首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
beta-Lactamases hydrolyze beta-lactam antibiotics, a reaction that destroys their antibacterial activity. These enzymes, of which four classes are known, are the primary cause of resistance to beta-lactam antibiotics. The class A beta-lactamases form the largest group. A novel class A beta-lactamase, named the nonmetallocarbapenamase of class A (NMC-A) beta-lactamase, has been discovered recently that has a broad substrate profile that included carbapenem antibiotics. This is a serious development, since carbapenems have been relatively immune to the action of these resistance enzymes. Inhibitors for this enzyme are sought. We describe herein that a type of monobactam molecule of our design inactivates the NMC-A beta-lactamase rapidly, efficiently, and irreversibly. The mechanism of inactivation was investigated by solving the x-ray structure of the inhibited NMC-A enzyme to 1.95 A resolution. The structure shed light on the nature of the fragmentation of the inhibitor on enzyme acylation and indicated that there are two acyl-enzyme species that account for enzyme inhibition. Each of these inhibited enzyme species is trapped in a distinct local energy minimum that does not predispose the inhibitor species for deacylation, accounting for the irreversible mode of enzyme inhibition. Molecular dynamics simulations provided evidence in favor of a dynamic motion for the acyl-enzyme species, which samples a considerable conformational space prior to the entrapment of the two stable acyl-enzyme species in the local energy minima. A discussion of the likelihood of such dynamic motion for turnover of substrates during the normal catalytic processes of the enzyme is presented.  相似文献   

2.
Turnover of substrates by many enzymes involves free enzyme forms that differ from the stable form of the enzyme in the absence of substrate. These enzyme species, known as isoforms, have, in general, different physical and chemical properties than the native enzymes. They usually occur only in small concentrations under steady state turnover conditions and thus are difficult to detect. We show in this paper that in one particular case of an enzyme (a class C β-lactamase) with specific substrates (cephalosporins) the presence of an enzyme isoform (E′) can be detected by means of its different reactivity than the native enzyme (E) with a class of covalent inhibitors (phosphonate monoesters). Generation of E′ from E arises either directly from substrate turnover or by way of a branched path from an acyl-enzyme intermediate. The relatively slow spontaneous restoration of E from E′ is accelerated by certain small molecules in solution, for example cyclic amines such as imidazole and salts such as sodium chloride. Solvent deuterium kinetic isotope effects and the effect of methanol on cephalosporin turnover showed that for both E and E′, kcat is limited by deacylation of an acyl-enzyme intermediate rather than by enzyme isomerization.  相似文献   

3.
The lactic acid induced unfolding and the salt-induced folding of creatine kinase (CK) were studied by enzyme activity, fluorescence emission spectra, circular dichroism spectra, and native polyacrylamide gel electrophoresis. The results showed that the kinetics of CK inactivation was a monophase process. Lactic acid caused inactivation and unfolding of CK with no aggregation during CK denaturation. The unfolding of the whole molecule and the inactivation of CK in solutions of different concentration of lactic acid were compared. Much lower lactic acid concentration values were required to bring about inactivation than were required to produce significant conformational changes of the enzyme molecule. At higher concentrations of lactic acid (more than 0.2 mM) the CK dimers were partially dissociated, as proved by native polyacrylamide gel electrophoresis. NaCl induced the molten globule state with a compact structure after CK was denatured with 0.8 mM lactic acid, and the increasing of anions led to a tight side-chain. The above results suggest that the effect of lactic acid differed from that of other denaturants such as guanidine hydrochloride, HCI, or urea during CK folding, and the molten globule state indicates that intermediates exist during CK folding.  相似文献   

4.
1. When heated in 8 M-urea, phospholipase C(EC 3.1.4.3) from Bacillus cereus undergoes conformational transitions depending on the temperatures used. These transitions were studied by examining protein fluorescence, iodide quenching of protein fluorescence, u.v. difference spectroscopy, chemical availability of histidine residues in the enzyme, circular dichroism and catalytic activity. 2. Unless simultaneously exposed to elevated temperatures the enzyme appears to be unaffected by 8 M-urea. Removal of the two zinc atoms from the enzyme renders phospholipase C very sensitive to denaturation by 8 M-urea as indicated by fluorescence emission spectra and circular dichroism. 3. Both the native and the zinc-free enzymes are markedly more resistant to irreversible thermal inactivation in the presence of 8 M-urea than in its absence. 4. The response of the enzyme to 8 M-urea and the role of zinc in stabilizing the enzyme are discussed.  相似文献   

