首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
During the last decade, protein analysis and proteomics have been established as new tools for understanding various biological problems. As the identification of proteins after classical separation techniques, such as two-dimensional gel electrophoresis, have become standard methods, new challenges arise in the field of proteomics. The development of "functional proteomics" combines functional characterization, like regulation, localization and modification, with the identification of proteins for deeper insight into cellular functions. Therefore, different mass spectrometric techniques for the analysis of post-translational modifications, such as phosphorylation and glycosylation, have been established as well as isolation and separation methods for the analysis of highly complex samples, e.g. protein complexes or cell organelles. Furthermore, quantification of protein levels within cells is becoming a focus of interest as mass spectrometric methods for relative or even absolute quantification have currently not been available. Protein or genome databases have been an essential part of protein identification up to now. Thus, de novo sequencing offers new possibilities in protein analytical studies of organisms not yet completely sequenced. The intention of this review is to provide a short overview about the current capabilities of protein analysis when addressing various biological problems.  相似文献   

3.
对不同状态下的蛋白质在表达和修饰水平上进行精确定量,对于探索蛋白质的生物功能、发现疾病的生物标志物都具有重要意义,也是当前蛋白质组学的一个重要研究前沿。近年来,各种蛋白质组定量的新技术和新方法不断涌现,但仍面临着巨大挑战。本文就基于质谱技术的多种蛋白质组定量方法的基本原理、近几年的研究进展和应用进行评述。  相似文献   

4.
Mass spectrometry-based proteomic experiments, in combination with liquid chromatography-based separation, can be used to compare complex biological samples across multiple conditions. These comparisons are usually performed on the level of protein lists generated from individual experiments. Unfortunately given the current technologies, these lists typically cover only a small fraction of the total protein content, making global comparisons extremely limited. Recently approaches have been suggested that are built on the comparison of computationally built feature lists instead of protein identifications. Although these approaches promise to capture a bigger spectrum of the proteins present in a complex mixture, their success is strongly dependent on the correctness of the identified features and the aligned retention times of these features across multiple experiments. In this experimental-computational study, we went one step further and performed the comparisons directly on the signal level. First signal maps were constructed that associate the experimental signals across multiple experiments. Then a feature detection algorithm used this integrated information to identify those features that are discriminating or common across multiple experiments. At the core of our approach is a score function that faithfully recognizes mass spectra from similar peptide mixtures and an algorithm that produces an optimal alignment (time warping) of the liquid chromatography experiments on the basis of raw MS signal, making minimal assumptions on the underlying data. We provide experimental evidence that suggests uniqueness and correctness of the resulting signal maps even on low accuracy mass spectrometers. These maps can be used for a variety of proteomic analyses. Here we illustrate the use of signal maps for the discovery of diagnostic biomarkers. An imple-mentation of our algorithm is available on our Web server.  相似文献   

5.
The cornerstone of proteomics resides in using traditional methods of protein chemistry, to extract and resolve complex mixtures, in concert with the powerful engines of mass spectrometry to decipher peptide and protein identities. The broad utility of proteomics technologies to map protein interactions, understand regulatory mechanisms and identify biomarkers associated with disease states and drug treatments necessitates a targeted biochemical approach tailored to the characteristics of the tissue, fluid or cellular extract being studied. The application of affinity methods in proteomic studies to focus on particular classes of molecules is being used with increasing frequency and comprises the subject of this review. An overview of successfully applied affinity methods is provided, along with speculation on the use of innovative approaches. Sample preparation and processing are critical for proteomics with affinity reagents, as only functional and active proteins can be isolated in most cases. Considerations for methods of sample preparation to optimize affinity capture and release are also discussed.  相似文献   

6.
The cornerstone of proteomics resides in using traditional methods of protein chemistry, to extract and resolve complex mixtures, in concert with the powerful engines of mass spectrometry to decipher peptide and protein identities. The broad utility of proteomics technologies to map protein interactions, understand regulatory mechanisms and identify biomarkers associated with disease states and drug treatments necessitates a targeted biochemical approach tailored to the characteristics of the tissue, fluid or cellular extract being studied. The application of affinity methods in proteomic studies to focus on particular classes of molecules is being used with increasing frequency and comprises the subject of this review. An overview of successfully applied affinity methods is provided, along with speculation on the use of innovative approaches. Sample preparation and processing are critical for proteomics with affinity reagents, as only functional and active proteins can be isolated in most cases. Considerations for methods of sample preparation to optimize affinity capture and release are also discussed.  相似文献   

