首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The question of parallel (alpha/beta)8-barrel fold evolution remains unclear, owing mainly to the lack of sequence homology throughout the amino acid sequences of (alpha/beta)8-barrel enzymes. The "classical" approaches used in the search for homologies among (alpha/beta)8-barrels (e.g., production of structurally based alignments) have yielded alignments perfect from the structural point of view, but the approaches have been unable to reveal the homologies. These are proposed to be "hidden" in (alpha/beta)8-barrel enzymes. The term "hidden homology" means that the alignment of sequence stretches proposed to be homologous need not be structurally fully satisfactory. This is due to the very long evolutionary history of all (alpha/beta)8-barrels. This work identifies so-called hidden homology around the strand beta 2 that is flanked by loops containing invariant glycines and prolines in 17 different (alpha/beta)8-barrel enzymes, i.e., roughly in half of all currently known (alpha/beta)8-barrel proteins. The search was based on the idea that a conserved sequence region of an (alpha/beta)8-barrel enzyme should be more or less conserved also in the equivalent part of the structure of the other enzymes with this folding motif, given their mutual evolutionary relatedness. For this purpose, the sequence region around the well-conserved second beta-strand of alpha-amylase flanked by the invariant glycine and proline (56_GFTAIWITP, Aspergillus oryzae alpha-amylase numbering), was used as the sequence-structural template. The proposal that the second beta-strand of (alpha/beta)8-barrel fold is important from the evolutionary point of view is strongly supported by the increasing trend of the observed beta 2-strand structural similarity for the pairs of (alpha/beta)8-barrel enzymes: alpha-amylase and the alpha-subunit of tryptophan synthase, alpha-amylase and mandelate racemase, and alpha-amylase and cyclodextrin glycosyltransferase. This trend is also in agreement with the existing evolutionary division of the entire family of (alpha/beta)8-barrel proteins.  相似文献   

2.
Inositol lipid kinasesgenerate polyphosphoinositides, important regulators of severalcellular functions. We have recently cloned two distinctphosphatidylinositol (PI) 4-kinase enzymes, the 210-kDa PI4KIII andthe 110-kDa PI4KIII, from bovine tissues. In the present study, thedistribution of mRNAs encoding these two enzymes was analyzed by insitu hybridization histochemistry in the rat. PI4KIII was foundpredominantly expressed in the brain, with low expression in peripheraltissues. PI4KIII was more uniformly expressed being also present invarious peripheral tissues. Within the brain, PI4KIII showed highestexpression in the gray matter, especially in neurons of the olfactorybulb and the hippocampus, but also gave a signal in the white matter indicating its presence in glia. PI4KIII was highly expressed inneurons, but lacked a signal in the white matter and the choroid plexus. Both enzymes showed expression in the pigment layer and nuclearlayers as well as in the ganglion cells of the retina. In a 17-day-oldrat fetus, PI4KIII was found to be more widely distributed andPI4KIII was primarily expressed in neurons. These results indicatethat PI4KIII is more widely expressed than PI4KIII, and that thetwo enzymes are probably coexpressed in many neurons. Such expressionpattern and the conservation of these two proteins during evolutionsuggest their nonredundant functions in mammalian cells.

  相似文献   

3.
Modification of Golgi glycosyltransferases, such as formation of disulfide-bonded dimers and proteolytical release from cells as a soluble form, are important processes to regulate the activity of glycosyltransferases. To better understand these processes, six glycosyltransferases were selected on the basis of the donor sugars, including two N-acetylglucosaminyltransferases, core 1 beta1,3-N-acetylglucosaminyltransferase (C1-beta3GnT) and core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT-I); two fucosyltransferases, alpha1,2-fucosyltransferase-I (FucT-I) and alpha1,3-fucosyltransferase-VII (FucT-VII); and two sialyltransferases, alpha2,3-sialyltransferase-I (ST3Gal-I) and alpha2,6-sialyltransferase-I (ST6Gal-I). These enzymes were fused with enhanced green fluorescence protein and stably expressed in Chinese hamster ovary cells. Spectrofluorimetric detection and immunoblotting analyses showed that all of these glycosyltransferases except FucT-VII were secreted in the medium. By examining dimers formed in cells and culture media, we found that all of the enzymes, except ST3Gal-I, form a combination of monomers and dimers in cells, whereas the molecules released in the media are either exclusively monomers (C2GnT-I and ST6Gal-I), dimers (FucT-I) or a mixture of both (C1-beta3GnT). These results indicate that dimerization does not always lead to Golgi retention. Analysis of the N-glycosylation status of the enzymes revealed that the secreted proteins are generally more heavily N-glycosylated and sialylated than their membrane-associated counterparts, suggesting that the proteolytic cleavage occurs before the glycosylation is completed. Using FucT-I and ST6Gal-I as a model, we also show that these glycosyltransferases are able to perform autoglycosylation in the dimeric forms. These results indicate that different glycosyltranferases differ significantly in dimerization, proteolytic digestion and secretion, and autoglycosylation. These results strongly suggest that disulfide-bonded dimerization and secretion differentially plays a role in the processing and function of different glycosyltransferases in the Golgi apparatus.  相似文献   

