首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study aimed at determining the functional characteristics of anti-neuroexcitation peptide II (ANEPII). The depressant insect toxin ANEPII from the Chinese scorpion Buthus martensii Karsch had an effect on insect sodium channels. Previous studies showed that scorpion depressant toxins induce insect flaccid paralysis upon binding to receptor site-4, so we tried to predict the functional residues involved using computational techniques. In this study, three-dimensional structure modeling of ANEPII and site-4 of the insect sodium channel were carried out by homology modeling, and these models were used as the starting point for nanosecond-duration molecular dynamics simulations. Docking studies of ANEPII in the sodium channel homology model were conducted, and likely ANEPII binding loci were investigated. Based on these analyses, the residues Tyr34, Trp36, Gly39, Leu40, Trp53, Asn58, Gly61 and Gly62 were predicted to interact with sodium channel receptor and to act as functional residues.  相似文献   

2.
3.
In this study, the cDNA of a new peptide from the venom of the scorpion, Buthotus saulcyi, was cloned and sequenced. It codes for a 64 residues peptide (Bsaul1) which shares high sequence similarity with depressant insect toxins of scorpions. The differences between them mainly appear in the loop1 which connects the beta-strand1 to the alpha-helix and seems to be functionally important in long chain scorpion neurotoxins. This loop is three amino acids longer in Bsaul1 compared to other depressant toxins. A comparative amino acid sequence analysis done on Bsaul1 and some of alpha-, beta-, excitatory and depressant toxins of scorpions showed that Bsaul1 contains all the residues which are highly conserved among long chain scorpion neurotoxins. Structural model of Bsaul1 was generated using Ts1 (a beta-toxin that competes with the depressant insect toxins for binding to Na(+) channels) as template. According to the molecular model of Bsaul1, the folding of the polypeptide chain is being composed of an anti-parallel three-stranded beta-sheet and a stretch of alpha- helix, tightly bound by a set of four disulfide bridges. A striking similarity in the spatial arrangement of some critical residues was shown by superposition of the backbone conformation of Bsaul1 and Ts1.  相似文献   

4.
Numerous toxins from scorpion venoms are much more toxic to insects than to other animal classes, and possess high affinity to Na+ channels. Many of them active on insects were purified from the venom of Buthus occitanus tunetanus. Using amino acid sequences of BotIT2 and RACE-PCR amplification (Rapid amplification of cDNA ends) technique, we isolated, identified and sequenced the nucleotide sequence from the venom glands of the scorpion Buthus occitanus tunetanus. The cDNA encodes a precursor of an insect toxin of 60 amino acid residues. The deduced nucleotide sequence toxin was identical to the determined amino acid sequence of BotIT2. BotIT2 is more similar to the excitatory toxins in its mode of action and to the depressant toxins in its primary structure.  相似文献   

5.
Insect-specific neurotoxins are important components of scorpion venoms. In this study, two toxins from the scorpion Buthus martensi Karsch (BmK) were purified. They shared high sequence homology with other depressant insect toxins and were designated BmK ITa and BmK ITb, respectively. They were able to suppress the action potential of cockroach isolated axon, which is due to a decrease in the peak sodium current. Furthermore, the effect of BmK ITb was lower than that of BmK ITa, and some of the electrophysiological characteristics of BmK ITb even resemble that of excitatory insect toxins. Their primary structures were determined by N-terminal partial sequence determination and cDNA cloning. The differences in their structures, especially the 31st residues, may result in the unique activity of BmK ITb.  相似文献   

