首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(2):128-129
Filamentous fungi form aerial hyphae on solid medium, and some of these differentiate into conidiophores for asexual sporulation (conidiation). In the filamentous deuteromycete, Aspergillus oryzae, aerial hyphae are formed from the foot cells and some differentiate into conidiophores, which are composed of vesicles, phialides and conidia. Recently, we isolated the yeast ATG8 gene homologue Aoatg8 from A. oryzae, and visualized autophagy by the expression of an EGFP (enhanced green fluorescent protein)–AoAtg8 fusion protein and DsRed2 protein in this fungus. Furthermore, by constructing the Aoatg8 deletion and conditional mutants, we demonstrated that autophagy functions during the process of differentiation of aerial hyphae, conidiation and conidial germination in A. oryzae. Here, we discuss the contribution of autophagy towards the differentiation and germination processes in filamentous fungi.

Addendum to:

Functional Analysis of the ATG8 Homologue Aoatg8 and Role of Autophagy in Differentiation and Germination in Aspergillus oryzae

T. Kikuma, M. Ohneda, M. Arioka and K. Kitamoto

Eukaryot Cell 2006; 5:1328-36  相似文献   

2.
Autophagy is a well-known degradation system, induced by nutrient starvation, in which cytoplasmic components and organelles are digested via vacuoles/lysosomes. Recently, it was reported that autophagy is involved in the turnover of cellular components, development, differentiation, immune responses, protection against pathogens, and cell death. In this study, we isolated the ATG8 gene homologue Aoatg8 from the filamentous fungus Aspergillus oryzae and visualized autophagy by the expression of DsRed2-AoAtg8 and enhanced green fluorescent protein-AoAtg8 fusion proteins in this fungus. While the fusion proteins were localized in dot structures which are preautophagosomal structure-like structures under normal growth conditions, starvation or rapamycin treatment caused their accumulation in vacuoles. DsRed2 expressed in the cytoplasm was also taken up into vacuoles under starvation conditions or during the differentiation of conidiophores and conidial germination. Deletion mutants of Aoatg8 did not form aerial hyphae and conidia, and DsRed2 was not localized in vacuoles under starvation conditions, indicating that Aoatg8 is essential for autophagy. Furthermore, Aoatg8 conditional mutants showed delayed conidial germination in the absence of nitrogen sources. These results suggest that autophagy functions in both the differentiation of aerial hyphae and in conidial germination in A. oryzae.  相似文献   

3.
Autophagy is a degradation system in which cellular components are digested via vacuoles/lysosomes, and involved in differentiation in addition to helping cells to survive starvation. The autophagic process is composed of several steps: induction of autophagy, formation of autophagosomes, transportation to vacuoles, and degradation of autophagic bodies. To further understand autophagy in the filamentous fungus Aspergillus oryzae, we first constructed A. oryzae mutants defective for the Aoatg13, Aoatg4, and Aoatg15 genes and examined the resulting phenotypes. The ΔAoatg13 mutant developed conidiophores and conidia, although the number of conidia was decreased compared with the wild-type strain, while conidiation in the ΔAoatg4 and ΔAoatg15 mutants was not detected. The ΔAoatg15 mutants displayed a marked reduction of development of aerial hyphae. Moreover, autophagy in these mutants was examined by observation of the behavior of enhanced green fluorescent protein (EGFP)-AoAtg8. In the ΔAoatg13 mutant, the slight accumulation of EGFP-AoAtg8 in vacuoles, preautophagosomal structures (PAS), and autophagosomes was observed, whereas only PAS-like structures were detected in the ΔAoatg4 mutant. In the ΔAoatg15 mutant, autophagic bodies accumulated in vacuoles, suggesting that the uptake process proceeded. We therefore propose that the level of autophagy is closely correlated with the degree of differentiation in A. oryzae.  相似文献   

4.
Autophagy is a conserved process in eukaryotic cells for degradation of cellular proteins and organelles. In filamentous fungi, autophagic degradation of organelles such as peroxisomes, mitochondria, and nuclei occurs in basal cells after the prolonged culture, but its mechanism is not well understood. Here, we functionally analyzed the filamentous fungus Aspergillus oryzae AoAtg26, an ortholog of the sterol glucosyltransferase PpAtg26 involved in pexophagy in the yeast Pichia pastoris. Deletion of Aoatg26 caused a severe decrease in conidiation and aerial hyphae formation, which is typically observed in the autophagy-deficient A. oryzae strains. In addition, cup-shaped AoAtg8-positive membrane structures were accumulated in the Aoatg26 deletion strain, indicating that autophagic process is impaired. Indeed, the Aoatg26 deletion strain was defective in the degradation of peroxisomes, mitochondria, and nuclei. Taken together, AoAtg26 plays an important role for autophagic degradation of organelles in A. oryzae, which may physiologically contribute to the differentiation in filamentous fungi.  相似文献   