4.
Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of starch-converting enzymes in the production of maltodextrin, modified starches, or glucose and fructose syrups. Currently, these enzymes comprise about 30% of the world's enzyme production. Besides the use in starch hydrolysis, starch-converting enzymes are also used in a number of other industrial applications, such as laundry and porcelain detergents or as anti-staling agents in baking. A number of these starch-converting enzymes belong to a single family: the alpha-amylase family or family13 glycosyl hydrolases. This group of enzymes share a number of common characteristics such as a (beta/alpha)(8) barrel structure, the hydrolysis or formation of glycosidic bonds in the alpha conformation, and a number of conserved amino acid residues in the active site. As many as 21 different reaction and product specificities are found in this family. Currently, 25 three-dimensional (3D) structures of a few members of the alpha-amylase family have been determined using protein crystallization and X-ray crystallography. These data in combination with site-directed mutagenesis studies have helped to better understand the interactions between the substrate or product molecule and the different amino acids found in and around the active site. This review illustrates the reaction and product diversity found within the alpha-amylase family, the mechanistic principles deduced from structure-function relationship structures, and the use of the enzymes of this family in industrial applications.  相似文献   

5.
Many (alpha/beta)8-barrel enzymes contain their conserved sequence regions at or around the beta-strand segments that are often preceded and succeeded by glycines and prolines, respectively. alpha-Amylase is one of these enzymes. Its sequences exhibit a very low degree of similarity, but strong conservation is seen around its beta-strands. These conserved regions were used in the search for similarities with beta-strands of other (alpha/beta)8-barrel enzymes. The analysis revealed an interesting similarity between the segment around the beta 2-strand of alpha-amylase and the one around the beta 4-strand of glycolate oxidase that are flanked in loops by glycines and prolines. The similarity can be further extended on other members of the alpha-amylase and glycolate oxidase subfamilies, i.e., cyclodextrin glycosyltransferase and oligo-1,6-glucosidase, and flavocytochrome b2, respectively. Moreover, the alpha-subunit of tryptophan synthase, the (alpha/beta)8-barrel enzyme belonging to the other subfamily of (alpha/beta)8-barrels, has both investigated strands, beta 2 and beta 4, similar to beta 2 of alpha-amylase and beta 4 of glycolate oxidase. The possibilities of whether this similarity exists only by chance or is a consequence of some processes during the evolution of (alpha/beta)8-barrel proteins are briefly discussed.  相似文献   

6.
Chondrocyte integrin expression and function   总被引:12,自引:0,他引:12  
Loeser RF 《Biorheology》2000,37(1-2):109-116
The extracellular matrix (ECM) is an "information rich" environment and interactions between the chondrocyte and ECM regulate many biological processes important to cartilage homeostasis and repair including cell attachment, growth, differentiation, and survival. The integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these processes. Chondrocytes have been found to express several members of the integrin family which can serve as receptors for fibronectin (alpha 5 beta 1), types II and VI collagen (alpha 1 beta 1, alpha 2 beta 1, alpha 10 beta 1), laminin (alpha 6 beta 1), and vitronectin and osteopontin (alpha V beta 3). Integrin expression can be regulated by growth factors including IGF-I and TGF-beta. By providing a link between the ECM and the cytoskeleton, integrins may be important transducers of mechanical stimuli. Integrin binding stimulates intracellular signaling which can affect gene expression and regulate chondrocyte function. Further studies are needed to more clearly define the role of integrins in cartilage.  相似文献   