6.
For a long time Asian scorpion Buthus martensi Karsch (BmK) has been used in Chinese traditional medicine to cure many diseases of nervous system. Here we report the purification and characterization of a pharmacologically active neurotoxin from the scorpion BmK. This toxin had little toxicity in mice and insects but was found to have an anti-epilepsy effect in rats, and is thus named as BmK anti-epilepsy peptide (BmK AEP). Its amino-acid sequence was determined by lysylendopeptidase digestion, Edman degradation and mass spectrographic analysis. Based on the determined sequence, the gene coding for this peptide was also cloned and sequenced by the 3' and 5' RACE methods. It encodes a precursor of 85 amino-acid residues including a signal peptide of 21 residues, a mature peptide of 61 residues and three additional residues Gly-Lys-Lys at the C-terminus. The additional Gly sometimes followed by one or two basic residues is prerequisite for the amidation of its C-terminus. C-terminal amidation was also verified by the molecular-mass determination of BmK AEP. This anti-epilepsy peptide toxin shares homology with other depressant insect toxins. The remarkable difference between them was mainly focused at residues 6, 7 and 39; these residues might relate to the unique action of BmK AEP.  相似文献   

7.
Depressant insect-selective neurotoxins derived from scorpion venoms (a) induce in blowfly larvae a short, transient phase of contraction similar to that induced by excitatory neurotoxins followed by a prolonged flaccid paralysis and (b) displace excitatory toxins from their binding sites on insect neuronal membranes. The present study was undertaken in order to examine the basis of these similarities by comparing the primary structures and neuromuscular effects of depressant and excitatory toxins. A new depressant toxin (LqhIT2) was purified from the venom of the Israeli yellow scorpion. The effects of this toxin on a prepupal housefly neuromuscular preparation mimic the effects on the intact animal; i.e., a brief period of repetitive bursts of junction potentials is followed by suppression of their amplitude and finally by a block of neuromuscular transmission. Loose patch clamp recordings indicate that the repetitive activity has a presynaptic origin in the motor nerve and closely resembles the effect of the excitatory toxin AaIT. The final synaptic block is attributed to neuronal membrane depolarization, which results in an increase in spontaneous transmitter release; this effect is not induced by excitatory toxin. The amino acid sequences of three depressant toxins were determined by automatic Edman degradation. The depressant toxins comprise a well-defined family of polypeptides with a high degree of sequence conservation. This group differs considerably in primary structure from the excitatory toxin, with which it shares identical or related binding sites, and from the two groups of scorpion toxins that affect sodium conductance in mammals. The two opposing pharmacological effects of depressant toxins are discussed in light of the above data.  相似文献   

8.
A new toxin, Lqh alpha IT, which caused a unique mode of paralysis of blowfly larvae, was purified from the venom of the scorpion Leiurus quinquestriatus hebraeus, and its structural and pharmacological properties were compared to those of three other groups of neurotoxins found in Buthinae scorpion venoms. Like the excitatory and depressant insect-selective neurotoxins, Lqh alpha IT was highly toxic to insects, but it differed from these toxins in two important characteristics: (a) Lqh alpha IT lacked strict selectivity for insects; it was highly toxic to crustaceans and had a measurable but low toxicity to mice. (b) It did not displace an excitatory insect toxin, 125I-AaIT, from its binding sites in the insect neuronal membrane; this indicates that the binding sites for Lqh alpha IT are different from those shared by the excitatory and depressant toxins. However, in its primary structure and its effect on excitable tissues, Lqh alpha IT strongly resembled the well-characterized alpha scorpion toxins, which affect mammals. The amino acid sequence was identical with alpha toxin sequences in 55%-75% of positions. This degree of similarity is comparable to that seen among the alpha toxins themselves. Voltage- and current-clamp studies showed that Lqh alpha IT caused an extreme prolongation of the action potential in both cockroach giant axon and rat skeletal muscle preparations as a result of the slowing and incomplete inactivation of the sodium currents. These observations indicate that Lqh alpha IT is an alpha toxin which acts on insect sodium channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The selective toxicity of depressant scorpion neurotoxins to insects is useful in studying the insect sodium channel gating, as well as being relevant to several other applications. In order to carry out structure/activity studies, the functional expression of such polypeptides is required. In the work reported here, the cDNA of a new peptide from the venom of the scorpion Buthotus saulcyi was cloned and sequenced. It codes for a 64 residues peptide (BsaulI) with 8 highly-conserved cysteines. This peptide shares high sequence similarity with depressant insect toxins of other scorpion species. Large amounts of insoluble BsaulI protein were expressed in Escherichia coli. Purification of this peptide was carried out under denaturing conditions. Renaturation was performed by pulsed dilution of the denatured BsaulI in the refolding buffer. Production of refolded Bsaul1, however, is approximately an order of magnitude higher than that obtained with similar scorpion depressant toxins. Intrinsic fluorescence, far-UV circular dichroism spectra and biological activity assays indicate that the peptide adopts a folded structure.  相似文献   

