the radioactivity was due to [3H]beta-alanine, and 15% to 3H2O. 45 min after the injection, 70% of the radioactivity in the plasma was due to 3H2O, whereas uridine and uracil represented about 4% and 6%, respectively. At this time, about 55% of the radioactivity in the liver was due to [3H]beta-alanine, about 40% to 3H2O, and about 5% to unidentified metabolites; [3H]uridine and [3H]uracil were not observed. A comparison of the rate of catabolism of [5-3H]-uridine, [5-3H]cytidine and [6-3H]thymidine showed that cytidine is degraded in the organism 25 times more slowly than uridine or thymidine. The biological half lives for the total degradation of the [3H]nucleosides to 3H2O, based on the values in the plasma, were: uridine 1.1 h; thymidine 1.3 h; cytidine 25 h. Furthermore, the turnover time of exogenous uridine in the plasma was found to be 9 min, which gives a half life of 6 min for the metabolism of exogenous uridine to uracil.  相似文献   

9.
We describe a method for assessing tissue-specific plasma free fatty acid (FFA) utilization in vivo using a non-beta-oxidizable FFA analog, [9,10-3H]-(R)-2-bromopalmitate (3H-R-BrP). Ideally 3H-R-BrP would be transported in plasma, taken up by tissues and activated by the enzyme acyl-CoA synthetase (ACS) like native FFA, but then 3H-labeled metabolites would be trapped. In vitro we found that 2-bromopalmitate and palmitate compete equivalently for the same ligand binding sites on albumin and intestinal fatty acid binding protein, and activation by ACS was stereoselective for the R-isomer. In vivo, oxidative and non-oxidative FFA metabolism was assessed in anesthetized Wistar rats by infusing, over 4 min, a mixture of 3H-R-BrP and [U-14C] palmitate (14C-palmitate). Indices of total FFA utilization (R*f) and incorporation into storage products (Rfs') were defined, based on tissue concentrations of 3H and 14C, respectively, 16 min after the start of tracer infusion. R*f, but not Rfs', was substantially increased in contracting (sciatic nerve stimulated) hindlimb muscles compared with contralateral non-contracting muscles. The contraction-induced increases in R*f were completely prevented by blockade of beta-oxidation with etomoxir. These results verify that 3H-R-BrP traces local total FFA utilization, including oxidative and non-oxidative metabolism. Separate estimates of the rates of loss of 3H activity indicated effective 3H metabolite retention in most tissues over a 16-min period, but appeared less effective in liver and heart. In conclusion, simultaneous use of 3H-R-BrP and [14C]palmitate tracers provides a new useful tool for in vivo studies of tissue-specific FFA transport, utilization and metabolic fate, especially in skeletal muscle and adipose tissue.  相似文献   

10.
The binding and metabolism of [3H]vitamin A-containing chylomicron (CM) remnants by the human hepatoma cell line HepG2 were studied. Mesenteric lymph chylomicrons were collected from [3H]retinol-fed rats and incubated with lipoprotein lipase to obtain CM remnants. At 4 degrees C, specific CM remnant binding was inhibited by an excess of unlabeled CM remnants. Specific binding predominated at low concentrations and approached saturation while total binding continued to increase over an extensive concentration range (0.45-32 microgram triglyceride/ml). CM remnant uptake at 37 degrees C was greater than that of CM and at least 70 times more efficient than the pinocytosis of sucrose. CM remnant binding increased with the extent of lipolysis. Addition of human apolipoprotein E enhanced both CM remnant and CM binding. After internalization, HepG2 cells hydrolyzed CM remnant-[3H]retinyl esters, and radiolabeled metabolites accumulated. As a function of the concentration of [3H]retinoid initially bound to cells, retinol and retinyl esters accumulated as the major cell-associated metabolites. In contrast, retinol was the major metabolite in the medium only at low retinoid concentrations; other more polar metabolites accumulated at higher concentrations (greater than 110 pmol retinoid/mg cell protein). The accumulation in the medium of labeled metabolites derived from CM remnant-retinoid was reduced when cells were preincubated in unlabeled retinol-supplemented media. The specific activity of retinol in the medium indicated that CM remnant-vitamin A had mixed with the cellular store prior to its secretion as retinol. These results indicate that HepG2 cells internalize CM remnants in part by specific binding sites, and that the metabolism of CM remnant-retinoids by the HepG2 cell involves retinyl ester hydrolysis and the secretion of retinol and other more polar metabolites. These processes were regulated in part by the concentration of retinoid delivered by the CM remnant and by the initial retinoid content of the cell.  相似文献   

