首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human NK cells are classified into two populations according to the intensity of CD56 surface expression, as well as possession of CD16, FcRIII. CD56dimCD16bright make up 90% circulating NK cells, whereas CD56brightCD16-/dim comprises the remaining 10%. Here we report that peripheral NK cells upon CD16 cross-linking up-regulates the expression of activating markers and receptors such as CD25, CD69, NKp44, NKp30, CD40L and the intensity of CD56 expression. Additionally, co-culturing immature DCs with CD16 activated NK cells was found to significantly increase the expression of maturation markers on DCs. These results suggest that CD16 cross-linking on resting peripheral blood NK cells triggers the activation of these cells and induces the appearance of CD56bright NK cells. The latter were found capable of producing pro-inflammatory cytokines, IFN-γ and TNF-α and notably IL-12.  相似文献   

2.
Despite extensive use of nonhuman primates as models for infectious diseases and reproductive biology, imprecise phenotypic and functional definitions exist for natural killer (NK) cells. This deficit is particularly significant in the burgeoning use of small, less expensive New World primate species. Using polychromatic flow cytometry, we identified peripheral blood NK cells as CD3-negative and expressing a cluster of cell surface molecules characteristic of NK cells (i.e., NKG2A, NKp46, NKp30) in three New World primate species – common marmosets, cotton-top tamarins, and squirrel monkeys. We then assessed subset distribution using the classical NK markers, CD56 and CD16. In all species, similar to Old World primates, only a minor subset of NK cells was CD56+, and the dominant subset was CD56–CD16+. Interestingly, CD56+ NK cells were primarily cytokine-secreting cells, whereas CD56–CD16+ NK cells expressed significantly greater levels of intracellular perforin, suggesting these cells might have greater potential for cytotoxicity. New World primate species, like Old World primates, also had a minor CD56–CD16– NK cell subset that has no obvious counterpart in humans. Herein we present phenotypic profiles of New World primate NK cell subpopulations that are generally analogous to those found in humans. This conservation among species should support the further use of these species for biomedical research.  相似文献   

3.
Background  Macaca nemestrina is a nonhuman primate used as a model in preclinical studies of hematopoietic stem cell transplantation and adoptive transfer of T cells. Adoptive T cell transfer studies typically require ex vivo expansion of substantial numbers of T cells prior to their reinfusion into the subject.
Methods  Pigtailed macaque peripheral blood CD4+ cells were expanded using CD3 and CD28 antibody-coated beads. These cells were transformed using Herpesvirus saimiri and were also transduced with HIV-1 based lentiviral vectors.
Results  We report an efficient method for the ex vivo expansion of CD4+ T cells from Macaca nemestrina peripheral blood. With this protocol, primary CD4+ T cells can be expanded between 300- to 6000-fold during 24-day period and can be efficiently transduced with lentiviral vectors. Furthermore, these T cells can be transformed by Herpesvirus saimiri and maintained in culture for several months. The transformed T cell lines can be productively infected with the simian immunodeficiency virus (SIV) strain SIVmac239.
Conclusions  We have established methods for the expansion and transformation of primary M. nemestrina CD4+ T cells and demonstrated the utility of these methods for several applications.  相似文献   

4.
Natural killer cells are important cytolytic cells in innate immunity. We have characterized human NK cells of spleen, lymph nodes, and tonsils. More than 95% of peripheral blood and 85% of spleen NK cells are CD56(dim)CD16(+) and express perforin, the natural cytotoxicity receptors (NCRs) NKp30 and NKp46, as well as in part killer cell Ig-like receptors (KIRs). In contrast, NK cells in lymph nodes have mainly a CD56(bright)CD16(-) phenotype and lack perforin. In addition, they lack KIRs and all NCR expression, except low levels of NKp46. The NK cells of tonsils also lack perforin, KIRs, NKp30, and CD16, but partially express NKp44 and NKp46. Upon IL-2 stimulation, however, lymph node and tonsilar NK cells up-regulate NCRs, express perforin, and acquire cytolytic activity for NK-sensitive target cells. In addition, they express CD16 and KIRs upon IL-2 activation, and therefore display a phenotype similar to peripheral blood NK cells. We hypothesize that IL-2 can mobilize the NK cells of secondary lymphoid tissues to mediate natural killing during immune responses. Because lymph nodes harbor 40% and peripheral blood only 2% of all lymphocytes in humans, this newly characterized perforin(-) NK cell compartment in lymph nodes and related tissues probably outnumbers perforin(+) NK cells. These results also suggest secondary lymphoid organs as a possible site of NK cell differentiation and self-tolerance acquisition.  相似文献   