5.
Yeast alcohol dehydrogenase preparations were prepared with the conformational zinc ion removed (Apo-I YADH) and with both the conformational and catalytic zinc ions removed (Apo-II YADH). The unfolding of Apo-I YADH and Apo-II YADH during denaturation in urea solutions was then followed by fluorescence emission, circular dichroism, and second-derivative optical spectroscopies. Compared with the native enzyme, Apo-I YADH incurred some slight unfolding, and its stability against urea was markedly decreased, while Apo-II YADH incurred marked unfolding but contained residual ordered structure even at high urea concentrations. The results show that native YADH is more conformationally stable against urea denaturation than Apo-I YADH, indicating that the conformational Zn2+ plays an important role in stabilizing the conformation of the YADH molecule. However, unfolding of the region around the conformational zinc ion is shown not to be the rate limited step in the unfolding of the molecule by the fact that the unfolding and inactivation rate constants of native and Apo-I YADH are the same. It is suggested that the catalytic zinc ion is more important in maintaining the structure of YADH. YADH lost its cooperative unfolding ability after the zinc ions were removed. The shape of the transition curves of Apo-I YADH suggests the existence of an unfolding intermediate. For both native and Apo-I YADH, inactivation occurs at much lower urea concentrations than that needed to produce significant conformational changes of the enzyme molecule. At urea concentration above 4 M, the inactivation rate constants are much higher than those of the fast phase of the reaction of unfolding. These results support the suggestion of flexibility at the active site of the enzyme (C. L. Tsou (1986) Trends Biochem. Sci., 11, 427-429; (1993) Science, 262, 308-381).  相似文献   

6.
The inactivation and conformational changes of porcine heart lactate dehydrogenase (LDH) have been studied in sodium dodecyl sulfate (SDS) solutions. Increasing SDS concentration led to a quick and concentration-dependent inhibition of the enzyme, with complete inactivation within 5 min in the presence of 1.0 mM SDS. Meanwhile, fluorescence emission and circular dichroism spectra were used to follow the conformational changes of the enzyme during this process, concurrently showing that SDS less than 1.0 mM induced only limited conformational changes to LDH. The above results are in accordance with the suggestion by Tsou (Trends Biochem. Sci. 11 (1986) 427; Science 262 (1993) 380) that the active site usually be more flexible than the enzyme molecule as a whole. Furthermore, the results of polyacrylamide gel electrophoresis (PAGE) implied that unfolding intermediates were presented in the above process. When the SDS concentration used to treat LDH was increased, the bands of native enzyme on native PAGE faded and finally almost disappeared. Meanwhile, multiple bands with lower mobility but no activity emerged behind and enhanced correspondingly. Fast protein liquid chromatography indicated that dissociation occurred during the course of denaturation. The reasons for the above phenomena have been discussed. It was suggested that SDS, binding to LDH to form different LDH-SDS complexes, conferred an array of different unfolding states over the enzyme, and in turn resulted in the formation of the multiple bands on the native PAGE.  相似文献   

7.
The activity and the conformational changes of methanol dehydrogenase (MDH), a quinoprotein containing pyrrolo-quinoline quinone as its prosthetic group, have been studied during denaturation in guanidine hydrochloride (GdnHCl) and urea. The unfolding of MDH was followed using the steady-state and time resolved fluorescence methods. Increasing the denaturant concentration in the denatured system significantly enhanced the inactivation and unfolding of MDH. The enzyme was completely inactivated at 1 M GdnHCl or 6 M urea. The fluorescence emission maximum of the native enzyme was at 332 nm. With increasing denaturant concentrations, the fluorescence emission maximum red-shifted in magnitude to a maximum value (355 nm) at 5 M GdnHCl or 8 M urea. Comparison of inactivation and conformational changes during denaturation showed that in general accord with the suggestion made previously by Tsou, the active sites of MDH are situated in a region more flexible than the molecule as a whole.  相似文献   

8.
The aspartate (Asp)-induced unfolding and the salt-induced folding of creatine kinase (CK) have been studied by measuring enzyme activity, fluorescence emission spectra, circular dichroism (CD) spectra, native polyacrylamide gel electrophoresis and ultraviolet difference spectra. The results showed that Asp caused inactivation and unfolding of CK, with no aggregation during CK denaturation. The kinetics of CK unfolding followed a one phase process. At higher concentrations of Asp (>2.5mM), the CK dimers were partially dissociated. Inactivation occurred before noticeable conformational change during CK denaturation. Asp denatured CK was mostly reactivated and refolded by dilution. KCl induced the molten globule state with compact structure after CK was denatured with 10mM Asp. These results suggest that the effect of Asp differed from that of other denaturants such as guanidine, HCl or urea during CK unfolding. Asp is a reversible protein denaturant and the molten globule state indicates that intermediates exist during CK folding.  相似文献   