11.
The metabolism of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one, a potent inhibitor of cholesterol synthesis with marked hypocholesterolemic activity, has been studied after the intravenous administration of a mixture of [2,4-3H]5 alpha-cholest-8(14)-en-3 beta-ol-15-one and [4-14C] cholesterol to a baboon. The levels of 3H in plasma which was associated with the free 15-ketosterol decreased very rapidly (T1/2 approximately 9 min) after injection of the labeled sterol. By 4 h, the level of the [3H]15-ketosterol in plasma was negligible. The rapid decrease in the levels of the free 15-ketosterol was associated with rapid formation of fatty acid esters of the 15-ketosterol. The maximum level of 3H-labeled 15-ketosteryl esters was observed at 20 min after the injection of the 15-ketosterol. Thereafter, the levels of the 15-ketosteryl esters decreased rapidly with an apparent T1/2 of approximately 3.5-4.0 h. The results also indicated rapid formation of 3H-labeled cholesterol and cholesteryl esters. Substantial formation of [3H]cholesterol was observed at 20 min after the injection of the 15-ketosterol and reached a maximum level in plasma at 2 h. The maximum levels of [3H]cholesteryl esters in plasma were observed much later. These and other findings indicated that the observed slow clearance of total 3H from plasma is a consequence of metabolism of the 15-ketosterol to cholesterol and cholesteryl esters, normal constituents of plasma whose turnover in the whole animal is known to be relatively slow.  相似文献   

12.
Characterization of retinoid metabolism in the developing chick limb bud   总被引:8,自引:0,他引:8  
Retinoids (vitamin A derivatives) have been shown to have striking effects on developing and regenerating vertebrate limbs. In the developing chick limb, retinoic acid is a candidate morphogen that may coordinate the pattern of cellular differentiation along the anteroposterior limb axis. We describe a series of investigations of the metabolic pathway of retinoids in the chick limb bud system. To study retinoid metabolism in the bud, all-trans-[3H]retinol, all-trans-[3H]retinal and all-trans-[3H]retinoic acid were released into the posterior region of the limb anlage, the area that contains the zone of polarizing activity, a tissue possibly involved in limb pattern formation. We found that the locally applied [3H]retinol is primarily converted to [3H]retinal, [3H]retinoic acid and a yet unidentified metabolite. When [3H]retinal is locally applied, it is either oxidized to [3H]retinoic acid or reduced to [3H]retinol. In contrast, local delivery of retinoic acid to the bud yields neither retinal nor retinol nor the unknown metabolite. This flow of metabolites agrees with the biochemical pathway of retinoids that has previously been elucidated in a number of other animal systems. To find out whether metabolism takes place directly in the treated limb bud, we have compared the amount of [3H]retinoid present in each of the four limb anlagen following local treatment of the right wing bud. The data suggest that retinoid metabolism takes place mostly in the treated limb bud. This local metabolism could provide a simple mechanism to generate in a controlled fashion the biologically active all-trans-retinoic acid from its abundant biosynthetic precursor retinol. In addition, local metabolism supports the hypothesis that retinoids are local chemical mediators involved in pattern formation.  相似文献   

13.
14.
In this study, we examined, by ultrastructural autoradiography, the uptake and intracellular transport of [3H]all-trans-retinoic acid ([3H]RA) in the livers of vitamin A-deficient hamsters. Four-week-old animals were administered 25 microCi of [3H]RA by gavage, and, at different intervals thereafter, one animal was sacrificed. Their livers were excised and processed for autoradiography. Radioactive grains were observed to pass randomly through the plasma membrane by diffusion. No evidence of retinoid internalization by endocytosis was observed. Between 1 and 30 min after gavage, the radioactivity in parenchymal cells was associated mainly with rough endoplasmic reticulum (RER) and mitochondria. The labeling over nuclei was apparent at 1 min, remained relatively high up to 30 min, and subsequently decreased. At 2 and 5 hr, only a few grains were observed over nuclei, RER and mitochondria. At 24 hr, most of the labeling was associated with endothelial cells and sinusoidal spaces, indicating mobilization of [3H]RA from the liver. The results indicate that [3H]RA is transported through the plasma membrane by transmembrane diffusion without endocytosis and, after entering the cells, the ligand is rapidly translocated into nuclei.  相似文献   

