首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A substantial portion of the proteome consists of intrinsically disordered regions (IDRs) that do not fold into well-defined 3D structures yet perform numerous biological functions and are associated with a broad range of diseases. It has been a long-standing enigma how different IDRs successfully execute their specific functions. Further putting a spotlight on IDRs are recent discoveries of functionally relevant biomolecular assemblies, which in some cases form through liquid-liquid phase separation. At the molecular level, the formation of biomolecular assemblies is largely driven by weak, multivalent, but selective IDR-IDR interactions. Emerging experimental and computational studies suggest that the primary amino acid sequences of IDRs encode a variety of their interaction behaviors. In this review, we focus on findings and insights that connect sequence-derived features of IDRs to their conformations, propensities to form biomolecular assemblies, selectivity of interaction partners, functions in the context of physiology and disease, and regulation of function. We also discuss directions of future research to facilitate establishing a comprehensive sequence-function paradigm that will eventually allow prediction of selective interactions and specificity of function mediated by IDRs.  相似文献   

2.
Peptide nanostructures are expected to serve as a major tool in future nanotechnological applications owing to their excellent self-assembly properties, biological and chemical flexibility and structural simplicity. Yet one of the limiting factors for the integration of peptide assemblies into functional electro-organic hybrid devices is the controlled patterning of their assemblies. Here we report the use of inkjet technology for the application of peptide nanostructures on nonbiological surfaces. The aromatic dipeptides nanotubes (ADNT) which readily self-assemble in solution were used as an 'ink' and patterned on transparency foil and ITO plastic surfaces using a commercial inkjet printer. While inkjet technology was used in the past for the patterning of carbon nanotubes, it was not used for the deposition of biomolecular nanostructures. Furthermore, during the development of the application we were able to produce two types of nanostructures, i.e. nanotubes and nanospheres by the self-assembly of the same aromatic dipeptide, tertbutoxycarbonyl-Phe-Phe-OH (Boc-Phe-Phe-OH), under different conditions. Both spherical and tubular structures could be efficiently patterned on surfaces into predesigned patterns. The applications of such technology are discussed.  相似文献   

3.
Kim Y 《Biomacromolecules》2003,4(4):908-913
Different ash-forming biological materials such as gills of mushrooms, cotton wool, silk fiber, spider silk, dog's hair, and human hair were examined as templates to fabricate small structures. Ashes obtained from gills of mushrooms, silk fiber, and spider silk were miniaturized replicas of the original materials, whereas ashes from dog's hair and human hair were tubes. These materials were successfully coated with different inorganic materials by interface-selective sol-gel polymerization. Calcining coated materials yielded structures composed of ash and coated inorganic materials such as silica, titania, copper oxide, aluminum oxide, and iron oxide. Fully calcined ashes from native materials and materials coated with silica were usually 1/3 and 1/5 as large as their original materials, respectively. Silica-ash hybrid materials were much more rigid than ash materials. Incompletely calcined human hairs formed tubes with thick carbonized walls, and their inside morphologies suggested that medulla in human hairs might be responsible for tube formation. Preparation of complex tubular structures was possible as tied hairs did not break during calcination. Results in this study showed biological materials were useful as templates for fabricating inorganic structures regardless of ash formation.  相似文献   

4.
Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed.  相似文献   

5.
A major goal of material science is to produce hierarchical materials that are ordered on all length scales, from the molecular (1-100 A) via the nano (10-100 nm) to the meso (1-100 microm). In these materials, the larger-scale properties can be controlled by choosing molecular characteristics. Methods developed to produce three-dimensional, bulk-like hierarchical structures include biomimetic methods, which use polypeptides as building blocks, and amphiphile and colloidal templating, which use amphiphilic or colloidal mesophases as templates for inorganic mesoporous materials. Designing finite mesostructures with a given geometry still remains a challenge.  相似文献   

