首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-diminsional crystalline surface layers (S-layers) composed of prtein or glucoprotein subunits are one of the most commonly observed prokaryotic cell envelope structures. lsolated S-layer Subunits are endowed with the ability to assemble into monomolecular arrays in suspension, on surfaces or interface by an entropy-driven process. S-layer lattices are isoporous structures with functional groups located on the surface in an identical position and orientation. These characteristic featupes have alreadu led to applicatioinns of S-layers as (1) ultrafilration membranes with well-defiled mmlecular weight cut -ooffs and excellent antifouling characteristics, (2) immobilization matrices for functional molecules as required for affiviy and enzyme memberanes, affiniy micricarriers and biosensors, (3) conjugate vaaines, (4) carriers for Langmuir-Blodgett films and reconstituted biological memberanes, and (5) patterning elements in molecular nanotechnology.  相似文献   

2.
Bacterial S-layers.   总被引:9,自引:0,他引:9  
S-layers are produced by the self assembly of proteinaceous subunits on the surfaces of prokaryotes, so that planar, monomolecular-thick crystalline lattices are formed. Some archaeal and eubacterial S-layer proteins are glycosylated. These lattices typically have center-to-center spacings of less than 25 nm, which makes them attractive for biomimetic or nanotechnological applications.  相似文献   

3.
Many species of Bacteria and Archaea posses a regularly structured surface layers (S-layers) as outermost cell envelope component. S-layers composed of a single protein or glycoprotein species. The individual subunits of S-layers interact with each other and with the supporting bacterial envelope component through non-covalent forces. Pores in the crystalline protein network are with mean diameter of 2-6 nm, the thickness of S-layer is 5-10 nm. The isolated S-layer subunits reassemble into two-dimensional crystalline arrays in solution, on solid supports, on planar lipid films. These unique features of S-layers have led to a broad spectrum applications. This review focuses on the structural properties S-layers and S-proteins and their applications with accent to using this structures in nanobiotechnology.  相似文献   

4.
Two-dimensional crystalline bacterial S-layers composed of identical protein or glycoprotein subunits turned out to be ideal materials for the development of biomimetic membranes and new approaches in molecular nanotechnology. These isoporous protein lattices have already been used as (i) structure for producing isoporous ultrafiltration membranes with very precisely defined molecular sieving properties, (ii) matrices for immobilizing monolayers of functional molecules, (iii) stabilizing structure for LB-films and liposomes, and (iv) patterning elements in molecular nanotechnology.  相似文献   

5.
Debabov  V. G. 《Molecular Biology》2004,38(4):482-493
Many bacteria and archaea have a crystalline surface layer (S-layer), which overlies the cell envelope. S-layers each consist of one protein or glycoprotein species. Protein subunits of the S-layer noncovalently interact with each other and with the underlying cell-envelope component. On average, the S-layer lattice has pores of 2–6 nm and is 5–10 nm high. Isolated S-layer proteins recrystallize to form two-dimensional crystalline structures in solution, on a solid support, and on planar lipid membranes. Owing to this unique property, S-layers have a broad range of applications. This review focuses on the structural features and applications of S-layers and their proteins, with special emphasis on their use in nanobiotechnology.  相似文献   

6.
The structures, amino acid- and neutral sugar compositions of the crystalline surface layers (S-layers) of four selected strains each ofBacillus stearothermophilus andDesulfotomaculum nigrificans were compared. Among the four strains of each species a remarkable diversity in the molecular weights of the S-layer subunits and in the geometry and constants of the S-layer lattices was apparent. The crystalline arrays included hexagonal (p6), square (p4) and oblique (p2) lattices. In vitro self-assembly of isolated S-layer subunits (or S-layer fragments) led to the formation of flat sheets or open-ended cylindrical assembly products. The amino acid composition of the S-layers exhibited great similarities and was predominantly acidic. With the exception of the S-layers of two strains ofB. stearothermophilus (where only traces of neutral sugars could be detected), all other S-layer proteins seemed to be glycosylated. Among these strains significant differences in the amount and composition of the glycan portions were found. Based on this diversity interesting questions may be asked about the biological significance of the carbohydrate units of glycoproteins in prokaryotic organisms.  相似文献   