5.
BackgroundThe role of natural killer (NK) cells in granulomatosis with polyangiitis (GPA) is poorly understood. We recently reported that peripheral blood NK cell percentages correlate with the suppression of GPA activity (cohort I). The purpose of the current study was to further characterize NK cell subsets, phenotype and function in a second GPA cohort (cohort II).MethodsPeripheral blood lymphocyte subsets were analyzed at a clinical diagnostic laboratory. Clinical data were extracted from medical records and patients were grouped according to their activity state (remission vs. active/non-remission). Separate analysis (cohort II, n = 22) and combined analysis (cohorts I and II, n = 34/57) of NK cell counts/percentages was performed. NK cell subsets and phenotypes were analyzed by multicolor flow cytometry. Cytotoxicity assays were performed using 51Cr-labeled K562 target cells.ResultsIn cohort II, NK cell counts were lower than the lower limit of normal in active GPA, despite normal percentages due to lymphopenia. NK cell counts, but not other lymphocyte counts, were significantly higher in remission. Combined analysis of cohorts I and II confirmed decreased NK cell counts in active GPA and increased percentages in long-term remission. Follow-up measurements of six patients revealed increasing NK cell percentages during successful induction therapy. Multicolor analysis from cohort II revealed that in active GPA, the CD56dim subset was responsible for decreased NK cell counts, expressed more frequently CD69, downregulated the Fc-receptor CD16 and upregulated the adhesion molecule CD54, the chemokine receptor CCR5 and the activating receptor NKG2C. In remission, these markers were unaltered or marginally altered. All other receptors investigated (NKp30, NKp44, NKp46, NKG2D, DNAM1, 2B4, CRACC, 41BB) remained unchanged. Natural cytotoxicity was not detectable in most patients with active GPA, but was restored in remission.ConclusionsNK cell numbers correlate inversely with GPA activity. Reduced CD56dim NK cells in active GPA have an activated phenotype, which intriguingly is associated with profound deficiency in cytotoxicity. These data suggest a function for NK cells in the pathogenesis and/or modulation of inflammation in GPA. NK cell numbers, phenotype (CD16, CD69, NKG2C) or overall natural cytotoxicity are promising candidates to serve as clinical biomarkers to determine GPA activity.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-016-1098-7) contains supplementary material, which is available to authorized users.  相似文献   

6.
The natural killer activity and phenotypic properties of six different subpopulations of normal human peripheral blood lymphocytes obtained by four-color immunofluorescence cell sorting were examined. Phycoerythrin-conjugated CD16 and CD56 were used simultaneously to identify (CD16 + CD56+) NK cells. The cells most effective in mediating NK cytolysis against K562 target cells were CD3-(16 + 56+)57 -8+. Although most of the K562 killing was found in the CD3-(16 + 56 +) groups of cells, a substantial degree of NK activity was detected in the CD3+(16 + 56 +) subpopulations of some individuals. The level of expression of CD57 and CD8 was significantly higher on CD3+(16 + 56 +) than on CD3-(16 + 56 +) cells.  相似文献   

7.
The primate endometrium is characterized in pregnancy by a tissue-specific population of CD56(bright) natural killer (NK) cells. These cells are observed in human, rhesus, and other nonhuman primate decidua. However, other subsets of NK cells are present in the decidua and may play distinct roles in pregnancy. The purpose of this study was to define the surface marker phenotype of rhesus monkey decidual NK (dNK) cell subsets, and to address functional differences by profiling cytokine and chemokine secretion in contrast with decidual T cells and macrophages. Rhesus monkey decidual leukocytes were obtained from early pregnancy tissues, and were characterized by flow cytometry and multiplex assay of secreted factors. We concluded that the major NK cell population in rhesus early pregnancy decidua are CD56(bright) CD16(+)NKp30(-) decidual NK cells, with minor CD56(dim) and CD56(neg) dNK cells. Intracellular cytokine staining demonstrated that CD56(dim) and not CD56(bright) dNK cells are the primary interferon-gamma (IFNG) producers. In addition, the profile of other cytokines, chemokines, and growth factors secreted by these two dNK cell populations was generally similar, but distinct from that of peripheral blood NK cells. Finally, analysis of multiple pregnancies from eight dams revealed that the decidual immune cell profile is characteristic of an individual animal and is consistently maintained across successive pregnancies, suggesting that the uterine immune environment in pregnancy is carefully regulated in the rhesus monkey decidua.  相似文献   