6.
Protein phase separation has emerged as a novel paradigm to explain the biogenesis of membraneless organelles and other so-called biomolecular condensates. While the implication of this physical phenomenon within cell biology is providing us with novel ways for understanding how cells compartmentalize biochemical reactions and encode function in such liquid-like assemblies, the newfound appreciation of this process also provides immense opportunities for designing and sculpting biological matter. Here, we propose that understanding the cell’s instruction manual of phase separation will enable bioengineers to begin creating novel functionalized biological materials and unprecedented tools for synthetic biology. We present FASE as the synthesis of the existing sticker-spacer framework, which explains the physical driving forces underlying phase separation, with quintessential principles of Scandinavian design. FASE serves both as a designer condensates catalogue and construction manual for the aspiring (membraneless) biomolecular architect. Our approach aims to inspire a new generation of bioengineers to rethink phase separation as an opportunity for creating reactive biomaterials with unconventional properties and to encode novel biological function in living systems. Although still in its infancy, several studies highlight how designer condensates have immediate and widespread potential applications in industry and medicine.  相似文献   

7.
Cells are made up of complex assemblies of cytoskeletal proteins that facilitate force transmission from the molecular to cellular scale to regulate cell shape and force generation. The “living matter” formed by the cytoskeleton facilitates versatile and robust behaviors of cells, including their migration, adhesion, division, and morphology, that ultimately determine tissue architecture and mechanics. Elucidating the underlying physical principles of such living matter provides great opportunities in both biology and physics. For physicists, the cytoskeleton provides an exceptional toolbox to study materials far from equilibrium. For biologists, these studies will provide new understanding of how molecular-scale processes determine cell morphological changes.The distinction between being “alive” or “not alive” has been a long-standing question for those interested in our natural world. In many ancient cultures, the difference between living organisms and inorganic matter was thought to be due to innate differences arising from a “vital force,” such that biology operated with different fundamental properties than the physical world. The ability to disprove such theories came about over the course of the 17th to the 19th centuries, as scientists developed theories of atoms and were able to synthesize organic matter from inorganic constituents. Over the past 100 years, developments in molecular biology and biochemistry have provided a wealth of information on the structure and function of biological molecules, much of which was acquired in collaborations between physical and biological scientists. Application of X-ray–scattering techniques first developed to study metals enabled discovery of the structure of complicated biological molecules ranging from DNA to ion channels. Use of laser trapping techniques first developed to trap and cool atoms enabled precise force spectroscopy measurements of single molecular motors. We now know that biological molecules, while more complicated than their inorganic counterparts, must obey the rules of physics and chemistry.This wealth of molecular-scale information does not directly inform the behaviors of living cells. The organelles within cells are made up of complex and dynamic assemblies of proteins, lipids, and nucleic acids, all immersed within an aqueous environment. These assemblies are somehow able to build materials that can robustly facilitate the plethora of morphological and physical behaviors of cells at the subcellular (intracellular transport), cellular (division, adhesion, migration), and multicellular (tissue morphogenesis, wound healing) length scales. The dynamic cytoskeleton transmits information and forces from the molecular to the cellular length scales. But what is it about the behaviors of biological molecules that endow cells with the ability to respirate, move, and replicate themselves robustly—all qualities we consider essential to “life”? For these questions, understanding of the physics and chemistry of systems of biological molecules is needed. Interactions that occur within ensembles of molecules lead to emergent properties and behaviors that cannot be predicted at the single-molecule level. These emergent chemical and physical properties of living matter are likely fundamentally different from inorganic or “dead” materials. Discovering the underlying principles of living matter provides fantastic opportunities to learn new physics and biology.The fields of condensed matter physics and materials science study the physical properties that emerge when objects (e.g., atoms, molecules, grains of sand, or soap bubbles) are placed in sufficiently close proximity, such that interactions between them cannot be ignored. Interatomic or intermolecular interactions give rise to emergent properties that are not seen in isolated species. Familiar examples involve electron transport across a material or a material''s response to externally applied magnetic fields or mechanical forces. These emergent properties, such as conductivity, elasticity, and viscosity, enable us to predict the behavior of a collection of objects in these condensed phases. In this paper, I will focus on my perspective of how approaches to understanding the mechanical properties of physical materials can inform understanding of the mechanical properties of living matter found within cells.In a crystal of metal, precisely organized atoms are located nanometers apart, and the energies of their interactions are on the scale of an electron volt (40-fold larger than