7.
Chanchal Kumar 《FEBS letters》2009,583(11):1703-1712
Proteomics has made tremendous progress, attaining throughput and comprehensiveness so far only seen in genomics technologies. The consequent avalanche of proteome level data poses great analytical challenges for downstream interpretation. We review bioinformatic analysis of qualitative and quantitative proteomic data, focusing on current and emerging paradigms employed for functional analysis, data mining and knowledge discovery from high resolution quantitative mass spectrometric data. Many bioinformatics tools developed for microarrays can be reused in proteomics, however, the uniquely quantitative nature of proteomics data also offers entirely novel analysis possibilities, which directly suggest and illuminate biological mechanisms.  相似文献   

8.
Buchowiecka  Alicja K. 《Amino acids》2019,51(9):1365-1375

The regulatory role of protein cysteine phosphorylation is an under-researched area. The difficulty of accessing reference S-phosphorylated peptides (pCys-peptides) hampers progress in MS-driven cysteine phosphoproteomics, which requires targeted analytical procedures. This work describes an uncomplicated process for the conversion of disulfide-bridged protein into a complex model mixture of combinatorially modified peptides. Hen egg-white lysozyme was reduced with tris(2-carboxyethyl)phosphine (TCEP) followed by alkylation of cysteine with (3-acrylamidopropyl)trimethyl-ammonium chloride (APTA) and subsequent beta-elimination in aqueous Ba(OH)2 to yield modified polypeptides containing multiple dehydroalanine (Dha) residues. The conjugate addition of thiophosphoric acid to Dha residues followed by trypsinolysis led to numerous D/L phosphocysteine-containing peptides, which were identified by higher-energy collisional-dissociation tandem mass spectrometry (HCD-MS/MS). Our results show that some pCys-peptides produce prominent neutral losses of 80 Da, 98 Da and a weak 116 Da loss. These are similar to the neutral-loss triplets generated by phosphohistidine peptides.

  相似文献   

9.
Timely classification and identification of bacteria is of vital importance in many areas of public health. Mass spectrometry-based methods provide an attractive alternative to well-established microbiologic procedures. Mass spectrometry methods can be characterized by the relatively high speed of acquiring taxonomically relevant information. Gel-free mass spectrometry proteomics techniques allow for rapid fingerprinting of bacterial proteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or, for high-throughput sequencing of peptides from protease-digested cellular proteins, using mass analysis of fragments from collision-induced dissociation of peptide ions. The latter technique uses database searching of product ion mass spectra. A database contains a comprehensive list of protein sequences translated from protein-encoding open reading frames found in bacterial genomes. The results of such searches allow the assignment of experimental peptide sequences to matching theoretical bacterial proteomes. Phylogenetic profiles of sequenced peptides are then used to create a matrix of sequence-to-bacterium assignments, which are analyzed using numerical taxonomy tools. The results thereof reveal the relatedness between bacteria, and allow the taxonomic position of an investigated strain to be inferred.  相似文献   

10.
Timely classification and identification of bacteria is of vital importance in many areas of public health. Mass spectrometry-based methods provide an attractive alternative to well-established microbiologic procedures. Mass spectrometry methods can be characterized by the relatively high speed of acquiring taxonomically relevant information. Gel-free mass spectrometry proteomics techniques allow for rapid fingerprinting of bacterial proteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or, for high-throughput sequencing of peptides from protease-digested cellular proteins, using mass analysis of fragments from collision-induced dissociation of peptide ions. The latter technique uses database searching of product ion mass spectra. A database contains a comprehensive list of protein sequences translated from protein-encoding open reading frames found in bacterial genomes. The results of such searches allow the assignment of experimental peptide sequences to matching theoretical bacterial proteomes. Phylogenetic profiles of sequenced peptides are then used to create a matrix of sequence-to-bacterium assignments, which are analyzed using numerical taxonomy tools. The results thereof reveal the relatedness between bacteria, and allow the taxonomic position of an investigated strain to be inferred.  相似文献   

11.
Defining the cell surface proteome has profound importance for understanding cell differentiation and cell–cell interactions, as well as numerous pathogenic abnormalities. Owing to their hydrophobic nature, plasma membrane proteins that reside on the cell surface pose analytical challenges and, despite efforts to overcome difficulties, remain under-represented in proteomic studies. Limitations in the classically employed ultracentrifugation-based approaches have led to the invention of more elaborate techniques for the purification of cell surface proteins. Three of these methods – cell surface coating with cationic colloidal silica beads, biotinylation and chemical capture of surface glycoproteins – allow for marked enrichment of this subcellular proteome, with each approach offering unique advantages and characteristics for different experiments. In this article, we introduce the principles of each purification method and discuss applications from the recent literature.  相似文献   