8.
Human natural killer (NK) cells are considered professional cytotoxic cells that are integrated into the effector branch of innate immunity during antiviral and antitumoral responses. The purpose of this study was to examine the peripheral distribution and expression of NK cell activation receptors from the fresh peripheral blood mononuclear cells of 30 breast cancer patients prior to any form of treatment (including surgery, chemotherapy, and radiotherapy), 10 benign breast pathology patients, and 24 control individuals. CD3CD56dimCD16bright NK cells (CD56dim NK) and CD3CD56brightCD16dim/− NK cells (CD56bright NK) were identified using flow cytometry. The circulating counts of CD56dim and CD56bright NK cells were not significantly different between the groups evaluated, nor were the counts of other leukocyte subsets between the breast cancer patients and benign breast pathology patients. However, in CD56dim NK cells, NKp44 expression was higher in breast cancer patients (P = .0302), whereas NKp30 (P = .0005), NKp46 (P = .0298), and NKG2D (P = .0005) expression was lower with respect to healthy donors. In CD56bright NK cells, NKp30 (P = .0007), NKp46 (P = .0012), and NKG2D (P = .0069) expression was lower in breast cancer patients compared with control group. Only NKG2D in CD56bright NK cells (P = .0208) and CD56dim NK cells (P = .0439) showed difference between benign breast pathology and breast cancer patients. Collectively, the current study showed phenotypic alterations in activation receptors on CD56dim and CD56bright NK cells, suggesting that breast cancer patients have decreased NK cell cytotoxicity.  相似文献   

9.
CD56 identifies monocytes and not natural killer cells in rhesus macaques.   总被引:10,自引:0,他引:10  
BACKGROUND: CD56 is a lineage-specific marker of human natural killer (NK) cells. There are conflicts in the literature regarding the role of CD56 as a marker of NK cells in non-human primates. In the present study, we examined the role of CD56 in identifying rhesus NK cells. METHODS: The immunophenotype of normal macaque and human NK cells was analyzed by two- and three-color flow cytometry. Flow cytometric cell sorting was subsequently used to deplete or purify NK cells; the resulting cell populations were then used in standard chromium release assays of NK lytic function. RESULTS: In peripheral blood mononuclear cells of the rhesus macaque, CD56 was expressed primarily on cells with the light scatter and immunophenotypic profile of monocytes. Flow cytometric depletion of rhesus CD56(+) monocytic cells did not diminish functional activity against K562 cells, whereas depletion of CD8(+) or CD16(+) lymphocytes completely abrogated functional activity. Three-color flow cytometric analysis of CD8(+), CD16(+) lymphocytes showed that they expressed other markers (CD2, CD7, TIA-1) associated with NK cells, but notably, not CD56. CONCLUSIONS: These studies demonstrate that CD56 is not suitable as a marker of NK cells in the rhesus macaque.  相似文献   

10.
Two populations of human natural killer (NK) cells can be identified in peripheral blood. The majority are CD3CD56dim cells while the minority exhibits a CD3CD56bright phenotype. In vitro evidence indicates that CD56bright cells are precursors of CD56dim cells, but in vivo evidence is lacking. Here, we studied NK cells from a patient that suffered from a melanoma and opportunistic fungal infection during childhood. The patient exhibited a stable phenotype characterized by a reduction in the frequency of peripheral blood CD3CD56dim NK cells, accompanied by an overt increase in the frequency and absolute number of CD3CD56bright cells. These NK cells exhibited similar expression of perforin, CD57 and CD158, the major activating receptors CD16, NKp46, NKG2D, DNAM-1, and 2B4, as well as the inhibitory receptor CD94/NKG2A, on both CD56bright and CD56dim NK cells as healthy controls. Also, both NK cell subpopulations produced IFN-γ upon stimulation with cytokines, and CD3CD56dim NK cells degranulated in response to cytokines or K562 cells. However, upon stimulation with cytokines, a substantial fraction of CD56dim cells failed to up-regulate CD57 and CD158, showed a reduction in the percentage of CD16+ cells, and CD56bright cells did not down-regulate CD62L, suggesting that CD56dim cells could not acquire a terminally differentiated phenotype and that CD56bright cells exhibit a maturation defect that might result in a potential altered migration pattern. These observations, support the notion that NK cells of this patient display a maturation/activation defect that precludes the generation of mature NK cells at a normal rate accompanied by CD56dim NK cells that cannot completely acquire a terminally differentiated phenotype. Thus, our results provide evidence that support the concept that in vivo CD56bright NK cells differentiate into CD56dim NK cells, and contribute to further understand human NK cell ontogeny.  相似文献   