thermal energy or twice the energy released on the hydrolysis of a single ATP molecule). These give rise to an energy density, or elastic modulus, on the order of gigapascals, which underlies the rigidity of metals. For small deformations, the restoring force between atoms means that this metal behaves like an elastic spring: after a force is applied, the metal returns to its original shape. Understanding force transmission through crystalline metals was facilitated by the development of elasticity theory in the 16th and 17th centuries. Fluids, such as water, lack crystalline order, but predictive understanding of fluid flows and forces was captured through development of theories of fluid dynamics. Now think of another material, Silly Putty, which behaves elastically at short timescales (it bounces like a rubber ball) but then oozes and flows at long timescales, acting like a viscous fluid. Silly Putty is made of long polymers that are trapped by one another at short timescales, but thermal energy is sufficient to allow them to diffuse and translocate at long timescales. Silly Putty is also a “soft material,” in that the polymer''s interaction energies are at the thermal energy level, and its length scale is at the micrometer level. Materials like Silly Putty were thought to be too complicated for analytical theory. It was only in the middle of the 20th century that the theoretical framework to understand these “messy” and “disorganized” polymer-based materials was developed.The most powerful theories for understanding these vastly different forms of physical matter were developed in the absence of even the simplest of computers. The theories relied on developing physical properties or parameters to describe the material with a “mean field,” a type of coarse-graining that identifies the essential properties of individual constituents and interactions but ignores many other details. These mean fields give us new intuitions concerning the origin of material properties and give rise to definitions of physical parameters, such as elasticity and viscosity. However, these theories also require materials that do not jostle around a lot and remain close to equilibrium. In fact, understanding materials “far from equilibrium” has been identified as a major challenge in physics for the next century (National Research Council, 2007) .Materials formed by dynamic protein assemblies in the cytoskeleton are disorganized, heterogeneous, and driven far from equilibrium. Motor proteins generate local stresses, and their activity is spatially modulated. The polymerization and depolymerization of cytoskeletal polymers is controlled by a myriad of regulatory proteins. All these dynamic molecular processes endow the cytoskeletal assemblies with unique behaviors that enable them to support complex physiological tasks. It is likely these dynamics also provide underlying robustness of the cells in response to fluctuating and changing environments. These properties make living cells exquisite materials that cannot be captured by existing frameworks of physical matter. I suspect that we have not yet identified the important parameters needed to characterize their properties. The rich dynamics created by active biological matter present a formidable challenge in the area of materials science.How do we hope to understand the properties of these complex cytoskeletal assemblies and materials? It may seem as though understanding cytoskeletal machinery is an insurmountable feat, the approaches that have been successful for physical materials will not work, and we must rely on complex simulations that require modeling of all individual components. This may be true. However, I think that this is a pessimistic view. Just consider how complicated physical materials would be if we did not have the appropriate parameters to describe the macroscopic responses and had instead became obsessed about knowing the details of all the interactions between underlying atoms and molecules? In the same vein, I believe that predictive insights into biological matter will emerge through development of new physical theories that use mean-field approaches to understanding materials that contain active components and are driven far from equilibrium. The burgeoning field of active-matter physics is currently considering these questions (Ramaswamy, 2010) . However, these theoretical approaches require physical measurements of cells and cellular proteins that may not be clearly linked to a physiological process or have a clear biological context. Materials built from cytoskeletal proteins in vitro should also provide an excellent source of experimental measurements, but closer collaboration with theorists working in this field and collaboration between biochemists and experimental physical scientists is needed to develop control over such materials. Developing predictive physical theories of the cytoskeleton will elucidate principles of why “the whole is more than the sum of its parts” that will provide greater control and design over living matter, in the same way that engineering has provided great advances in applications of materials from the physical world.What do biologists gain from theories of living matter? These theories will provide a crucial link between molecular and cellular length scale behaviors and will provide insight into the mechanisms of why specific molecular perturbations alter cell behavior. Moreover, they should provide us with general design principles of living matter. What are the basic aspects of a machine needed to separate chromosomes, establish polarity, or generate contractile forces that is utilized across different cell types? Can knowing these aspects provide insight into the evolution of cellular machines and the robustness of cell behavior? Thus, study of cellular materials both provides new opportunities for physicists and will provide crucial predictive understanding of cell physiology.Open in a separate windowMargaret L. Gardel  相似文献   