15.
Vitamin A (VA) metabolism in neonates is virtually uncharacterized. Our objective was to develop a compartmental model of VA metabolism in unsupplemented and VA-supplemented neonatal rats. On postnatal day 4, pups (n = 3/time) received 11,12-[3H]retinol orally, in either oil (control) or VA combined with retinoic acid (VARA) [VA (∼6 mg/kg body weight) + 10% retinoic acid]. Plasma and tissues were collected at 14 time points up to 14 days after dose administration. VARA supplementation rapidly, but transiently, increased total retinol mass in plasma, liver, and lung. It decreased the peak fraction of the dose in plasma. A multi-compartmental model developed to fit plasma [3H]retinol data predicted more extensive recycling of retinol between plasma and tissues in neonates compared with that reported in adults (144 vs. 12–13 times). In VARA pups, the recycling number for retinol between plasma and tissues (100 times) and the time that retinol spent in plasma were both lower compared with controls; VARA also stimulated the uptake of plasma VA into extravascular tissues. A VARA perturbation model indicated that the effect of VARA in stimulating VA uptake into tissues in neonates is both dramatic and transient.  相似文献   

16.
To achieve biologic potency, vitamin D must undergo two successive hydroxylations, first, in the liver and then, in the kidney. Carbon tetrachloride is known to cause extensive damage to the liver, but its effect on vitamin D metabolism has not been studied thoroughly. The effect of carbon tetrachloride on renal hydroxylation of 25-hydroxyvitamin D3 has not been studied. To evaluate the acute effect of carbon tetrachloride on vitamin D metabolism in the liver, vitamin D depleted rats received a single intraperitoneal injection of carbon tetrachloride (2.0 mL/kg body weight). After 24 h, they were given 55, 550, or 5050 pmol [3H]vitamin D3 intravenously. Twenty-four hours after injection of [3H]vitamin D3, aliquots of serum and liver were analyzed for [3H]vitamin D3 and its metabolites by high performance liquid chromatography. Sera of carbon tetrachloride treated rats had higher [3H]vitamin D3 and [3H]25-hydroxyvitamin D and lower [3H]1,25-dihydroxyvitamin D3 concentrations than did control sera. Livers of carbon tetrachloride treated rats contained more [3H]vitamin D3, [3H]25-hydroxyvitamin D3, and more fat. Liver histology showed massive centrilobular necrosis in the treated rats. Thus, our experiment in rats given an acute dose of carbon tetrachloride provided no evidence of impairment of vitamin D metabolism by the liver, but offered a suggestion that 25-hydroxyvitamin D3 metabolism by the kidney might be impaired. To determine the acute effect of carbon tetrachloride on metabolism of vitamin D3 by the kidney, we studied hydroxylation of [3H]25-hydroxyvitamin D3 in isolated perfused kidney. Kidneys from the treated rats showed a 66% reduction in [3H]1,25-dihydroxyvitamin D3 production.  相似文献   

17.
The tissue concentrations and distribution of radioactivity present in retinol and its metabolites were investigated in vitamin A-deficient rats 24h after injection of physiological doses (10mug) of [6, 7-14C2, 11,12-3H2] retinol. The highest concentration of radioactivity was observed in the adrenals, followed by kidney, spleen, liver, intestine and blood. The total radioactivity was greatest in urine, followed in descending order by liver, kidney, blood and intestine. The 14C/3H ratios of crude light-petroleum extracts in the liver, intestines, lungs, heart and faeces were similar to the ratio of the injected retinol dispersion. However, the 14C/3H ratios in the adrenals, kidney, spleen, blood, brain and urine were quite different from that of injected retinol. Alumina chromatography of the kidney and intestinal extracts demonstrated that retinol and retinyl palmitate are the principal forms of vitamin A present. However, alumina chromatography of the liver extract did not reveal the presence of retinol but yielded a major compound with a low 14C/3H ratio. That this compound was not retinol was shown by its inability to react with ethanolic HC1 to yield anhydroretinol. The distribution of radioactivity in ether-soluble, acidic and water-soluble fractions of urine indicated that most of the radioactivity was present in the acidic and water-soluble fractions. The 14C/3H ratios in ether-soluble and acidic fractions were higher than that of injected retinol, whereas in the water-soluble fraction the ratio was similar to the injected material.  相似文献   