9.
Resonance Raman spectra were obtained for the acylenzyme 4-dimethylamino-3-nitro(alpha-benzamido)cinnamoyl-papain prepared using the chromophoric substrate methyl 4-dimethylamino-3-nitro(alpha-benzamido)cinnamate. These spectra contained vibrational spectral data of the acyl residue while covalently attached to the active site and could be used to follow directly acylation and deacylation kinetics. Spectra were obtained at pH values ranging from those where the acyl-enzyme is relatively stable (pH 3.0, tau 1/2 congruent to 800 s) to those where it is relatively unstable (pH 9.2, tau 1/2 congruent to 223 s). Throughout this range acyl-enzyme spectra differed completely from that of the free substrate or the product (4-dimethylamino-3-nitro(alpha-benzamido)cinnamic acid) indicating that a structural change occurred on combination with the active site. The spectra are consistent with rearrangement of the alpha-benzamido group in the bound substrate, -NH--C(==O)Ph becoming --N==C(--OX)Ph, where the bonding to oxygen is unknown. Superimposed on these large differences, small changes in acyl-enzyme spectra also occurred as pH was raised to decrease the half-life. All of the above spectral perturbations are consistent with a structural change in the acyl-enzyme which precedes the rate-determining step in deacylation. Thus, deacylation proceeds from an acyl residue structure differing from that of the substrate in solution. Upon acid denaturation the spectrum characteristic of the intermediate reverts to one closely resembling the substrate, demonstrating that a functioning active site is necessary to produce the observed differences. Spectra in D2O of native acyl-enzyme were identical with those in H2O, indicating that the observed differences in rate constant were not due to solvent-induced structural changes. Activated papain purified by crystallization or by affinity chromatography formed the acyl-enzyme. However, the kinetics of formation and deacylation differed between these materials, as did the spectral properties. Small differences in active-site structure are considered to be responsible for this effect, and it is suggested that such spectral perturbations may be useful in directly relating small differences in structure of the substrate in the active site with corresponding differences in kinetics.  相似文献   

10.
W Zhi  P A Srere  C T Evans 《Biochemistry》1991,30(38):9281-9286
The conformational stabilities of native pig citrate synthase (PCS), a recombinant wild-type PCS, and six active-site mutant pig citrate synthases were studied in thermal denaturation experiments by circular dichroism and in urea denaturation experiments by using DTNB to measure the appearance of latent SH groups. His274 and Asp375 are conserved active-site residues in pig citrate synthase that bind to substrates and are implicated in the catalytic mechanism of the enzyme. By site-directed mutagenesis, His274 was replaced with Gly and Arg, while Asp375 was replaced with Gly, Asn, Glu, or Gln. These modifications were previously shown to result in 10(3)-10(4)-fold reductions in enzyme specific activities. The thermal unfolding of pig citrate synthase and the six mutants in the presence and absence of substrates showed large differences in the thermal stabilities of mutant proteins compared to the wild-type pig citrate synthase. The functions of His274 and Asp375 in ligand binding were measured by oxalacetate protection against urea denaturation. These data indicate that active-site mutations that decrease the specific activity of pig citrate synthase also cause an increase in the conformational stability of the protein. These results suggest that specific electrostatic interactions in the active site of citrate synthase are important in the catalytic mechanism in the chemical transformations as well as the conformational flexibility of the protein, both of which are important for the overall catalytic efficiency of the enzyme.  相似文献   

11.
Using the methods of far-ultraviolet circular dichroism (CD) spectra, fluorescence spectra, and enzyme activity assays, the inactivation and conformational changes of creatine kinase (CK) induced by 1,1,1,3,3,3-hexafluoro-2-propanol (hexafluoroisopropanol (HFIP)) of different concentrations were investigated. To avoid the aggregation of CK that occurs with high HFIP, concentrations of 0%-5% HFIP were used in this study. The CD spectra showed that HFIP concentrations above 2.5% strongly induced the formation of secondary structures of CK. No marked conformational changes were observed at low concentrations of HFIP (0%-2.5%). After incubation with 0.2% HFIP for 10 min, CK lost most of its activity. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity described previously by Tsou was applied to study the kinetics of CK inactivation during denaturation by HFIP. The inactivation rate constants for the free enzyme and the substrate-enzyme complex were determined by Tsou's method. The results suggested that low concentrations of HFIP had a high potential to induce helices of protein and that the active site of the enzyme was situated in a limited and flexible region of the enzyme molecule that was more susceptible to the denaturant than was the protein as a whole.  相似文献   

