首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaluation of: Schubert W, Bonnekoh B, Pommer AJ et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nature Biotechnology 24(10), 1270–1278 (2006) .

Knowing that a specific protein is present within a cell provides little insight into its function. In a study by Schubert and colleagues, the investigators present a multidimensional method that utilizes fluorescence microscopy and automated antibody introduction and detection, which is potentially capable of localizing hundreds of proteins within individual cells. The method, referred to as multiepitope-ligand cartography, is validated in the analysis of cell-surface receptors in peripheral mononuclear blood cells, and then used to map protein complexes in a series of disease models, including psoriasis and chronic constriction injury. Within each experiment, the locales of each protein are presented in a binary format and the data are interpreted to recognize specific proteins that control the topology of the protein network. The hope is that by identifying partnerships between proteins and those proteins that are most responsible for these interactions, novel diagnostic features and therapeutic targets can be established.  相似文献   

2.
3.
Chlamydiae are obligate intracellular pathogens that spend their entire growth phase sequestered in a membrane-bound vacuole called an inclusion. A set of chlamydial proteins, labelled Inc proteins, has been identified in the inclusion membrane (IM). The predicted IncA, IncB and IncC amino acid sequences share very limited similarity, but a common hydrophobicity motif is present within each Inc protein. In an effort to identify a relatively complete catalogue of Chlamydia trachomatis proteins present in the IM of infected cells, we have screened the genome for open reading frames encoding this structural motif. Hydropathy plot analysis was used to screen each translated open reading frame in the C. trachomatis genome database. Forty-six candidate IM proteins (C-lncs) that satisfied the criteria of containing a bilobed hydrophobic domain of at least 50 amino acids were identified. The genome of Chlamydia pneumoniae encodes a larger collection of C-lnc proteins, and only approximately half of the C-lncs are encoded within both genomes. In order to confirm the hydropathy plot screening method as a valid predictor of C-lncs, antisera and/or monoclonal antibodies were prepared against six of the C. trachomatis C-lncs. Immunofluorescence microscopy of C. trachomatis-infected cells probed with these antibodies showed that five out of six C-lncs are present in the chlamydial IM. Antisera were also produced against C. pneumoniae p186, a protein sharing identity with Chlamydia psittaci lncA and carrying a similar bilobed hydrophobic domain. These antisera labelled the inclusion membrane in C. pneumoniae infected cells, confirming that proteins sharing the unique secondary structural characteristic also localize to the inclusion membrane of C. pneumoniae. Sera from patients with high-titre antibodies to C. trachomatis were examined for reactivity with each tested C-lnc protein. Three out of six tested C-lncs were recognized by a majority of these patient sera. Collectively, these studies identify and characterize novel proteins localized to the chlamydial IM and demonstrate the existence of a potential secondary structural targeting motif for localization of chlamydial proteins to this unique intracellular environment.  相似文献   

4.
Regulation of HIV-1 gene expression.   总被引:28,自引:0,他引:28  
B R Cullen 《FASEB journal》1991,5(10):2361-2368
  相似文献   

5.
Initiation of adenovirus DNA synthesis is preceded by the assembly of a nucleoprotein complex at the origin of DNA replication containing three viral proteins, preterminal protein, DNA polymerase and DNA binding protein, and two cellular proteins, nuclear factors I and III. While sequence specific interactions of the cellular proteins with their cognate sites in the origin of DNA replication are well characterized, the question of how the viral replication proteins recognize the origin has remained unanswered. Preterminal protein and DNA polymerase were therefore purified to homogeneity from recombinant baculovirus infected insect cells. Gel filtration demonstrated that while DNA polymerase existed in monomeric and dimeric forms, preterminal protein was predominantly monomeric and when combined the proteins formed a stable heterodimer. In a gel electrophoresis DNA binding assay each of the protein species recognized DNA within the origin of DNA replication with unique specificity. Competition analysis and DNase I protection experiments revealed that although each protein could recognize the origin, the heterodimer did so with enhanced specificity, protecting bases 8-17 from cleavage with the nuclease. Thus the highly conserved 'core' of the origin of DNA replication, present in all human adenoviruses, is recognized by the preterminal protein--DNA polymerase heterodimer.  相似文献   