8.
Structural biology has traditionally focused on the structures of proteins, short nucleic acids, small molecules, and their complexes. However, it is now widely recognized that the 3D organization of chromosomes should also be included in this list, despite significant differences in scale and complexity of organization. Here we highlight some notable similarities between the folding processes that shape proteins and chromosomes. Both biomolecules are folded by two types of processes: the affinity-mediated interactions, and by active (ATP-dependent) processes. Both chromosome and proteins in vivo can have partially unstructured and non-equilibrium ensembles with yet to be understood functional roles. By analyzing these biological systems in parallel, we can uncover universal principles of biomolecular organization that transcend specific biopolymers.  相似文献   

9.
A virus is a nanoscaled biomolecular substance composed of genes, protecting capsid proteins, and envelopes. The nanoscale dimensions and surface functionalities of virions have been exploited to attract and assemble inorganic and organic materials to produce functional nanomaterials with large surface areas. Genetic modifications of virus capsid proteins lead to the selective deposition and controlled growth of inorganic substances producing organized virus-based hybrid materials. Due to these properties, viruses hold promise for development as platforms for the creation of hybrid materials with multiple functionalities. This article reviews the characteristics of commonly used viruses and their fabrication into virus-based hybrid materials that have been applied in engineering applications such as nanowires and catalysts.  相似文献   

10.
When folded into their native structures, proteins in biological systems function as nanostructured machines. By contrast, some polypeptides tend to aggregate into other well-ordered structures, namely amyloid fibrils. Such well-ordered protein fibrils are attractive materials for nanobiotechnology because they self-associate through noncovalent bonds under controlled conditions - a property that is shared with small organic molecules called organogelators. Recently, the use of amyloid fibrils as structural templates for constructing nanowires has been demonstrated. Such applications will potentially become one of the next trends in protein engineering and nanobiotechnology.  相似文献   

11.
The concept of the halogen bond (or X‐bond) has become recognized as contributing significantly to the specificity in recognition of a large class of halogenated compounds. The interaction is most easily understood as primarily an electrostatically driven molecular interaction, where an electropositive crown, or σ‐hole, serves as a Lewis acid to attract a variety of electron‐rich Lewis bases, in analogous fashion to a classic hydrogen bonding (H‐bond) interaction. We present here a broad overview of X‐bonds from the perspective of a biologist who may not be familiar with this recently rediscovered class of interactions and, consequently, may be interested in how they can be applied as a highly directional and specific component of the molecular toolbox. This overview includes a discussion for where X‐bonds are found in biomolecular structures, and how their structure–energy relationships are studied experimentally and modeled computationally. In total, our understanding of these basic concepts will allow X‐bonds to be incorporated into strategies for the rational design of new halogenated inhibitors against biomolecular targets or toward molecular engineering of new biological‐based materials.  相似文献   

12.
13.
The biomolecules in and around a living cell – proteins, nucleic acids, lipids and carbohydrates – continuously sample myriad conformational states that are thermally accessible at physiological temperatures. Simultaneously, a given biomolecule also samples (and is sampled by) a rapidly fluctuating local environment comprising other biopolymers, small molecules, water, ions, etc. that diffuse to within a few nanometres, leading to inter-molecular contacts that stitch together large supramolecular assemblies. Indeed, all biological systems can be viewed as dynamic networks of molecular interactions. As a complement to experimentation, molecular simulation offers a uniquely powerful approach to analyse biomolecular structure, mechanism and dynamics; this is possible because the molecular contacts that define a complicated biomolecular system are governed by the same physical principles (forces and energetics) that characterise individual small molecules, and these simpler systems are relatively well-understood. With modern algorithms and computing capabilities, simulations are now an indispensable tool for examining biomolecular assemblies in atomic detail, from the conformational motion in an individual protein to the diffusional dynamics and inter-molecular collisions in the early stages of formation of cellular-scale assemblies such as the ribosome. This text introduces the physicochemical foundations of molecular simulations and docking, largely from the perspective of biomolecular interactions.  相似文献   