12.
13.
Mass spectrometry offers a high-throughput approach to quantifying the proteome associated with a biological sample and hence has become the primary approach of proteomic analyses. Computation is tightly coupled to this advanced technological platform as a required component of not only peptide and protein identification, but quantification and functional inference, such as protein modifications and interactions. Proteomics faces several key computational challenges such as identification of proteins and peptides from tandem mass spectra as well as their quantitation. In addition, the application of proteomics to systems biology requires understanding the functional proteome, including how the dynamics of the cell change in response to protein modifications and complex interactions between biomolecules. This review presents an overview of recently developed methods and their impact on these core computational challenges currently facing proteomics.  相似文献   

14.
We describe Census, a quantitative software tool compatible with many labeling strategies as well as with label-free analyses, single-stage mass spectrometry (MS1) and tandem mass spectrometry (MS/MS) scans, and high- and low-resolution mass spectrometry data. Census uses robust algorithms to address poor-quality measurements and improve quantitative efficiency, and it can support several input file formats. We tested Census with stable-isotope labeling analyses as well as label-free analyses.  相似文献   

15.
We report the release of mzIdentML, an exchange standard for peptide and protein identification data, designed by the Proteomics Standards Initiative. The format was developed by the Proteomics Standards Initiative in collaboration with instrument and software vendors, and the developers of the major open-source projects in proteomics. Software implementations have been developed to enable conversion from most popular proprietary and open-source formats, and mzIdentML will soon be supported by the major public repositories. These developments enable proteomics scientists to start working with the standard for exchanging and publishing data sets in support of publications and they provide a stable platform for bioinformatics groups and commercial software vendors to work with a single file format for identification data.  相似文献   

16.
Development of robust statistical methods for validation of peptide assignments to tandem mass (MS/MS) spectra obtained using database searching remains an important problem. PeptideProphet is one of the commonly used computational tools available for that purpose. An alternative simple approach for validation of peptide assignments is based on addition of decoy (reversed, randomized, or shuffled) sequences to the searched protein sequence database. The probabilistic modeling approach of PeptideProphet and the decoy strategy can be combined within a single semisupervised framework, leading to improved robustness and higher accuracy of computed probabilities even in the case of most challenging data sets. We present a semisupervised expectation-maximization (EM) algorithm for constructing a Bayes classifier for peptide identification using the probability mixture model, extending PeptideProphet to incorporate decoy peptide matches. Using several data sets of varying complexity, from control protein mixtures to a human plasma sample, and using three commonly used database search programs, SEQUEST, MASCOT, and TANDEM/k-score, we illustrate that more accurate mixture estimation leads to an improved control of the false discovery rate in the classification of peptide assignments.  相似文献   

17.
Because of the alarming expansion in the diversity and occurrence of bacteria displaying virulence and resistance to antimicrobial agents, it is increasingly important to be able to detect these microorganisms and to differentiate and identify closely related species, as well as different strains of a given species. In this study, a mass spectrometry proteomics approach is applied, exploiting lipid-based protein immobilization (LPI), wherein intact bacterial cells are bound, via membrane-gold interactions, within a FlowCell. The bound cells are subjected to enzymatic digestion for the generation of peptides, which are subsequently identified, using LC-MS. Following database matching, strain-specific peptides are used for subspecies-level discrimination. The method is shown to enable a reliable typing and identification of closely related strains of the same bacterial species, herein illustrated for Helicobacter pylori .  相似文献   

18.
High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.  相似文献   

19.
Protein profiling using mass spectrometry technology has emerged as a powerful method for analyzing large-scale protein-expression patterns in cells and tissues. However, a number of challenges are present in proteomics research, one of the greatest being the high degree of protein complexity and huge dynamic range of proteins expressed in the complex biological mixtures, which exceeds six orders of magnitude in cells and ten orders of magnitude in body fluids. Since many important signaling proteins have low expression levels, methods to detect the low-abundance proteins in a complex sample are required. This review will focus on the fundamental fractionation and mass spectrometry techniques currently used for large-scale shotgun proteomics research.  相似文献   

20.
Protein profiling using mass spectrometry technology has emerged as a powerful method for analyzing large-scale protein-expression patterns in cells and tissues. However, a number of challenges are present in proteomics research, one of the greatest being the high degree of protein complexity and huge dynamic range of proteins expressed in the complex biological mixtures, which exceeds six orders of magnitude in cells and ten orders of magnitude in body fluids. Since many important signaling proteins have low expression levels, methods to detect the low-abundance proteins in a complex sample are required. This review will focus on the fundamental fractionation and mass spectrometry techniques currently used for large-scale shotgun proteomics research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号