6.
7.
Nanos and pumilio bind each other to regulate translation of specific mRNAs in germ cells of model organisms, such as D. melanogaster or C. elegans. Recently described human homologues NANOS1 and PUMILIO2 form a complex similar to their ancestors. This study was aimed to identify the proteins interacting with NANOS1-PUMILIO2 complex in the human spermatogenic cells. Here, using the yeast two-hybrid system we found that NANOS1 and PUMILIO2 proteins interact with RNA DEAD-box helicase GEMIN3, a microRNA biogenesis factor. Moreover, GEMIN3 coimmunoprecipitates with NANOS1 and PUMILIO2 in transfected mammalian cells. By double immunofluorescence staining, we observed that complexes built of NANOS1, PUMILIO2 and GEMIN3 are located within cytoplasmic region of germ cells. These proteins condense to form a compact aggregate in the round spermatids of the human and mouse germ cells. This aggregate was reminiscent of the chromatoid body (CB), a perinuclear structure present in the mammalian male germ line. This structure is considered evolutionary remnant of germ plasm, a hallmark structure of germ cells in lower metazoan. Using a CB marker VASA protein, we demonstrated that CBs are present in the human round spermatids, as they are in the mouse. Moreover, NANOS1, PUMILIO2 and GEMIN3 colocalize with VASA protein. We demonstrated for the first time that a mammalian Nanos-Pumilio complex functions within CB, a center of RNA storing and processing, involving microRNAs. NANOS1-PUMILIO2 complex, together with GEMIN3 and small noncoding RNAs, possibly regulate mRNA translation within CB of the human germ cells.  相似文献   

8.
Methylglyoxal is the most important intracellular glycation agent, formed nonenzymatically from triose phosphates during glycolysis in eukaryotic cells. Methylglyoxal-derived advanced glycation end-products are involved in neurodegenerative disorders (Alzheimer's, Parkinson's and familial amyloidotic polyneurophathy) and in the clinical complications of diabetes. Research models for investigating protein glycation and its relationship to methylglyoxal metabolism are required to understand this process, its implications in cell biochemistry and their role in human diseases. We investigated methylglyoxal metabolism and protein glycation in Saccharomyces cerevisiae. Using a specific antibody against argpyrimidine, a marker of protein glycation by methylglyoxal, we found that yeast cells growing on d-glucose (100 mM) present several glycated proteins at the stationary phase of growth. Intracellular methylglyoxal concentration, determined by a specific HPLC based assay, is directly related to argpyrimidine formation. Moreover, exposing nongrowing yeast cells to a higher d-glucose concentration (250 mM) increases methylglyoxal formation rate and argpyrimidine modified proteins appear within 1 h. A kinetic model of methylglyoxal metabolism in yeast, comprising its nonenzymatic formation and enzymatic catabolism by the glutathione dependent glyoxalase pathway and aldose reductase, was used to probe the role of each system parameter on methylglyoxal steady-state concentration. Sensitivity analysis of methylglyoxal metabolism and studies with gene deletion mutant yeast strains showed that the glyoxalase pathway and aldose reductase are equally important for preventing protein glycation in Saccharomyces cerevisiae.  相似文献   