11.
Engagement of CD40 on antigen presenting cells (APC) is central to the initiation of cell-mediated immune response. Here, we investigated the ability of CD40 ligation on APC to induce NK cell-mediated cytotoxicity in the human system and the mechanism(s) underlying this process. We showed that APC (consisting in adherent peripheral blood mononuclear cells) (PBMC), pre-stimulated with anti-CD40 monoclonal antibodies and co-cultured with autologous non-adherent PBMC for 5-9 days, induced CD3-/CD56+ NK cell-mediated cytotoxicity as well as CD3+/CD56+ T cell-mediated unrestricted cytotoxic activity. The generation of NK cell-mediated cytotoxicity was independent on cell-to-cell contact between CD40-triggered APC and NK cells. Moreover, we found that IL-12 did not play a role in NK cells induction by anti-CD40 priming, while IL-2 and IL-15 did play a role. Our results provide an insight into the mechanism by which NK cells are activated in peripheral blood and useful informations for therapeutic application of anti-CD40 antibodies.  相似文献   

12.
The influence of leptin and ghrelin, as well as their combined effects, on the expression of membrane molecules and cytokine production by NK cells from peripheral blood was studied in vitro. The effects of hormones were assayed at the concentrations corresponding to their peripheral blood levels in the course of physiological pregnancy. It was established that the investigated hormones exerted significant effects only at the concentrations typical of the II–III trimester of pregnancy. In particular, leptin and ghrelin and their combination increased the number of CD56brightNKp46+NK cells in the suspension of mononuclear cells and inhibited the expression of homing molecules CCR7 and inhibitor molecules LILRB in NKp46+NK cells. Leptin and its combination with ghrelin increased the expression of L-selectin in CD56brightNKp46+NK cells but inhibited the secretion of IL-10 by NKp46+NK cells. Leptin reduced the production of IL-4 by NKp46+ cells, while ghrelin eliminated this effect. The hormones did not influence the expression of inhibitory molecules NKG2A in NKp46+ cells and the production of TGF-β1, IL-17A, and IFN-γ by these cells. Thus, the investigated hormones at the concentrations typical of the II–III trimester of pregnancy effectively regulate the expression of membrane molecules and cytokine production by NK cells of the peripheral blood.  相似文献   

13.
We have previously reported a synergistic effect between hydrocortisone (HC) and IL-15 on promoting natural killer (NK) cell expansion and function. In the present study, we extend our findings to methylprednisolone (MeP) and dexamethasone (Dex), thus ascribing to glucocorticoids (GCs) a general feature as positive regulators of IL-15-mediated effects on NK cells. We demonstrate that each GC when combined with IL-15 in cultures of peripheral blood (PB)-derived CD56+ cells induces increased expansion of CD56+CD3 cells displaying high cytolytic activity, IFN-γ production potential and activating receptor expression, including NKp30, NKp44, NKp46, 2B4, NKG2D and DNAM-1. Furthermore, GCs protected NK cells from IL-15-induced cell death. The combination of IL-15 with GCs favored the expansion of a relatively more immature CD16low/neg NK cell population, with high expression of NKG2A and CD94, and significantly lower expression of KIR (CD158a and CD158b) and CD57, compared to IL-15 alone. IL-15-expanded NK cells, in the presence or absence of GCs, did not express CD62L, CXCR1 or CCR7. However, the presence of GCs significantly increased the density of CXCR3 and induced strong CXCR4 expression on the surface of NK cells. Our data indicate that IL-15/GC-expanded NK cells, apart from their increased proliferation rate, retain their functional integrity and exhibit a migratory potential rendering them useful for adoptive transfer in NK cell-based cancer immunotherapy.  相似文献   