7.
Energetic approach to the folding of alpha/beta barrels   总被引:2,自引:0,他引:2  
K C Chou  L Carlacci 《Proteins》1991,9(4):280-295
The folding of a polypeptide into a parallel (alpha/beta)8 barrel (which is also called a circularly permuted beta 8 alpha 8 barrel) has been investigated in terms of energy minimization. According to the arrangement of hydrogen bonds between two neighboring beta-strands of the central barrel therein, such an alpha/beta barrel structure can be folded into six different types: (1) left-tilted, left-handed crossover; (2) left-tilted, right-handed crossover; (3) nontilted, left-handed crossover; (4) nontilted, right-handed crossover; (5) right-tilted, left-handed crossover; and (6) right-tilted, right-handed crossover. Here "tilt" refers to the orientational relation of the beta-strands to the axis of the central beta-barrel, and "crossover" to the beta alpha beta folding connection feature of the parallel beta-barrel. It has been found that the right-tilted, right-handed crossover alpha/beta barrel possesses much lower energy than the other five types of alpha/beta barrels, elucidating why the observed alpha/beta barrels in proteins always assume the form of right tilt and right-handed crossover connection. As observed, the beta-strands in the energy-minimized right-tilted, right-handed crossover (alpha/beta)8-barrel are of strong right-handed twist. The value of root-mean-square fits also indicates that the central barrel contained in the lowest energy (alpha/beta)8 structure thus found coincides very well with the observed 8-stranded parallel beta-barrel in triose phosphate isomerase (TIM). Furthermore, an energetic analysis has been made demonstrating why the right-tilt, right-handed crossover barrel is the most stable structure. Our calculations and analysis support the principle that it is possible to account for the main features of frequently occurring folding patterns in proteins by means of conformational energy calculations even for very complicated structures such as (alpha/beta)8 barrels.  相似文献   

8.
It is a central assumption of evolution that gene duplications provide the genetic raw material from which to create proteins with new functions. The increasing availability in multigene family sequences that has resulted from genome projects has inspired the creation of novel in silico approaches to predict details of protein function. The underlying principle of all such approaches is to compare the evolutionary properties of homologous sequence positions in paralogous proteins. It has been proposed that the positions that show switches in substitution rate over time-i.e., "heterotachous sites," are good indicators of functional divergence. Here, we analyzed the alpha and beta paralogous subunits of hemoglobin in search for such signatures. We found as many heterotachous sites in comparisons between groups of paralogous subunits (alpha/beta) as between orthologous ones (alpha/alpha, beta/beta). Thus, the importance of substitution rate shifts as predictors of specialization between protein subfamilies might be reconsidered. Instead, such shifts may reflect a more general process of protein evolution, consistent with the fact that they can be compatible with function conservation. As an alternative, we focused on those residues showing highly constrained states in two sequence groups, but different in each group, and we named them CBD (for "constant but different"). As opposed to heterotachous positions, CBD sites were markedly overrepresented in paralogous (alpha/beta) comparisons, as opposed to orthologous ones (alpha/alpha, beta/beta), identifying them as likely signatures of functional specialization between the two subunits. When superimposed onto the three-dimensional structure of hemoglobin, CBD positions consistently appeared to cluster preferentially on inter-subunit surfaces, two contact areas crucial to function in vertebrate tetrameric hemoglobin. The identification and analysis of CBD sites by complementing structural information with evolutionary data may represent a promising direction for future studies dealing with the functional characterization of a growing number of multigene families identified by complete genome analyses.  相似文献   

9.
10.
Calmodulin (CaM), a ubiquitous protein, ancestral in early eukaryotes, regulates a large number of physiologically important functions by activating other proteins, some of them enzymes, usually in response to changes in the local concentration of calcium ions. Invertebrates possess one gene that codes for CaM. Among vertebrates, mammals display three genes that code for a 100% identical CaM molecule, while for zebra fishes etc., a non-mammalian vertebrate, we reported earlier the existence of four such genes. The number of multiple genes coding for a 100% identical CaM molecule present in the zebra fish genome, however, is corrected here, from the four, as previously suggested, to six (alpha, alpha2, beta, beta2, gamma and gamma 2). Identification of each of these genes is readily achieved upon examination of the characteristic 5 and 3 UTRs within their respective mRNAs even though we do not know at present what role these UTRs might play. A scanning of the 3 UTRs for short homology elements among the six genes (and a comparison with the human type I, II, and III CaM 3 UTRs) also suggests that duplication processes for three genes resulted in the formation of six such genes. As they become available, the promoter regions for these six genes should be scanned for possible identification of putative regulatory elements if we are to understand the need for the uniquely rigid evolutionary maintenance of these six genes. A comparison of the promoter regions for the beta and beta 2 genes is presented in this paper. A few common short homologous elements appear to be retained in these generally highly variant two regions, but conclusions about differential expression controls must be delayed until the promoter regions for all the other CaM genes have been examined.  相似文献   