10.
Long-chain neurotoxins derived from the venom of the Buthidae scorpions, which affect voltage-gated sodium channels (VGSCs) can be subdivided according to their toxicity to insects into insect-selective excitatory and depressant toxins (beta-toxins) and the alpha-like toxins which affect both mammals and insects. In the present study by the aid of reverse-phase HPLC column chromatography, RT-PCR, cloning and various toxicity assays, a new insect selective toxin designated as BjalphaIT was isolated from the venom of the Judean Black Scorpion (Buthotus judaicus), and its full primary sequence was determined: MNYLVVICFALLLMTVVESGRDAYIADNLNCAYTCGSNSYCNTECTKNGAVSGYCQWLGKYGNACWCINLPDKVPIRIPGACR (leader sequence is underlined). Despite its lack of toxicity to mammals and potent toxicity to insects, BjalphaIT reveals an amino acid sequence and an inferred spatial arrangement that is characteristic of the well-known scorpion alpha-toxins highly toxic to mammals. BjalphaITs sharp distinction between insects and mammals was also revealed by its effect on sodium conductance of two cloned neuronal VGSCs heterloguously expressed in Xenopus laevis oocytes and assayed with the two-electrode voltage-clamp technique. BjalphaIT completely inhibits the inactivation process of the insect para/tipE VGSC at a concentration of 100 nM, in contrast to the rat brain Na(v)1.2/beta1 which is resistant to the toxin. The above categorical distinction between mammal and insect VGSCs exhibited by BjalphaIT enables its employment in the clarification of the molecular basis of the animal group specificity of scorpion venom derived neurotoxic polypeptides and voltage-gated sodium channels.  相似文献   

11.
Two insect selective toxins were purified by gel-permeation and ion-exchange chromatographies from the venom of the scorpion, Leiurus quinquestriatus quinquestriatus, and their chemical and pharmacological properties were studied. The first toxin (LqqIT1) induces a fast excitatory contraction paralysis of fly larvae and is about 40 times more toxic than the crude venom. It is a polypeptide composed of 71 amino acids, including 8 half-cystines and devoid of methionine and tryptophan, with an estimated molecular weight of 8189 and a pI value of 8.5. The second toxin (LqqIT2) induces a slow depressant, flaccid paralysis of fly larvae. It is composed of 72 amino acids, including 8 half-cystines, is devoid of proline methionine and histidine, and has an estimated molecular weight of 7990 and a pI value of 8.3. The contrasting symptomatology of these toxins is interpreted in terms of their effects on an isolated axonal preparation of the cockroach in current and voltage clamp conditions. LqqIT1 (0.5-4 microM) induced repetitive firing of the axon which was attributable to two changes in the sodium conductance, a small increase in the peak conductance and a slowing of its turning off. LqqIT2 (1-8 microM) caused a blockage of the evoked action potentials, attributable to both a strong depolarization of the axonal membrane and a progressive suppression of the sodium current. Neither toxin affected potassium conductance. The two toxins differ mainly in their opposite effects on the activatable sodium permeability. In binding assays to a preparation of insect synaptosomal membrane vesicles, the two toxins were shown to competitively displace the radioiodinated excitatory insect toxin derived from the venom of the scorpion, Androctonus australis [( 125I]AaIT), which strongly resembles, in its chemistry and action, the LqqIT1 toxin. The present two toxins have demonstrated a strong affinity closely resembling the AaIT, with KD values of 0.4, 1.9, and 1.0 nM for LqqIT1, LqqIT2, and AaIT, respectively. These data suggest the possibility that the excitatory and depressant insect toxins share a common binding site associated with sodium channels in insect neuronal membranes.  相似文献   