9.
The synthesis, intracellular transport, storing, and excretion of proteins by duck hypophyseal cells in organ culture were studied with tritiated DL-leucine and high resolution radioautography (pulse-labeling experiments). Quantitative study of the radioautographs allowed a determination of the relative proportions of cytoplasmic radioactivity located in each cellular compartment (ergastoplasm, Golgi apparatus, and protein granules) as well as the variations in these proportions as a function of time. The number of labeled protein granules as opposed to the total number of granules in the cell was also determined (RSg). These data were separately analyzed for the two types of cells present in the explants: prolactin cells and "MSH" cells. The synthetic process follows a course common to both cell types, each of which is distinguished by its particular modalities. The labeled proteins, synthesized within several minutes in the ergastoplasm, are concentrated in the Golgi zone within 30 min. They then migrate out of this area, the emptying of which is accomplished in about 4 hr. These proteins become equally distributed between the protein granules, on the one hand, and the cytoplasm ("sedentary" proteins), on the other. The RSg reaches its maximum when the Golgi zone is emptied, but this figure remains very low (3%). The RSg then decreases slowly (1% in 40 hr). It is concluded that hypophyseal cells are able to store protein in their granules and that their processes of synthesis and excretion are not continuous. The prolactin cells differ from the "MSH" cells in that they have a slower migration of newly synthesized proteins, and these proteins pass via the dilated ergastoplasmic cisterns in which they may possibly be stored.  相似文献   

10.
Adhesion between cells and the extracellular matrix is mediated by different types of transmembraneous proteins. Their associations to specific partners lead to the assembly of contacts such as focal adhesions and hemidesmosomes. The spatial overlap between both contacts within cells has however limited the study of each type of contact. Here we show that with “stampcils” focal contacts and hemidesmosomes can be spatially separated: cells are plated within the cavities of a stencil and the grids of the stencil serve as stamps for grafting an extracellular matrix protein—fibronectin. Cells engage new contacts on stamped zones leading to the segregation of adhesions and their associated cytoskeletons, i.e., actin and intermediate filaments of keratins. This new method should provide new insights into cell contacts compositions and dynamics.  相似文献   

11.
12.
Kinetoplast DNA (kDNA), the mitochondrial DNA of trypanosomatids, consists of thousands of minicircles and 20 to 30 maxicircles catenated into a single large network and exists in the cell as a highly organized compact disc structure. To investigate the role of kinetoplast-associated proteins in organizing and condensing kDNA networks into this disc structure, we have cloned three genes encoding kinetoplast-associated proteins. The KAP2, KAP3, and KAP4 genes encode proteins p18, p17, and p16, respectively. These proteins are small basic proteins rich in lysine and alanine residues and contain 9-amino-acid cleavable presequences. Proteins p17 and p18 are closely related to each other, with 48% identical residues and carboxyl tails containing almost exclusively lysine, alanine, and serine or threonine residues. These proteins have been expressed as Met-His6-tagged recombinant proteins and purified by metal chelate chromatography. Each of the recombinant proteins is capable of compacting kDNA networks in vitro and was shown to bind preferentially to a specific fragment of minicircle DNA. Expression of each of these proteins in an Escherichia coli mutant lacking the HU protein rescued a defect in chromosome condensation and segregation in the mutant cells and restored a near-normal morphological appearance. Proteins p16, p17, and p18 have been localized within the cell by immunofluorescence methods and appear to be present throughout the kDNA. Electron-microscopic immunolocalization of p16 shows that p16 is present both within the kDNA disc and in the mitochondrial matrix at opposite edges of the kDNA disc. Our results suggest that nucleus-encoded H1-like proteins may be involved in the organization and segregation of kDNA networks in trypanosomatids.  相似文献   

13.
The type VI intermediate filament (IF) protein synemin is a unique member of the IF protein superfamily. Synemin associates with the major type III IF protein desmin forming heteropolymeric intermediate filaments (IFs) within developed mammalian striated muscle cells. These IFs encircle and link all adjacent myofibrils together at their Z-lines, as well as link the Z-lines of the peripheral layer of cellular myofibrils to the costameres located periodically along and subjacent to the sarcolemma. Costameres are multi-protein assemblies enriched in the cytoskeletal proteins vinculin, alpha-actinin, and talin. We report herein a direct interaction of human alpha-synemin with the cytoskeletal protein talin by protein-protein interaction assays. The 312 amino acid insert (SNTIII) present only within alpha-synemin binds to the rod domain of talin in vitro and co-localizes with talin at focal adhesion sites within mammalian muscle cells. Confocal microscopy studies showed that synemin co-localizes with talin within the costameres of human skeletal muscle cells. Analysis of the primary sequences of human alpha- and beta-synemins revealed that SNTIII is composed of seven tandem repeats, each containing a specific Ser/Thr-X-Arg-His/Gln (S/T-X-R-H/Q) motif. Our results suggest human alpha-synemin plays an essential role in linking the heteropolymeric IFs to adherens-type junctions, such as the costameres within mammalian striated muscle cells, via its interaction with talin, thereby helping provide mechanical integration for the muscle cell cytoskeleton.  相似文献   