11.
The identification of the enzymes involved in the metabolism of simple and complex carbohydrates presents one bioinformatic challenge in the post-genomic era. Here, we present the PFIT and PFRIT algorithms for identifying those proteins adopting the alpha/beta barrel fold that function as glycosidases. These algorithms are based on the observation that proteins adopting the alpha/beta barrel fold share positions in their tertiary structures having equivalent sets of atomic interactions. These are conserved tertiary interaction positions, which have been implicated in both structure and function. Glycosidases adopting the alpha/beta barrel fold share more conserved tertiary interactions than alpha/beta barrel proteins having other functions. The enrichment pattern of conserved tertiary interactions in the glycosidases is the information that PFIT and PFRIT use to predict whether any given alpha/beta barrel will function as a glycosidase or not. Using as a test set a database of 19 glycosidase and 45 nonglycosidase alpha/beta barrel proteins with low sequence similarity, PFIT and PFRIT can correctly predict glycosidase function for 84% of the proteins known to function as glycosidases. PFIT and PFRIT incorrectly predict glycosidase function for 25% of the nonglycosidases. The program PSI-BLAST can also correctly identify 84% of the 19 glycosidases, however, it incorrectly predicts glycosidase function for 50% of the nonglycosidases (twofold greater than PFIT and PFRIT). Overall, we demonstrate that the structure-based PFIT and PFRIT algorithms are both more selective and sensitive for predicting glycosidase function than the sequence-based PSI-BLAST algorithm.  相似文献   

12.
DNA polymerases alpha and beta, Terminal deoxynucleotidyl Transferase and DNA ligases from chicken thymus were purified to homogeneity. Quinolone antibiotics (nalidixic acid, oxolinic acid and pefloxacin ) known to inhibit DNA replication were tested for their effects on these enzymes. DNA ligase activity was not affected by the three drugs. DNA polymerases alpha and beta were inhibited by competitive mechanisms. Surprisingly, Terminal deoxynucleotidyl Transferase was strongly inhibited by the three compounds and more efficiently by nalidixic acid. The significance of these results is discussed in terms of the possible involvement of the enzymes in the respective DNA replication and repair processes.  相似文献   

13.
The turnover of the "high energy" diphosphoinositol polyphosphates by Ca(2+)- and cyclic nucleotide-modulated enzymes is considered a regulatory, molecular switching activity. Target processes may include intracellular trafficking. Following our earlier identification of a prototype human diphosphoinositol-polyphosphate phosphohydrolase (hDIPP1), we now describe new 21-kDa human isoforms, hDIPP2alpha and hDIPP2beta, distinguished from each other solely by hDIPP2beta possessing one additional amino acid (Gln(86)). Candidate DIPP2alpha and DIPP2beta homologues in rat and mouse were also identified. The rank order for catalytic activity is hDIPP1 > hDIPP2alpha > hDIPP2beta. Differential expression of hDIPP isoforms may provide flexibility in response times of the molecular switches. The 76% identity between hDIPP1 and the hDIPP2s includes conservation of an emerging signature sequence, namely, a Nudt (MutT) motif with a GX(2)GX(6)G carboxy extension. Northern and Western analyses indicate expression of hDIPP2s is broad but atypically controlled; these proteins are translated from multiple mRNAs that differ in the length of the 3'-untranslated region because of utilization of an array of alternative (canonical and noncanonical) polyadenylation signals. Thus, cells can recruit sophisticated molecular processes to regulate diphosphoinositol polyphosphate turnover.  相似文献   