14.
Supramolecular protein assemblies including molecular motors, cytoskeletal filaments, chaperones, and ribosomes play a central role in a broad array of cellular functions ranging from cell division and motility to RNA and protein synthesis and folding. Single-particle reconstructions of such assemblies have been growing rapidly in recent years, providing increasingly high resolution structural information under native conditions. While the static structure of these assemblies provides essential insight into their mechanism of biological function, their dynamical motions provide additional important information that cannot be inferred from structure alone. Here we present an unsupervised computational framework for the analysis of high molecular weight protein assemblies and use it to analyze the conformational dynamics of structures deposited in the Electron Microscopy Data Bank. Protein assemblies are modeled using a recently introduced coarse-grained modeling framework based on the finite element method, which is used to compute equilibrium thermal fluctuations, elastic strain energy distributions associated with specific conformational transitions, and dynamical correlations in distant molecular domains. Results are presented in detail for the ribosome-bound termination factor RF2 from Escherichia coli, the nuclear pore complex from Dictyostelium discoideum, and the chaperonin GroEL from E. coli. Elastic strain energy distributions reveal hinge-regions associated with specific conformational change pathways, and correlations in collective molecular motions reveal dynamical coupling between distant molecular domains that suggest new, as well as confirm existing, allosteric mechanisms. Results are publically available for use in further investigation and interpretation of biological function including cooperative transitions, allosteric communication, and molecular mechanics, as well as in further classification and refinement of electron microscopy based structures.  相似文献   

15.
In nature, assembled protein structures offer the most complex functional structures. The understanding of the mechanisms ruling protein–protein interactions opens the door to manipulate protein assemblies in a rational way. Proteins are versatile scaffolds with great potential as tools in nanotechnology and biomedicine because of their chemical, structural, and functional versatility. Currently, bottom-up self-assembly based on biomolecular interactions of small and well-defined components, is an attractive approach to biomolecular engineering and biomaterial design. Specifically, repeat proteins are simplified systems for this purpose.In this work, we provide an overview of fundamental concepts of the design of new protein interfaces. We describe an experimental approach to form higher order architectures by a bottom-up assembly of repeated building blocks. For this purpose, we use designed consensus tetratricopeptide repeat proteins (CTPRs). CTPR arrays contain multiple identical repeats that interact through a single inter-repeat interface to form elongated superhelices. Introducing a novel interface along the CTPR superhelix allows two CTPR molecules to assemble into protein nanotubes. We apply three approaches to form protein nanotubes: electrostatic interactions, hydrophobic interactions, and π-π interactions. We isolate and characterize the stability and shape of the formed dimers and analyze the nanotube formation considering the energy of the interaction and the structure in the three different models. These studies provide insights into the design of novel protein interfaces for the control of the assembly into more complex structures, which will open the door to the rational design of nanostructures and ordered materials for many potential applications in nanotechnology.  相似文献   

16.
Researchers regularly use Transmission Electron Microscopes (TEMs) to examine biological entities and to assess new materials. Here, we describe an additional application for these instruments- viewing viral assemblies in a liquid environment. This exciting and novel method of visualizing biological structures utilizes a recently developed microfluidic-based specimen holder. Our video article demonstrates how to assemble and use a microfluidic holder to image liquid specimens within a TEM. In particular, we use simian rotavirus double-layered particles (DLPs) as our model system. We also describe steps to coat the surface of the liquid chamber with affinity biofilms that tether DLPs to the viewing window. This permits us to image assemblies in a manner that is suitable for 3D structure determination. Thus, we present a first glimpse of subviral particles in a native liquid environment.  相似文献   