12.
X C Zeng  F Peng  F Luo  S Y Zhu  H Liu  W X Li 《Biochimie》2001,83(9):883-889
Four full-length cDNAs encoding the precursors of four K(+)-toxin-like peptides (named BmKK(1), BmKK(2), BmKK(3) and BmmKK(4), respectively) were first isolated from a venom gland cDNA library of the Chinese scorpion Buthus martensii Karsch. The deduced precursors of BmKK(1), BmKK(2) and BmKK(3) are all made of 54 amino acid residues including a signal peptide of 23 residues, and a mature toxin of 31 residues with three disulfide bridges. The precursor of BmKK(4) is composed of 55 amino acid residues including a signal peptide of 23 residues, a mature toxin of 30 residues cross-linked by three disulfide bridges, and an extra Gly-Lys tail which should be removed in the processing step. The four peptides displayed 24-97% sequence identity with each other, and less than 27% homology with any other scorpion toxins described. However, they shared a common disulfide bridge pattern, which was consistent with that of most short-chain K(+)-toxins, suggesting they represent a new class of scorpion toxins and their target receptors may be a subfamily of K(+) channels. We classified the BmKK toxin subfamily as alpha-KTx14 according to the classification rules. The genomic sequence of BmKK(2) was also cloned and sequenced. It consisted of two exons, disrupted by an intron of 79 bp inserted in the region encoding the C-terminal part of the signal peptide. This structure was very similar to that of other K(+)-toxins described previously.  相似文献   

13.
In this study, the binding characteristics of BmK I, an alpha-like neurotoxic polypeptide purified from the venom of the Chinese scorpion Buthus martensi Karsch, were investigated on rat brain and cockroach nerve cord synaptosomes. The results showed that BmK I can bind to a single class of noninteracting binding sites on cockroach nerve cord synaptosomes with medium affinity (Kd = 16.5 +/ - 4.4 nM) and low binding capacity (Bmax = 1.05 +/- 0.23 pmol/mg protein), but lacks specific binding on rat brain synaptosomes. BmK AS, BmK AS-1 (two novel sodium channel-blocking ligands), BmK IT (an excitatory insect-selective toxin) and BmK IT2 (a depressant insect-selective toxin) from the same venom were found to be capable of depressing BmK I binding in cockroach nerve cord synaptosomes, which might be attributed to either allosteric modulation of voltage-gated Na+ channels by these toxic polypeptides or partial overlapping between the receptor binding sites of BmK I and these toxins. This thus supported the notion that alpha-like scorpion neurotoxic polypeptides bind to a distinct receptor site on sodium channels, which might be similar to the binding receptor site of alpha-type insect toxins, and also related to those of BmK AS type and insect-selective scorpion toxins on insect sodium channels.  相似文献   