12.
应用荧光发射光谱,圆二色光谱,二阶导数光谱和紫外差吸收光谱等监测手段,研究了酵母乙醇脱氢酶在胍溶液中的去折叠。比较不同盐酸胍浓度下酵母乙醇脱氢酶的失活与构象变化,实验表明酶的失活先于构象变化:在低浓度胍溶液中,构象尚未发生明显变化时,酶活几乎已经完全丧失。由上述结果可见,含有辅基金属离子Zn~(2+)酶的活性部位较酶分子的整体结构也具有柔性。  相似文献   

13.
Unfolding, inactivation and dissociation of the lectin from Artocarpus hirsuta seeds were studied by chemical (guanidine hydrochloride, GdnHCl) and thermal denaturation. Conformational transitions were monitored by intrinsic fluorescence and circular dichroism. The gradual red shift in the emission maxima of the native protein from 335 to 356 nm, change in the ellipticity at 218 nm and simultaneous decrease in the sugar binding activity were observed with increasing concentration of GdnHCl in the pH range between 4.0 and 9.0. The unfolding and inactivation by GdnHCl were partially reversible. Gel filtration of the lectin in presence of 1-6 m GdnHCl showed that the protein dissociates reversibly into partially unfolded dimer and then irreversibly into unfolded inactive monomer. Thermal denaturation was irreversible. The lectin loses activity rapidly above 45 degrees C. The exposure of hydrophobic patches, distorted secondary structure and formation of insoluble aggregates of the thermally inactivated protein probably leads to the irreversible denaturation.  相似文献   

14.
The conformational stability of erythrocyte spectrin and brain spectrin-like protein (fodrin) has been studied by circular dichroism. In agreement with previous reports the circular dichroism spectra of both proteins in the peptide region were almost identical. The essential differences, on the other hand, were found in the near u.v. range, most probably due to differences in the conformation of intrachain disulphide bonds. Heat denaturation curves, relating to the level of secondary structure (ellipticity at 221 nm) showed that fodrin is more stable than spectrin: curves of reversible as well as irreversible denaturation are shifted to higher temperatures and also the amount of alpha-helices in the denatured state is higher. Spectrin conformation was found to be very sensitive to the presence of water-soluble organic solvents; the denaturation curves exhibit maxima and minima not typical of protein isothermic denaturation. The observed low conformational stability of spectrin is discussed in the context of its molecular environment and function in the red cell membrane.  相似文献   

15.
Human cysteine protease cathepsin L was inactivated at acid pH by a first-order process. The inactivation rate decreased with increasing concentrations of a small synthetic substrate, suggesting that substrates stabilize the active conformation. The substrate-independent inactivation rate constant increased with organic solvent content of the buffer, consistent with internal hydrophobic interactions, disrupted by the organic solvent, also stabilizing the enzyme. Circular dichroism showed that the inactivation is accompanied by large structural changes, a decrease in alpha-helix content being especially pronounced. The high activation energy of the reaction at pH 3.0 (200 kJ.mol-1) supported such a major conformational change occurring. The acid inactivation of cathepsin L was irreversible, consistent with the propeptide being needed for proper folding of the enzyme. Aspartic protease cathepsin D was shown to cleave denatured, but not active cathepsin L, suggesting a potential mechanism for in-vivo regulation and turnover of cathepsin L inside lysosomes.  相似文献   

16.
When dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli B, MB 1428, is treated with approximately a 5 mol ratio of N-bromosuccinimide (NBS) to enzyme at pH 7.2 and assayed at the same pH, there is a 40% loss of activity due to the modification of 1 histidine residue and possibly 1 methionine residue before oxidation of tryptophan occurs. The initial modification is accompanied by a shift of the pH for maximal enzymatic activity from pH 7.2 to pH 5.5 Upon further treatment with N-bromosuccinimide, the activity is gradually reduced from 60 to 0% as tryptophan residues become oxidized. An NBS to enzyme mole ratio of approximately 20 results in 90% inactivation of the enzyme. When the enzyme is titrated with NBS in 6 M guanidine HCl, 5 mol of tryptophan react per mol of enzyme, a result in agreement with the total tryptophan content as determined by magnetic circular dichroism. The 40% NBS-inactivated sample posses full binding capacity for methotrexate and reduced triphosphopyridine nucleotide, and the Km values for dihydrofolate and TPNH are the same as for the native enzyme. After 90% inactivation, only half of the enzyme molecules bind methotrexate, and the dissociation constant for methotrexate is 40 nM as compared to 4 nM for native enzyme in solutions of 0.1 M ionic strength, pH 7.2 Also, TPNH is not bound as tightly to the modified enzyme-methotrexate complex as to the unmodified enzyme-methotrexate complex. Circular dichroism studies indicate the 90% NBS-inactivated enzyme has the same alpha helix content as the native enzyme but less beta structure, while the 40% inactivated enzyme is essentially the same as the native enzyme. Protection experiments were complicated by the fact that NBS reacts with the substrates and cofactors of the enzyme. Although protection of specific residues was not determined, it was clear that TPNH was partially protected from NBS reaction when bound to the enzyme, and the enzyme, and the enzyme was not inactivated by NBS until the TPNH had reacted.  相似文献   