7.
Secretion and assembly of regular surface structures in Gram-negative bacteria   总被引:19,自引:0,他引:19  
Bacteria synthesize large-sized surface structures through the ordered polymerization of protein subunits. This results in planar or tubular regular structures that have evolved to accomplish specific functions related to the particular environment in which these bacteria are found. Tubular assemblies known as flagella are the most complex structures known in bacteria and consist of a helical rigid filament, a torsion adapter or hook and a proton-fueled rotator known as the basal body. Pili or fimbriae are less complicated helical filaments, which consist of a major subunit and 3-5 minor subunits or pilins, whose main function is the attachment to specific surfaces. Planar structures known as S-layers are the simplest of these regular assemblies and are generally made up of a single subunit packed as a bidimensional crystal around the whole cell surface. Most of the components of these structures have to be secreted through the inner membrane (IM), the periplasm and the outer membrane (OM) before reaching their final destination. The so called general secretory pathway (GSP), or type II secretion system, appears to be implicated in this process to varying degrees, depending on the structure considered. A few S-layers and pili require GSP components but also need specific terminal branches, such as the well known chaperone-usher pathway. On the other hand, only two of the nearly 40 proteins involved in flagellar assembly are dependent on the GSP, while the external components are secreted through a specific pathway similar to the type III systems identified in some pathogens. Moreover, secretion of subunits of S-layers using dedicated type I machinery, without the involvement of any GSP component, has also been observed.  相似文献   

8.
Crystalline bacterial cell surface layers   总被引:17,自引:2,他引:15  
Crystalline arrays of proteinaceous subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope structures. They are ubiquitous amongst Gram-positive and Gram-negative archaeobacteria and eubacteria and, if present, account for the major protein species produced by the cells. S-layers can provide organisms with a selection advantage by providing various functions including protective coats, molecular sieves, ion traps and structures involved in cell surface interactions. S-layers were identified as contributing to virulence when present as a structural component of pathogens. In Gram-negative archaeobacteria they are involved in determining cell shape and cell division. The crystalline arrays reveal a broad-application potential in biotechnology, vaccine development and molecular nanotechnology.  相似文献   

9.
Crystalline bacterial cell surface layers (S-layers) are the outermost cell envelope component of many bacteria and archaea. S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. The wealth of information available on the structure, chemistry, genetics and assembly of S-layers revealed a broad spectrum of applications in nanobiotechnology and biomimetics. By genetic engineering techniques, specific functional domains can be incorporated in S-layer proteins while maintaining the self-assembly capability. These techniques have led to new types of affinity structures, microcarriers, enzyme membranes, diagnostic devices, biosensors, vaccines, as well as targeting, delivery and encapsulation systems.  相似文献   

10.
Regular crystalline surface layers (S-layers) are widespread among prokaryotes and probably represent the earliest cell wall structures. S-layer genes have been found in approximately 400 different species of the prokaryotic domains bacteria and archaea. S-layers usually consist of a single (glyco-)protein species with molecular masses ranging from about 40 to 200 kDa that form lattices of oblique, tetragonal, or hexagonal architecture. The primary sequences of hyperthermophilic archaeal species exhibit some characteristic signatures. Further adaptations to their specific environments occur by various post-translational modifications, such as linkage of glycans, lipids, phosphate, and sulfate groups to the protein or by proteolytic processing. Specific domains direct the anchoring of the S-layer to the underlying cell wall components and transport across the cytoplasma membrane. In addition to their presumptive original role as protective coats in archaea and bacteria, they have adapted new functions, e.g., as molecular sieves, attachment sites for extracellular enzymes, and virulence factors.  相似文献   