14.
The gibbon ape leukemia virus (GALV) contains enhancer activity within its long terminal repeat. In the GALV Seato strain this activity resides in a 48-base-pair (bp) repeated element. We demonstrate the existence of a cellular protein which binds in this region of the Seato strain. A sensitive method for enriching protein-DNA complexes from crude extracts coupled with exonuclease and DNase footprint analysis revealed the specific binding of this protein to a 21-bp region within each repeated element. A 22-bp oligonucleotide fragment defined solely by the 21-bp footprint binds a protein in vitro and displays enhancer activity in vivo, suggesting that this protein is a major determinant of GALV enhancer activity. The protein is present in three cell lines which are positive for enhancer activity and is not detected in Jurkat cells, which are negative for enhancer activity. Only GALV long-terminal-repeat variants which support high levels of enhancer activity in vivo compete with this protein for specific binding in vitro, suggesting a potential role for the protein in determining enhancer activity. This protein binding is not inhibited by competition with heterologous retroviral enhancers, demonstrating that it is not a ubiquitous retroviral enhancer binding protein.  相似文献   

15.
Protein synthesis in the G1 period of the cell cycle has been investigated using two-dimensional gel electrophoresis in primary cultures of dog quiescent thyroid cells, incubated in defined medium and induced to proliferate by the combined action of thyrotropin (TSH), epidermal growth factor (EGF) and serum or by each of these agents, acting alone. The analysis of the proteins, pulse-labeled for 3 h with [35S]methionine, in quiescent cells deprived of serum and in cells that had been stimulated for various periods of time by the addition of TSH, EGF and serum showed maximal modifications before entry into S phase: the labeling of at least ten proteins was enhanced while that of at least six proteins was decreased. The synthesis of one of these proteins (protein 1; Mr approximately equal to 81 000) was maximal 9-12 h after stimulation by the proliferative agents but began to decrease at 15-18 h and was still decreased at 29-32 h. The study of the effect of each of the proliferation agents alone on the labeling of these sixteen proteins showed that TSH specifically stimulated the labeling of eight polypeptides (proteins 2-9) and that, in contrast, EGF and serum specifically increased the labeling of two other proteins (proteins 1 and 10). The labeling of one protein was decreased by each of the different agents (protein 6') while TSH specifically decreased the labeling of four polypeptides (proteins 1'-4') and increased the labeling of one polypeptide (protein 5') whose synthesis was decreased by EGF and serum. The specific effect of TSH on one protein labeling (protein 7; Mr approximately equal to 39 000) was potentiated by EGF and serum while the specific effect of EGF and serum on another protein labeling (protein 1) was potentiated by TSH. There is thus a correlation between the level of synthesis of these two proteins and the proliferative state of the cells, which is much greater when the stimulating agents are acting together. The induction of protein 1 synthesis by EGF was no longer observed when the cells were no longer proliferating. In the same way, TSH no longer stimulated the synthesis of protein 7 in thyroid cells at confluence. In conclusion, the present study has identified some proteins (proteins 1 and 7) which, as judged by the peculiar stimulation and the kinetics of their synthesis, could be part of the final key events triggering DNA replication in thyroid cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
We present here a straightforward, broadly applicable technique for real-time detection and measurement of protein conformational changes in solution. This method is based on tethering proteins labeled with a second-harmonic generation (SHG) active dye to supported lipid bilayers. We demonstrate our method by measuring the conformational changes that occur upon ligand binding with three well-characterized proteins labeled at lysine residues: calmodulin (CaM), maltose-binding protein (MBP), and dihydrofolate reductase (DHFR). We also create a single-site cysteine mutant of DHFR engineered within the Met20 catalytic loop region and study the protein’s structural motion at this site. Using published x-ray crystal structures, we show that the changes in the SHG signals upon ligand binding are the result of structural motions that occur at the labeled sites between the apo and ligand-bound forms of the proteins, which are easily distinguished from each other. In addition, we demonstrate that different magnitudes of the SHG signal changes are due to different and specific ligand-induced conformational changes. Taken together, these data illustrate the potential of the SHG approach for detecting and measuring protein conformational changes for a wide range of biological applications.  相似文献   