18.
P D Bishop  M D Griswold 《Biochemistry》1987,26(23):7511-7518
When cultured Sertoli cells derived from 20-day-old weanling rats were supplied [3H]retinol bound to serum retinol binding protein-transthyretin complex, [3H]retinol was rapidly incorporated and [3H]retinyl esters were synthesized. Within 28 h after administration, 83% of the labeled retinoids were accounted for as retinyl esters (64% as retinyl palmitate). Sertoli cells derived from vitamin A deficient rats and supplied [3H]retinol in culture under identical conditions likewise incorporated [3H]retinol and synthesized retinyl esters. In contrast to normal Sertoli cells, vitamin A deficient Sertoli cells eventually metabolized virtually all of the cellular [3H]retinol to retinyl esters. The primary metabolic fate of retinol administered to Sertoli cell cultures was the synthesis of retinyl esters under all conditions tested. However, administration of [3H]retinol bound to serum retinol binding protein gave metabolic profiles having a higher proportion of retinyl esters and lower proportions of unresolved polar material than administration of [3H]retinol alone. The kinetics of retinol uptake and intracellular retinyl ester synthesis in cultured Sertoli cells was complex. An initial, rapid phase of [3H]retinol incorporation lasting 30 min was followed by a slower rate of incorporation and a concomitant decrease in the intracellular concentration of [3H]retinol. During the time course the specific activity of [3H]retinyl palmitate eventually exceeded that of intracellular [3H]retinol. These observations suggest that two intracellular pools of retinol may exist in Sertoli cells.  相似文献   

19.
We have recently shown that newly administered vitamin A (retinol) is initially taken up by the parenchymal cells of the liver, and subsequently (within 1-2 h) transferred to non-parenchymal liver cells (NPC) (Blomhoff et al., ref. [10]). In the present study we have separated the NPC by different methods to determine the cell type responsible for this uptake of [3H]retinol. When liver cells were prepared between 5 and 18 h after intraduodenal administration of [3H]retinol, the radioactive retinol was recovered mainly in the stellate cells. Other liver cells (i.e., hepatocytes, endothelial cells and Kupffer cells) contained only small amounts of [3H]retinol. Further, fluorescence microscopy studies indicated that stellate cells contain large quantities of retinol. Our results show that newly administered [3H]retinol, which is initially located in the hepatocytes, is transferred to the stellate cells and stored there.  相似文献   

20.
We have investigated the esterification by liver membranes of retinol bound to cellular retinol-binding protein (CRBP). When CRBP carrying [3H]retinol as its ligand was purified from rat liver cytosol and incubated with rat liver microsomes, a significant fraction of the [3H]retinol was converted to [3H]retinyl ester. Esterification of the CRBP-bound [3H]retinol, which was maximal at pH 6-7, did not require the addition of an exogenous fatty acyl group. Indeed, when additional palmitoyl-CoA or coenzyme A was provided, the rate of esterification increased either very slightly or not at all. The esterification reaction had a Km for [3H]retinol-CRBP of 4 +/- 0.6 microM and a maximum velocity of 145 +/- 52 pmol/min/mg of microsomal protein (n = 4). The major products were retinyl palmitate/oleate and retinyl stearate in a ratio of approximately 2 to 1 over a range of [3H]retinol-CRBP concentrations from 1 to 8 microM. The addition of progesterone, a known inhibitor of the acyl-CoA:retinol acyltransferase reaction, consistently increased the rate of retinyl ester formation when [3H]retinol was delivered bound to CRBP. These experiments indicate that retinol presented to liver microsomal membranes by CRBP can be converted to retinyl ester and that this process, in contrast to the esterification of dispersed retinol, is independent of the addition of an activated fatty acid and produces a pattern of retinyl ester species similar to that observed in intact liver. A possible role of phospholipids as endogenous acyl donors in the esterification of retinol bound to CRBP is supported by our observations that depletion of microsomal phospholipid with phospholipase A2 prior to addition of retinol-CRBP decreased the retinol-esterifying activity almost 50%. Conversely, incubating microsomes with a lipid-generating system containing choline, CDP-choline, glycerol 3-phosphate, and an acyl-CoA-generating system prior to addition of retinol-CRBP increased retinol esterification significantly as compared to buffer-treated controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号