14.
A new anti-insect neurotoxin, AaH IT4, has been isolated from the venom of the North African scorpion Androctonus australis Hector. This polypeptide has a toxic effect on insects and mammals and is capable of competing with anti-insect scorpion toxins for binding to the sodium channel of insects; it also modulates the binding of alpha-type and beta-type anti-mammal scorpion toxins to the mammal sodium channel. This is the first report of a scorpion toxin able to exhibit these three kinds of activity. The molecule is composed of 65 amino acid residues and lacks methionine and, more unexpectedly, proline, which until now has been considered to play a role in the folded structure of all scorpion neurotoxins. The primary structure showed a poor homology with the sequences of other scorpion toxins; however, it had features in common with beta-type toxins. In fact, radioimmunoassays using antibodies directed to scorpion toxins representative of the main structural groups showed that there is a recognition of AaH IT4 via anti-beta-type toxin antibodies only. A circular dichroism study revealed a low content of regular secondary structures, particularly in beta-sheet structures, when compared to other scorpion toxins. This protein might be the first member of a new class of toxins to have ancestral structural features and a wide toxic range.  相似文献   

15.
Site-directed antibodies corresponding to conserved putative extracellular segments of sodium channels, coupled with binding studies of radiolabeled insect-selective scorpion neurotoxins, were employed to clarify the relationship between the toxins' receptor sites and the insect sodium channel. (1) The depressant insect toxin LqhIT2 was shown to possess two noninteracting binding sites in locust neuronal membranes: a high-affinity (KD1 = 0.9 +/- 0.6 nM) and low-capacity (Bmax1 = 0.1 +/- 0.07 pmol/mg) binding site as well as a low-affinity (KD2 = 185 +/- 13 nM) and high-capacity (Bmax2 = 10.0 +/- 0.6 pmol/mg) binding site. (2) The high-affinity site serves as a target for binding competition by the excitatory insect toxin AaIT. (3) The binding of LqhIT2 was significantly inhibited in a dose-dependent manner by each of four site-directed antibodies. The binding inhibition resulted from reduction in the number of binding sites. (4) The antibody-mediated inhibition of [125I]AaIT binding differs from that of LqhIT2: three out of the four antibodies which inhibited LqhIT2 binding only partially affected AaIT binding. Two antibodies, one corresponding to extracellular and one to intracellular segments of the channel, did not affect the binding of either toxin. These data suggest that the receptors to the depressant and excitatory insect toxins (a) comprise an integral part of the insect sodium channel, (b) are formed by segments of external loops in domains I, III, and IV of the sodium channel, and (c) are localized in close proximity but are not identical in spite of the competitive interaction between these toxins.  相似文献   

16.
Six peptide toxins (Magi 1-6) were isolated from the Hexathelidae spider Macrothele gigas. The amino acid sequences of Magi 1, 2, 5 and 6 have low similarities to the amino acid sequences of known spider toxins. The primary structure of Magi 3 is similar to the structure of the palmitoylated peptide named PlTx-II from the North American spider Plectreurys tristis (Plectreuridae). Moreover, the amino acid sequence of Magi 4, which was revealed by cloning of its cDNA, displays similarities to the Na+ channel modifier delta-atracotoxin from the Australian spider Atrax robustus (Hexathelidae). Competitive binding assays using several 125I-labelled peptide toxins clearly demonstrated the specific binding affinity of Magi 1-5 to site 3 of the insect sodium channel and also that of Magi 5 to site 4 of the rat sodium channel. Only Magi 6 did not compete with the scorpion toxin LqhalphaIT in binding to site 3 despite high toxicity on lepidoptera larvae of 3.1 nmol/g. The K(i)s of other toxins were between 50 pM for Magi 4 and 1747 nM for Magi 1. In addition, only Magi 5 binds to both site 3 in insects (K(i)=267 nM) and site 4 in rat brain synaptosomes (K(i)=1.2 nM), whereas it showed no affinities for either mammal binding site 3 or insect binding site 4. Magi 5 is the first spider toxin with binding affinity to site 4 of a mammalian sodium channel.  相似文献   