14.
BACKGROUND: Pyridoxal-5'-phosphate (PLP) dependent enzymes catalyze a broad range of reactions, resulting in bond cleavage at C alpha, C beta, or C gamma carbons of D and L amino acid substrates. Ornithine decarboxylase (ODC) is a PLP-dependent enzyme that controls a critical step in the biosynthesis of polyamines, small organic polycations whose controlled levels are essential for proper growth. ODC inhibition has applications for the treatment of certain cancers and parasitic ailments such as African sleeping sickness. RESULTS: The structure of truncated mouse ODC (mODC') was determined by multiple isomorphous replacement methods and refined to 1.6 A resolution. This is the first structure of a Group IV decarboxylase. The monomer contains two domains: an alpha/beta barrel that binds the cofactor, and a second domain consisting mostly of beta structure. Only the dimer is catalytically active, as the active sites are constructed of residues from both monomers. The interactions stabilizing the dimer shed light on its regulation by antizyme. The overall structure and the environment of the cofactor are compared with those of alanine racemase. CONCLUSIONS: The analysis of the mODC' structure and its comparison with alanine racemase, together with modeling studies of the external aldimine intermediate, provide insight into the stereochemical characteristics of PLP-dependent decarboxylation. The structure comparison reveals stereochemical differences with other PLP-dependent enzymes and the bacterial ODC. These characteristics may be exploited in the design of new inhibitors specific for eukaryotic and bacterial ODCs, and provide the basis for a detailed understanding of the mechanism by which these enzymes regulate reaction specificity.  相似文献   

15.
The glycosyltransferases controlling the biosynthesis of cell-surface complex carbohydrates transfer glycosyl residues from sugar nucleotides to specific hydroxyl groups of acceptor oligosaccharides. These enzymes represent prime targets for the design of glycosylation inhibitors with the potential to specifically alter the structures of cell-surface glycoconjugates. With the aim of producing such inhibitors, synthetic oligosaccharide substrates were prepared for eight different glycosyltransferases. The enzymes investigated were: A, alpha(1----2, porcine submaxillary gland); B, alpha(1----3/4, Lewis); C, alpha(1----4, mung bean); D, alpha(1----3, Lex)-fucosyltransferases; E, beta(1----4)-galactosyltransferase; F, beta(1----6)-N-acetylglucosaminyltransferase V; G, beta(1----6)-mucin-N-acetylglucosaminyltransferase ("core-2" transferase); and H, alpha(2----3)-sialyltransferase from rat liver. These enzymes all transfer sugar residues from their respective sugar nucleotides (GDP-Fuc, UDP-Gal, UDP-GlcNAc, and CMP-sialic acid) with inversion of configuration at their anomeric centers. The Km values for their synthetic oligosaccharide acceptors were in the range of 0.036-1.3 mM. For each of these eight enzymes, acceptor analogs were next prepared where the hydroxyl group undergoing glycosylation was chemically removed and replaced by hydrogen. The resulting deoxygenated acceptor analogs can no longer be substrates for the corresponding glycosyltransferases and, if still bound by the enzymes, should act as competitive inhibitors. In only four of the eight cases examined (enzymes A, C, F, and G) did the deoxygenated acceptor analogs inhibit their target enzymes, and their Ki values (all competitive) remained in the general range of the corresponding acceptor Km values. No inhibition was observed for the remaining four enzymes even at high concentrations of deoxygenated acceptor analog. For these latter enzymes it is suggested that the reactive acceptor hydroxyl groups are involved in a critical hydrogen bond donor interaction with a basic group on the enzyme which removes the developing proton during the glycosyl transfer reaction. Such groups are proposed to represent logical targets for irreversible covalent inactivation of this class of enzyme.  相似文献   

16.
The human liver alpha alpha alcohol dehydrogenase exhibits a different substrate specificity and stereospecificity for secondary alcohols than the human beta 1 beta 1, and gamma 1 gamma 1 or horse liver alcohol dehydrogenases. All of the enzymes efficiently oxidize primary alcohols, but alpha alpha oxidizes secondary alcohols far more efficiently than human beta 1 beta 1 and gamma 1 gamma 1 or horse liver alcohol dehydrogenase. Specifically, alpha alpha oxidizes four- and five-carbon secondary alcohols with efficiencies 0.06-2.2 times that of primary homologs and oxidizes these secondary alcohols with efficiencies up to 3 orders of magnitude greater than those of the three other isoenzymes. Whereas the human beta 1 beta 1, gamma 1 gamma 1 and horse isoenzymes show a distinct preference toward (S)-(+)-3-methyl-2-butanol, the alpha alpha isoenzyme prefers (R)-(-)-3-methyl-2-butanol. Computer-simulated graphics demonstrate that the horse subunit accommodates (S)-(+)-3-methyl-2-butanol within the active site much better than the opposite stereoisomer, primarily due to steric hindrance caused by Phe-93. Human alpha may accommodate (R)-(-)-3-methyl-2-butanol better than (S)-(+)-3-methyl-2-butanol because of close contacts between the latter and Thr-48. These observations suggest that substitutions at positions 93 and 48 in the active site of human liver alcohol dehydrogenase isoenzymes may determine their substrate specificity for secondary alcohols.  相似文献   