17.
Lipid storage droplets are universal organelles essential for the cellular and organismal lipometabolism including energy homeostasis. Despite their apparently simple design they are proposed to participate in a growing number of cellular processes, raising the question to what extent the functional multifariousness is reflected by a complex organellar proteome composition. Here we present 248 proteins identified in a subproteome analysis using lipid storage droplets of Drosophila melanogaster fat body tissue. In addition to previously known lipid droplet-associated PAT (Perilipin, ADRP, and TIP47) domain proteins and homologues of several mammalian lipid droplet proteins, this study identified a number of proteins of diverse biological function, including intracellular trafficking supportive of the dynamic and multifaceted character of these organelles. We performed intracellular localization studies on selected newly identified subproteome members both in tissue culture cells and in fat body cells directly. The results suggest that the lipid droplets of fat body cells are of combinatorial protein composition. We propose that subsets of lipid droplets within single cells are characterized by a protein "zip code," which reflects functional differences or specific metabolic states.  相似文献   

18.
A genetic approach to identifying mitochondrial proteins   总被引:9,自引:0,他引:9  
  相似文献   

19.
Signal transduction pathways that are modulated by thiol oxidation events are beginning to be uncovered, but these discoveries are limited by the availability of relatively few analytical methods to examine protein oxidation compared to other signaling events such as protein phosphorylation. We report here the coupling of PROP, a method to purify reversibly oxidized proteins, with the proteomic identification of the purified mixture using mass spectrometry. A gene ontology (GO), KEGG enrichment and Wikipathways analysis of the identified proteins indicated a significant enrichment in proteins associated with both translation and mRNA splicing. This methodology also enabled the identification of some of the specific cysteine residue targets within identified proteins that are reversibly oxidized by hydrogen peroxide treatment of intact cells. From these identifications, we determined a potential consensus sequence motif associated with oxidized cysteine residues. Furthermore, because we identified proteins and specific sites of oxidation from both abundant proteins and from far less abundant signaling proteins (e.g. hepatoma derived growth factor, prostaglandin E synthase 3), the results suggest that the PROP procedure was efficient. Thus, this PROP-proteomics methodology offers a sensitive means to identify biologically relevant redox signaling events that occur within intact cells.  相似文献   

20.
The secretory and endocytic pathways within higher cells consist of multiple membrane-bound compartments, each with a characteristic composition, through which proteins move on their way to or from the cell surface. Sorting of proteins within this system is achieved by their selective incorporation into budding vesicles and the specific fusion of these with an appropriate target membrane. Cytosolic coat proteins help to select vesicle contents, while fusion is mediated by membrane proteins termed SNAREs present in both vesicles and target membranes. SNAREs are not the sole determinants of target specificity, but they lie at the heart of the fusion process. The complete set of SNAREs is known in yeast, and analysis of their locations, interactions and functions in vivo gives a comprehensive picture of the traffic routes and the ways in which organelles such as the Golgi apparatus are formed. The principles of protein and lipid sorting revealed by this analysis are likely to apply to a wide variety of eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号