17.
研究了阳离子去污剂-溴化+烷基三甲基铵变性时氨基酰酶的失活与构象变化.当用溴化+烷基三甲基铵滴定氨基酰化酶时,随着去污剂浓度增大,酶的活力逐渐丧失,至50mmolL时酶完全失活.用荧光发射光谱(295nm激发)的方法监测了氨基酰化酶的构象变化.发现氨基酰化酶失活先于构象变化.从这一结果看来.金属酶的活性部位构象可能也是比整个分子的构象具有较大的柔性或运动性.  相似文献   

18.
研究了阳离子去污剂-溴化+烷基三甲基铵变性时氨基酰酶的失活与构象变化.当用溴化+烷基三甲基铵滴定氨基酰化酶时,随着去污剂浓度增大,酶的活力逐渐丧失,至50mmolL时酶完全失活.用荧光发射光谱(295nm激发)的方法监测了氨基酰化酶的构象变化.发现氨基酰化酶失活先于构象变化.从这一结果看来.金属酶的活性部位构象可能也是比整个分子的构象具有较大的柔性或运动性.  相似文献   

19.
The hydrolysis of beta-lactam antibiotics by the serine-beta-lactamases proceeds via an acyl-enzyme intermediate. In the class A enzymes, a key catalytic residue, Glu166, activates a water molecule for nucleophilic attack on the acyl-enzyme intermediate. The active site architecture raises the possibility that the location of the catalytic carboxylate group may be shifted while still maintaining close proximity to the hydrolytic water molecule. A double mutant of the Staphylococcus aureus PC1 beta-lactamase, E166Q:N170D, was produced, with the carboxylate group shifted to position 170 of the polypeptide chain. A mutant protein, E166Q, without a carboxylate group and with abolished deacylation, was produced as a control. The kinetics of the two mutant proteins have been analyzed and the crystal structure of the double mutant protein has been determined. The kinetic data confirmed that deacylation was restored in E166Q:N170D beta-lactamase, albeit not to the level of the wild-type enzyme. In addition, the kinetics of the double mutant enzyme follows progressive inactivation, characterized by initial fast rates and final slower rates. The addition of ammonium sulfate increases the size of the initial burst, consistent with stabilization of the active form of the enzyme by salt. The crystal structure reveals that the overall fold of the E166Q:N170D enzyme is similar to that of native beta-lactamase. However, high crystallographic temperature factors are associated with the ohm-loop region and some of the side chains, including Asp170, are partially or completely disordered. The structure provides a rationale for the progressive inactivation of the Asp170-containing mutant, suggesting that the flexible ohm-loop may be readily perturbed by the substrate such that Asp170's carboxylate group is not always poised to facilitate hydrolysis.  相似文献   

20.
In the presence of intact Hymenolepis diminuta, trypsin was inactivated; intact worms had no apparent effect on subtilisin, pepsin, or papain. Inactivation of trypsin was demonstrable using azoalbumin as a substrate, but the inactivated enzyme retained full catalytic activity against benzoyl-DL-arginine-p-nitroanilide, p-tosyl-L-arginine methyl ester (low molecular weight synthetic trypsin substrates) and p-nitro-p-guanidinobenzoate (an active site titrant). Inactivation was not reversible under conditions of heating, freezing and thawing, or prolonged dialysis of the enzyme. Analyses of inactivated 3H-trypsin by cationic and SDS-polyacrylamide gel electrophoresis, and gel chromatography failed to indicate the presence of a high molecular weight trypsin inhibitor associated with the inactivated enzyme; no low molecular weight, dissociable inhibitor was demonstrable following thermal denaturation of the inactivated enzyme. Analyses of trypsin after incubation in the presence of pulse-labeled worms also failed to demonstrate the presence of any inhibitor of worm origin associated with the inactivated enzyme. The data suggest that inactivation is the result of a small structural or conformational change in the enzyme molecule, a change which partially (rather than totally) inactivates the enzyme towards protein substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号