5.
6.
7.
Zhang H  Xue C  Kong L  Li G  Xu JR 《Eukaryotic cell》2011,10(8):1062-1070
In the rice blast fungus Magnaporthe oryzae, the PMK1 mitogen-activated protein (MAP) kinase gene regulates appressorium formation and infectious growth. Its homologs in many other fungi also play critical roles in fungal development and pathogenicity. However, the targets of this important MAP kinase and its interacting genes are not well characterized. In this study, we constructed two yeast two-hybrid libraries of M. oryzae and screened for Pmk1-interacting proteins. Among the nine Pmk1-interacting clones (PICs) identified, two of them, PIC1 and PIC5, were selected for further characterization. Pic1 has one putative nuclear localization signal and one putative MAP kinase phosphorylation site. Pic5 contains one transmembrane domain and two functionally unknown CTNS (cystinosin/ERS1p repeat) motifs. The interaction of Pmk1 with Pic1 or Pic5 was confirmed by coimmunoprecipitation assays. Targeted gene deletion of PIC1 had no apparent effects on vegetative growth and pathogenicity but resulted in a significant reduction in conidiation and abnormal germ tube differentiation on onion epidermal cells. Deletion of PIC5 led to a reduction in conidiation and hyphal growth. Autolysis of aerial hyphae became visible in cultures older than 4 days. The pic5 mutant was defective in germ tube growth and appressorium differentiation. It was reduced in appressorial penetration and virulence on the plant. Both PIC1 and PIC5 are conserved in filamentous ascomycetes, but none of their orthologs have been functionally characterized. Our data indicate that PIC5 is a novel virulence factor involved in appressorium differentiation and pathogenesis in M. oryzae.  相似文献   

8.
A cyclic AMP (cAMP)-dependent protein kinase pathway has been shown to regulate growth, morphogenesis and virulence in filamentous fungi. However, the precise mechanisms of regulation through the pathway remain poorly understood. In Neurospora crassa, the cr-1 adenylate cyclase mutant exhibits colonial growth with short aerial hyphae bearing conidia, and the mcb mutant, a mutant of the regulatory subunit of cAMP-dependent protein kinase (PKA), shows the loss of growth polarity at the restrictive temperature. In the present study, we isolated mutants of the catalytic subunit of the PKA gene pkac-1 through the process of repeat-induced point mutation (RIP). PKA activity of the mutants obtained through RIP was undetectable. The genome sequence predicts two distinct catalytic subunit genes of PKA, named pkac-1 (NCU06240.1, AAF75276) and pkac-2 (NCU00682.1), as is the case in most filamentous fungi. The results suggest that PKAC-1 works as the major PKA in N. crassa. The phenotype of the pkac-1 mutants included colonial growth, short aerial hyphae, premature conidiation on solid medium, inappropriate conidiation in submerged culture, and increased thermotolerance. This phenotype of pkac-1 mutants resembled to that of cr-1 mutants, except that the addition of cAMP did not rescue the abnormal morphology of pkac-1 mutants. The loss of growth polarity at the restrictive temperature in the mcb mutant was suppressed by pkac-1 mutation. These results suggest that the signal transduction pathway mediated by PKAC-1 plays an important role in regulation of aerial hyphae formation, conidiation, and hyphal growth with polarity.  相似文献   

9.
Somatic cell fusion is common during organogenesis in multicellular eukaryotes, although the molecular mechanism of cell fusion is poorly understood. In filamentous fungi, somatic cell fusion occurs during vegetative growth. Filamentous fungi grow as multinucleate hyphal tubes that undergo frequent hyphal fusion (anastomosis) during colony expansion, resulting in the formation of a hyphal network. The molecular mechanism of the hyphal fusion process and the role of networked hyphae in the growth and development of these organisms are unexplored questions. We use the filamentous fungus Neurospora crassa as a model to study the molecular mechanism of hyphal fusion. In this study, we identified a deletion mutant that was restricted in its ability to undergo both self-hyphal fusion and fusion with a different individual to form a heterokaryon. This deletion mutant displayed pleiotropic defects, including shortened aerial hyphae, altered conidiation pattern, female sterility, slow growth rate, lack of hyphal fusion, and suppression of vegetative incompatibility. Complementation with a single open reading frame (ORF) within the deletion region in this mutant restored near wild-type growth rates, female fertility, aerial hyphae formation, and hyphal fusion, but not vegetative incompatibility and wild-type conidiation pattern. This ORF, which we named ham-2 (for hyphal anastomosis), encodes a putative transmembrane protein that is highly conserved, but of unknown function among eukaryotes.  相似文献   