17.
Many filamentous fungi produce an array of extracellular enzymes that acting in cell walls release elicitors of the plant defense response These enzymes may therefore be important in biocontrol applications. The aim of this study was to characterize extracellular degradative enzymes produced by a non-pathogenic binucleate isolate of Rhizoctonia AG-G. The fungus was grown in liquid culture supplemented with pectin, polygalacturonic acid or glucose as a carbon sources and filtrates of the culture media were analyzed for the detection of pectinolytic and glucan hydrolytic enzymes. Using only pectin as a carbon source, secretion of polygalacturonases and methylesterases was found. When the liquid medium was supplemented with polygalacturonic acid, only polygalacturonase activity was detected. However, when glucose was used as carbon source -1,3 and -1,6 glucanases activities were detected, using laminarin and pustulan as substrates, but none of the pectinolytic activities were found. These enzymes were partially purified and characterized. The -(1,3)(1,6) glucanase and polygalacturonase enzymes showed to be active against cell wall polysaccharides from potato sprouts. These enzymes may have an important role in fungus-plant cell wall interaction. This is the first study about the production of extracellular enzymes by non-pathogenic binucleate Rhizoctonia AG-G.  相似文献   

18.
A whole-cell assay technique for DNA polymerase alpha and beta was used to measure the activities of both enzymes in Chinese hamster ovary (CHO) cells after hyperthermic treatment of 42.2 - 45.5 degrees C in acidic or basic environment and in the presence or absence of 5% glycerol. Cell survival was measured at the same time, and the DNA polymerase activities were correlated with survival. The results show a positive correlation between cell killing by heat and loss of DNA polymerase beta activity, both when cells were sensitized to heat by treatment at pH 6.7 with or without glycerol and when cells were protected from heat by treatment with 5% glycerol at pH 7.4 or 6.7. The results show a poor correlation between loss of DNA polymerase alpha activity and cell survival; i.e., compared to cell killing, the loss of DNA polymerase alpha activity was sensitized to heat more by acidic treatment without glycerol and was protected less from heat by glycerol treatment at normal physiological pH (pH 7.4). However, cell killing and loss of polymerase alpha activity did correlate well for sensitization to heat by acidic treatment in the presence of glycerol and for protection from heat by glycerol treatment at low pH. These results considered with other hyperthermia-polymerase studies suggest that heat effects on membranes can apparently result in changes in environmental conditions within the cell (secondary effects), which can in turn alter polymerase activities and/or the direct or secondary effect of heat on the polymerase enzymes. Furthermore, loss of polymerase beta activity serves as a better index of thermal damage resulting in cell death than loss of alpha activity.  相似文献   

19.
Trauma-hemorrhage producesprofound immunosuppression in males but not in proestrus females.Prior castration or flutamide treatment of males followingtrauma-hemorrhage prevents immunosuppression, implicating5-dihydrotestosterone for the immunosuppressive effects. 5-Dihydrotestosterone, a high-affinity androgen receptor-binding steroid, is synthesized in tissues as needed and seldom accumulates. The presence of steroidogenic enzymes in T lymphocytes suggests bothsynthesis and catabolism of 5-dihydrotestosterone. We hypothesized, therefore, that the basis for high 5-dihydrotestosterone activity inT lymphocytes of males following trauma-hemorrhage is due to decreasedcatabolism. Accordingly, catabolism of 5-dihydrotestosterone wasassessed in splenic T lymphocytes by examining the activity andexpression of enzymes involved. Analysis showed increased synthesis anddecreased catabolism of 5-dihydrotestosterone in intact male Tlymphocytes following trauma-hemorrhage. In contrast, reduced5-reductase activity and increased expression of17-hydroxysteroid dehydrogenase oxidative isomers suggestinactivation of 5-dihydrotestosterone in precastrated males. Thusour study suggests increased synthesis and decreased catabolism of5-dihydrotestosterone as a reason for loss of T lymphocyte functionsin intact males following trauma-hemorrhage, as evidenced by decreasedrelease of interleukin-2 and -6.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号