17.
From a cDNA library of Chinese scorpion Buthus martensii Karsch, full-length cDNAs of 351 nucleotides encoding precursors (named BmKIM) that contain signal peptides of 21 amino acid residues, a mature toxin of 61 residues with four disulfide bridges, and an extra Gly-Lys-Lys tail, were isolated. The genomic sequence of BmKIM was cloned and sequenced; it consisted of two exons disrupted by an intron of 1622 bp, the largest known in scorpion toxin genomes, inserted in the region encoding the signal peptide. The cDNA was expressed in Escherichia coli. The recombinant BmKIM was toxic to both mammal and insects. This is the first report that a toxin with such high sequence homology with an insect-specific depressant toxin group exhibits toxicity to mammals. Using whole cell patch-clamp recording, it was discovered that the recombinant BmKIM inhibited the sodium current in rat dorsal root ganglion neurons and ventricular myocytes and protected against aconitine- induced cardiac arrhythmia.  相似文献   

18.
Four novel insecticidal toxins were isolated from the venom of the spider Paracoelotes luctuosus (Araneae: Amaurobiidae) and named delta-palutoxins IT1 to IT4. The four toxins are homologous 36-37 amino acid peptides reticulated by four disulfide bridges and three have amidated C-terminal residues. The delta-palutoxins are highly homologous with the previously described mu-agatoxins and curtatoxins (77-97%). The four peptides demonstrated significant toxicity against larvae of the crop pest Spodoptera litura (Lepidoptera: Noctuidae) in a microinjection bioassay, with LD50 values in the 9-50 microg per g of insect range. This level of toxicity is equivalent to that of several of the most active scorpion toxins used in the development of recombinant baculoviruses, and the delta-palutoxins appear to be insect specific. Electrophysiological experiments demonstrated that delta-palutoxin IT1, the most active toxin acts by affecting insect sodium channel inactivation, resulting in the appearance of a late-maintained sodium current, in a similar fashion to insecticidal scorpion alpha and alpha-like toxins and is thus likely to bind to channel receptor site 3. However, delta-palutoxin IT1 was distinguished by its lack of effect on peak sodium conductance, on the early phase of sodium current inactivation and the absence of a shift in the activation voltage of the sodium channels. delta-Palutoxins are thus proposed as new insecticidal toxins related to the alpha and alpha-like scorpion toxins. They will be useful both in the development of recombinant baculoviruses in agrochemical applications and also as molecular probes for the investigation of molecular mechanisms of insect selectivity and structure and function of sodium channels.  相似文献   

19.
A new peptide named BmK dITAP3 from scorpion Buthus martensii Karsch (BmK) has been identified to possess a dual bioactivity, a depressant neurotoxicity on insects and an analgesic effect on mice. The bioassays also showed that the peptide was definitely devoid of the neurotoxicity on mammals, which indicated that the analgesic effect of BmK dITAP3 could not be ascribed to the syndromic effects of a mammalian neurotoxicity. BmK dITAP3 exhibited 43.0% inhibition efficiency of the analgesic effect on mice at a dose of 5 mg/kg and the FPU value of 0.5 microg/body (approximately 30 mg) on the fly larvae. The pI value and the molecular mass determined by MALDI-TOF MS for dITAP3 were 6.5 and 6722.7, respectively. Its first 15 N-terminal residues were determined by Edman degradation, based on which the full amino acid sequence was deduced from the cDNA sequence encoding the peptide with 3'-RACE. Circular dichroism and sequence based prediction analyses showed dITAP3 may have a similar molecular scaffold as the most scorpion toxins but with features of the more beta structures and much less of alpha helix. The details of the purification, characterization and sequencing as well as the sequence comparison with other depressant insect toxins and the correlation between the analgesic effect and the insect toxicity will be reported and discussed, respectively.  相似文献   

20.
The complete amino acid sequence of an important toxin (toxin 14) from the venom of a Vietnamese scorpion (Buthus occitanus sp.) has been determined, which includes 35 amino acid residues and three disulfide bridges (molecular weight, 3843 Da). The comparison of the sequence with sequences of short scorpion toxins led us to conclude that toxin 14 belongs to a novel group of toxins affecting the excitability of myelinated nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号