11.
12.
In this article, we describe a novel type of affinity matrix which was prepared by covalently binding Protein A to crystalline cell surface layers (S-layers) from the gram-positive Clostridium thermohydrosulfuricum L111-69. S-layers were used in the form of cell wall fragments, which were obtained by breaking whole cells by ultrasonification and removing the cell content and the plasma membrane. In these thimble shaped structures, revealing a size of 1 to 2 mum, the peptidoglycan-containing layer was covered on both faces with a hexagonally ordered S-layer lattice composed of identical glycoprotein subunits. After crosslinking the S-layer protein with glutaraldehyde, carboxyl groups from acidic amino acids were activated with carbodiimide and used for immobilization of Protein A. Quantitative determination confirmed that up to two Protein A molecules were bound per S-layer subunit leading to a dense monomolecular coverage of the immobilization matrix with the ligand.Affinity microparticles were capable of adsorbing lgG from solutions of purified preparations, from artificial lgG-albumin mixtures, and from serum. The amount of lgG bound to affinity microparticles corresponded to the theoretical saturation capacity. Under appropriate conditions, up to 95% of the adsorbed lgG could be eluted again. Affinity microparticles were found to have an extremely low Protein A leakage and a high stability toward mechanical forces. Because pores in the S-layer lattice revealed a size of 4 to 5 nm, immobilization of Protein A and adsorption of lgG was restricted to the outermost surface area. This excludes mass transfer problems usually encountered with affinity matrices prepared from amorphous polymers where more than 90% of the ligands are immobilized in the interior. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
Many prokaryotic organisms (archaea and bacteria) are covered by a regularly ordered surface layer (S-layer) as the outermost cell wall component. S-layers are built up of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. Pores in S-layers are of regular size and morphology, and functional groups on the protein lattice are aligned in well-defined positions and orientations. Due to the high degree of structural regularity S-layers represent unique systems for studying the structure, morphogenesis, and function of layered supramolecular assemblies. Isolated S-layer subunits of numerous organisms are able to assemble into monomolecular arrays either in suspension, at air/water interfaces, on planar mono- and bilayer lipid films, on liposomes and on solid supports (e.g. silicon wafers). Detailed studies on composite S-layer/lipid structures have been performed with Langmuir films, freestanding bilayer lipid membranes, solid supported lipid membranes, and liposomes. Lipid molecules in planar films and liposomes interact via their head groups with defined domains on the S-layer lattice. Electrostatic interactions are the most prevalent forces. The hydrophobic chains of the lipid monolayers are almost unaffected by the attachment of the S-layer and no impact on the hydrophobic thickness of the membranes has been observed. Upon crystallization of a coherent S-layer lattice on planar and vesicular lipid membranes, an increase in molecular order is observed, which is reflected in a decrease of the membrane tension and an enhanced mobility of probe molecules within an S-layer-supported bilayer. Thus, the terminology 'semifluid membrane' has been introduced for describing S-layer-supported lipid membranes. The most important feature of composite S-layer/lipid membranes is an enhanced stability in comparison to unsupported membranes.  相似文献   

14.
Crystalline bacterial cell surface layers (S-layers) have been identified in a great number of different species of bacteria and represent an almost universal feature of archaea. Isolated native S-layer proteins and S-layer fusion proteins incorporating functional sequences self-assemble into monomolecular crystalline arrays in suspension, on a great variety of solid substrates and on various lipid structures including planar membranes and liposomes. S-layers have proven to be particularly suited as building blocks and patterning elements in a biomolecular construction kit involving all major classes of biological molecules (proteins, lipids, glycans, nucleic acids and combinations of them) enabling innovative approaches for the controlled 'bottom-up' assembly of functional supramolecular structures and devices. Here, we review the basic principles of S-layer proteins and the application potential of S-layers in nanobiotechnology and biomimetics including life and nonlife sciences.  相似文献   

15.
Two-dimensional crystalline bacterial surface layers (S-layers) are found in a broad range of bacteria and archaea as the outermost cell envelope component. The self-assembling properties of the S-layers permit them to recrystallize on solid substrates. Beyond their biological interest as S-layers, they are currently used in nanotechnology to build supramolecular structures. Here, the structure of S-layers and the interactions between them are studied through surface force techniques. Scanning force microscopy has been used to study the structure of recrystallized S-layers from Bacillus sphaericus on mica at different 1:1 electrolyte concentrations. They give evidence of the two-dimensional organization of the proteins and reveal small corrugations of the S-layers formed on mica. The lattice parameters of the S-layers were a=b=14 nm, gamma=90 degrees and did not depend on the electrolyte concentration. The interaction forces between recrystallized S-layers on mica were studied with the surface force apparatus as a function of electrolyte concentration. Force measurements show that electrostatic and steric interactions are dominant at long distances. When the S-layers are compressed they exhibit elastic behavior. No adhesion between recrystallized layers takes place. We report for the first time, to our knowledge, the value of the compressibility modulus of the S-layer (0.6 MPa). The compressibility modulus is independent on the electrolyte concentration, although loads of 20 mN m-1 damage the layer locally. Control experiments with denatured S-proteins show similar elastic properties under compression but they exhibit adhesion forces between proteins, which were not observed in recrystallized S-layers.  相似文献   