10.
Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins–hydrophobins (HFBs)–that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.  相似文献   

11.
12.
Autophagy is a conserved intracellular degradation process of eukaryotic cells. In filamentous fungi, although autophagy has been reported to have multiple physiological roles, it is not clear whether autophagy is involved in the degradation of misfolded proteins. Here, we investigated the role of autophagy in the degradation of misfolded secretory proteins accumulated in endoplasmic reticulum (ER) in the filamentous fungus Aspergillus oryzae. In late-phase cultures, a disulfide bond-deleted mutant of the secretory protein α-amylase AmyB fused with mDsRed that had accumulated in the ER was subsequently delivered to vacuoles, whereas wild-type AmyB-mDsRed was predominantly located at cell walls and septa. To examine the involvement of autophagy in the delivery of mutant AmyB to vacuoles, mutant AmyB-EGFP was expressed in an A. oryzae autophagy-deficient strain (ΔAoatg8). Microscopic examination revealed that the protein delivery to vacuoles did not occur in the absence of autophagic activity, with mutant AmyB-mDsRed forming large spherical structures surrounded by ER membrane. Hence, we conclude that autophagy is responsible for the delivery of misfolded secretory proteins accumulated in the ER to vacuoles for degradation during late-growth phase in A. oryzae. This is the first study to provide evidence that autophagy plays a role in the degradation of misfolded secretory proteins in filamentous fungi.  相似文献   

13.
Shoji JY  Kikuma T  Arioka M  Kitamoto K 《PloS one》2010,5(12):e15650
Filamentous fungi consist of continuum of multinucleate cells called hyphae, and proliferate by means of hyphal tip growth. Accordingly, research interest has been focusing on hyphal tip cells, but little is known about basal cells in colony interior that do not directly contribute to proliferation. Here, we show that autophagy mediates degradation of basal cell components in the filamentous fungus Aspergillus oryzae. In basal cells, enhanced green fluorescent protein (EGFP)-labeled peroxisomes, mitochondria, and even nuclei were taken up into vacuoles in an autophagy-dependent manner. During this process, crescents of autophagosome precursors matured into ring-like autophagosomes to encircle apparently whole nuclei. The ring-like autophagosomes then disappeared, followed by dispersal of the nuclear material throughout the vacuoles, suggesting the autophagy-mediated degradation of whole nuclei. We also demonstrated that colony growth in a nutrient-depleted medium was significantly inhibited in the absence of functional autophagy. This is a first report describing autophagy-mediated degradation of whole nuclei, as well as suggesting a novel strategy of filamentous fungi to degrade components of existing hyphae for use as nutrients to support mycelial growth in order to counteract starvation.  相似文献   

14.
Nuclear migration is indispensable for normal growth, differentiation, and development, and has been studied in several fungi including Aspergillus nidulans and Neurospora crassa. To better characterize nuclear movement and its consequences during conidiophore development, conidiation, and conidial germination, we performed confocal microscopy and time-lapse imaging on A. nidulans and Aspergillus oryzae strains expressing the histone H2B-EGFP fusion protein. Active trafficking of nuclei from a vesicle to a phialide and subsequently into a conidium provided the mechanistic basis for the formation of multinucleate conidia in A. oryzae. In particular, the first direct visual evidence on multinucleate conidium formation by the migration of nuclei from a phialide into the conidium, rather than by mitotic division in a newly formed conidium, was obtained. Interestingly, a statistical analysis on conidial germination revealed that conidia with more nuclei germinated earlier than those with fewer nuclei. Moreover, multinucleation of conidia conferred greater viability and resistance to UV-irradiation and freeze-thaw treatment.  相似文献   