17.
One barrier to the construction of nanoscale devices is the ability to place materials into 2D- and 3D-ordered arrays by controlling the assembly and ordering of connections between nanomaterials. Ordered assembly of nanoscale materials may potentially be achieved using biological tools that direct specific connections between individual components. Recently, viruses were successfully employed as scaffolds for the nucleation of nanoparticles and nanowires (Mao et al., 2004); however, there is a paucity of methods for the higher order assembly of phage-templated materials. Here we describe a general strategy for the assembly of filamentous bacteriophages into long, wire-like or into tripod-like structures. To prepare the linear phage assemblies, dimeric leucine zipper protein domains, fused to the p3 and p9 proteins of M13 bacteriophage, were employed to direct the specific end-to-end self-association of the bacteriophage particles. Electron microscopy revealed that up to 90% of the phage displaying complementary leucine zipper domains formed linear multi-phage assemblies, composed of up to 30 phage in length. To prepare tripod-like assemblies, phage were engineered to express trimeric leucine zippers as p3 fusion proteins. This resulted in 3D assembly with three individual phages attached at a single point. These ordered phage structures should provide a foundation for self-assembly of virally templated nanomaterials into useful devices.  相似文献   

18.
It is well established that sequence templates such as those in the PROSITE and PRINTS databases are powerful tools for predicting the biological function and tertiary structure for newly derived protein sequences. The number of X-ray and NMR protein structures is increasing rapidly and it is apparent that a 3D equivalent of the sequence templates is needed. Here, we describe an algorithm called TESS that automatically derives 3D templates from structures deposited in the Brookhaven Protein Data Bank. While a new sequence can be searched for sequence patterns, a new structure can be scanned against these 3D templates to identify functional sites. As examples, 3D templates are derived for enzymes with an O-His-O "catalytic triad" and for the ribonucleases and lysozymes. When these 3D templates are applied to a large data set of nonidentical proteins, several interesting hits are located. This suggests that the development of a 3D template database may help to identify the function of new protein structures, if unknown, as well as to design proteins with specific functions.  相似文献   

19.
Materials used in various biological applications are often modified with proteins to regulate biomolecular and cellular adhesion. Conventional strategies of protein conjugation accompany monovalent bifunctional protein linkers, which present several limitations in molecular synthesis and protein conjugation. Herein, we present a new strategy of preparing multivalent polyaspartamide linkers in a simple top-down manner, and also demonstrate that the resulting polymer linkers allow us to readily conjugate proteins to both organic and inorganic materials. The top-down synthesis of polyaspartamide linkers was performed by partially opening succinimidyl ring moieties of polysuccinimide (PSI) with the controlled number of nucleophiles reactive to photo-cross-linked hydrogel or gold-coated inorganic materials: (1) Poly(2-hydroxyethyl-co-2-methacryloxyethyl aspartamide) (PHMAA) presenting methacrylate was used to micropattern fibronectin or collagen on a hydrogel in order to regulate cell adhesion and growth area on a micrometer scale. (2) Poly(2-hydroxyethyl-co-2-mercaptoethyl aspartamide) (PHMCA) presenting thiol functional groups was used to link fibronectin to a gold-coated silicon microelectromechanical probe designed to measure cell traction force. Overall, these multivalent polyaspartamide protein linkers will greatly assist efforts to analyze and regulate the cellular adhesion to and phenotypic activities of a wide array of substrates and devices.  相似文献   

20.
In nature, interfacial molecular recognition and chirality are of fundamental significance for the construction of biological assemblies. Lipid monolayers at liquid interface can be used as biomimetic models for studying molecular interactions in such assemblies. In this article, we will focus on the use of Langmuir monolayers for studying self-organization and insertion properties of several neoglycolipids. Two types of glycolipids have been considered, one in the context of the analysis of glycoconjugates of biological relevance, and one dealing with the ability of some glycoprobes to insert into a monolayer in relation with their efficiency for serving as membrane imaging systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号