16.
Surface protein or glycoprotein layers (S-layers) are common structures of the prokaryotic cell envelope. They are either associated with the peptidoglycan or outer membrane of bacteria, and constitute the only cell wall component of many archaea. Despite their occurrence in most of the phylogenetic branches of microorganisms, the functional significance of S-layers is assumed to be specific for genera or groups of organisms in the same environment rather than common to all prokaryotes. Functional aspects have usually been investigated with isolated S-layer sheets or proteins, which disregards the interactions between S-layers and the underlying cell envelope components. This study discusses the synergistic effects in cell envelope assemblies, the hypothetical role of S-layers for cell shape formation, and the existence of a common function in view of new insights.  相似文献   

17.
Surface layers (S-layers) from Bacteria and Archaea are built from protein molecules arrayed in a two-dimensional lattice, forming the outermost cell wall layer in many prokaryotes. In almost half a century of S-layer research a wealth of structural, biochemical, and genetic data have accumulated, but it has not been possible to correlate sequence data with the tertiary structure of S-layer proteins to date. In this paper, some highlights of structural aspects of archaeal and bacterial S-layers that allow us to draw some conclusions on molecular properties are reviewed. We focus on the structural requirements for the extraordinary stability of many S-layer proteins, the structural and functional aspects of the S-layer homology domain found in S-layers, extracellular enzymes and related functional proteins, and outer membrane proteins, and the molecular interactions of S-layer proteins with other cell wall components. Finally, the perspectives and requirements for structural research on S-layers, which indicate that the investigation of isolated protein domains will be a prerequisite for solving S-layer structures at atomic resolution, are discussed.  相似文献   

18.
Lactobacillus surface layers and their applications   总被引:6,自引:0,他引:6  
Surface (S-) layers are crystalline arrays of proteinaceous subunits present as the outermost component of cell wall in several species of the genus Lactobacillus, as well as in many other bacteria and Archaea. Despite the high similarity of the amino acid composition of all known S-layer proteins, the overall sequence similarity is, however, surprisingly small even between the Lactobacillus S-layer proteins. In addition, the typical characteristics of Lactobacillus S-layer proteins, distinguishing them from other S-layer proteins, are small size and high-predicted pI value. Several lactobacilli possess multiple S-layer protein genes, which can be differentially or simultaneously expressed. To date, the characterized functions of Lactobacillus S-layers are involved in mediating adhesion to different host tissues. A few applications for the S-layer proteins of lactobacilli already exist, including their use as antigen delivery vehicles.  相似文献   

19.
An extensive structural analysis of microtubules assembled in vitro has been carried out using electron microscopy in conjunction with computer analysis based on Fourier transforms and helical diffraction theory. Microtubules assembled in vitro displayed a range of numbers of protofilaments from 12 to 16, with 14 the most abundant (84% in one large sampling). In almost all structures observed protofilaments are staggered to form a characteristic 3-start shallow helix. The presence of the 3-start helix was confirmed by fiber tilting experiments to correct the effects of microtubule flattening. Since α and β tubulin subunits alternate along the protofilaments, continuous helical lattices can be constructed with interactions between adjacent protofilaments involving unlike subunits (type A lattice) or like subunits (type B lattice). However, the 14-protofilament, 3-start microtubules are incompatible with either the A or B-type continuous helical lattice. Evidence is presented which indicates that lattice discontinuities are present which generate features of both the A and B-types, with the latter predominating.  相似文献   

20.
The ultrastructures of the regular surface layers (S-layers) of the extremely thermophilic archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus were examined by freeze-etching, freeze-drying, and negative staining methods combined with optical and digital image enhancement. In both strains, a monolayer of macromolecules arranged in hexagonal arrays with center-to-center spacings of approximately 30 nm was the only component of the cell wall. The gross morphologies of the S-layer lattices of the two organisms were similar and showed the same handedness in the arrangement of the protomers of the morphological units. Striking differences were found in the anionic charge distributions on the surfaces of the two S-layer proteins as determined by labeling with polycationic ferritin. Analysis of the lattice orientation, together with the number and distribution of lattice faults on intact cells, provided a strong indication that the S-layers of both organisms have a shape-determining function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号