15.
《Autophagy》2013,9(11):1818-1827
Macroautophagy-mediated glycogen catabolism is required for asexual differentiation in the blast fungus, Magnaporthe oryzae. However, the function(s) of selective subtypes of autophagy has not been studied therein. Here, we report that mitophagy, selective autophagic delivery of mitochondria to the vacuoles for degradation, occurs during early stages of Magnaporthe conidiation. Specifically, mitophagy was evident in the foot cells while being undetectable in aerial hyphae and/or conidiophores. We show that loss of MoAtg24, a sorting nexin related to yeast Snx4, disrupts mitophagy and consequently leads to highly reduced conidiation, suggesting that mitophagy in the foot cells plays an important role during asexual development in Magnaporthe. Ectopic expression of yeast ScATG32 partially suppressed the conidiation initiation defects associated with MoATG24 deletion. MoAtg24 was neither required for pexophagy nor for macroautophagy, or for MoAtg8 localization per se, but directly associated with and likely recruited mitochondria to the autophagic structures during mitophagy. Lastly, MoAtg24 was also required for oxidative stress response in Magnaporthe.  相似文献   

16.
17.
Autophagy is a widely conserved intracellular process for degradation and recycling of proteins,organelles and cytoplasm in eukaryotic organisms and is now emerging as an important process in foliar in...  相似文献   

18.
Protein changes during the asexual cycle of Neurospora crassa.   总被引:9,自引:3,他引:6       下载免费PDF全文
A method for synchronizing conidiation and isolating large numbers of cells at discrete stages of conidia development is described. Using two-dimensional gel electrophoresis, we analyzed the protein profiles of mycelia, aerial hyphae, and conidia and observed that the concentration of 14 polypeptides increase and 38 decrease during the asexual cycle. Twelve polypeptides were present in extracts of aerial hyphae or conidia, but not mycelia, suggesting that they may be conidiation specific. The protein profiles of mutants defective in conidiation were also analyzed. Differences were detected in the two-dimensional profiles of protein extracts from fluffy and wild-type aerial hyphae. Polyadenylated RNA isolated from wild-type mycelia and conidiating cultures was translated in vitro in a rabbit reticulocyte lysate. Differences were detected in the polypeptide products specified by the two RNA populations, suggesting that changes in steady-state levels of polyadenylated RNAs also occur during conidiation.  相似文献   

19.
Filamentous fungi and filamentous bacteria (i.e., the streptomycetes) belong to different kingdoms that diverged early in evolution. Yet, they adopted similar lifestyles. After a submerged feeding mycelium has been established, hyphae grow into the air and form aerial structures from which (a)sexual spores can develop. These spores are dispersed and can give rise to a new mycelium. Some of the key processes involved in the formation of aerial hyphae by these microbes appear to be very similar. In both cases molecules that lower the surface tension are secreted into the aqueous environment, thereby enabling hyphae to grow into the air. Aerial hyphae are then covered with a hydrophobic film. In fungi, this film is characterized by a mosaic of parallel rodlets, while similar rodlets have also been observed on aerial structures of filamentous bacteria. Although the erection of aerial hyphae in both filamentous fungi and filamentous bacteria is dependent upon (poly)peptides that are structurally unrelated, they can, at least partially, functionally substitute for each other.  相似文献   

20.
We have identified a new gene encoding the G protein alpha subunit, gna-3, from the filamentous fungus Neurospora crassa. The predicted amino acid sequence of GNA-3 is most similar to the Galpha proteins MOD-D, MAGA, and CPG-2 from the saprophytic fungus Podospora anserina and the pathogenic fungi Magnaporthe grisea and Cryphonectria parasitica, respectively. Deletion of gna-3 leads to shorter aerial hyphae and premature, dense conidiation during growth on solid medium or in standing liquid cultures and to inappropriate conidiation in submerged culture. The conidiation and aerial hypha defects of the Deltagna-3 strain are similar to those of a previously characterized adenylyl cyclase mutant, cr-1. Supplementation with cyclic AMP (cAMP) restores wild-type morphology to Deltagna-3 strains in standing liquid cultures. Solid medium augmented with exogenous cAMP suppresses the premature conidiation defect, but aerial hypha formation is still reduced. Submerged-culture conidiation is refractory to cAMP but is suppressed by peptone. In addition, Deltagna-3 submerged cultures express the glucose-repressible gene, qa-2, to levels greatly exceeding those observed in the wild type under carbon-starved conditions. Deltagna-3 strains exhibit reduced fertility in homozygous crosses during the sexual cycle; exogenous cAMP has no effect on this phenotype. Intracellular steady-state cAMP levels of Deltagna-3 strains are decreased 90% relative to the wild type under a variety of growth conditions. Reduced intracellular cAMP levels in the Deltagna-3 strain correlate with lower adenylyl cyclase activity and protein levels. These results demonstrate that GNA-3 modulates conidiation and adenylyl cyclase levels in N. crassa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号