14.
An involvement of innate immunity and of NK cells during the priming of adaptive immune responses has been recently suggested in normal and disease conditions such as HIV infection and acute myelogenous leukemia. The analysis of NK cell-triggering receptor expression has been so far restricted to only NKp46 and NKp30 in Macaca fascicularis. In this study, we extended the molecular and functional characterization to the various NK cell-triggering receptors using PBMC and to the in vitro-derived NK cell populations by cytofluorometry and by cytolytic activity assays. In addition, RT-PCR strategy, cDNA cloning/sequencing, and transient transfections were used to identify and characterize NKp80, NKG2D, CD94/NKG2C, and CD94/NKG2A in M. fascicularis and Macaca mulatta as well as in the signal transducing polypeptide DNAX-activating protein DAP-10. Both M. fascicularis and M. mulatta NK cells express NKp80, NKG2D, and NKG2C molecules, which displayed a high degree of sequence homology with their human counterpart. Analysis of NK cells in simian HIV-infected M. fascicularis revealed reduced surface expression of selected NK cell-triggering receptors associated with a decreased NK cell function only in some animals. Overall surface density of NK cell-triggering receptors on peripheral blood cells and their triggering function on NK cell populations derived in vitro was not decreased compared with uninfected animals. Thus, triggering NK cell receptor monitoring on macaque NK cells is possible and could provide a valuable tool for assessing NK cell function during experimental infections and for exploring possible differences in immune correlates of protection in humans compared with cynomolgus and rhesus macaques undergoing different vaccination strategies.  相似文献   

15.
Human natural killer (NK) cells carry CD16/FcR and CD56 cell-surface Ag but lack the T-cell marker CD3. Here we show that incubation of resting human NK cells with CD3-/16+/56+ phenotype with autologous monocytes induced the disappearance of CD16 and CD56 cell-surface Ag on NK-cells but did not affect CD2 or CD3 Ag expression on T-cells. Monocyte-induced down-modulation of NK-cell-surface Ag was cell-contact dependent and induced only by freshly isolated monocytes, recovered from peripheral blood by counter-current centrifugal elutriation. Adherence of monocytes abrogated the capacity to induce down-modulation of NK-cell-surface Ag. The biogenic amine histamine dose-dependently reversed the monocyte-induced down-modulation of CD16 and CD56 on CD3- NK-cells. The effect of histamine was mediated by H2-type receptors on monocytes. The data presented are suggestive of a cell-cell-mediated interaction between monocytes and NK-cells which modulates surface expression of NK-cell Ag and its histaminergic regulation.  相似文献   

16.

Objective

A prospective analysis of the distribution of NK subsets and natural cytotoxicity receptors (NKp30/NKp46) in HIV patients with long-term HAART use and sustained virological and immunological response.

Methods

The main inclusion criteria were: at least 3 years’ receipt of HAART; current CD4+ count ≥ 500 cells/mm3; undetectable viral load for at least 24 months; no hepatotropic virus co-infection. Percentages of CD56dim, CD56bright NK cells and CD56neg CD16+ cells were obtained. Expression of the NCRs, NKp30 and NKp46 was analysed in CD56+ cells. Thirty-nine infected patients and sixteen healthy donors were included in the study.

Results

The percentages of total CD56+ and CD56dim NK cells were significantly lower in HIV-infected patients than in healthy donors (70.4 vs. 50.3 and 80.9 vs. 66.1 respectively). The percentage of total CD56+ NK cells expressing NCR receptors was lower in HIV patients than in healthy donors (NKp30: 25.20 vs. 58.63; NKp46: 24.8 vs. 50.59). This was also observed for CD56dim and CD56bright NK cells. Length of time with undetectable HIV viral load was identified as an independent factor associated with higher expression of NKp30 and NKp46.

Conclusion

Despite the prolonged and effective use of HAART, HIV-infected patients do not fully reconstitute the distribution of NK cells. Length of time with an undetectable viral load was related to greater recovery of NKp30/NKp46 receptors.  相似文献   

17.
Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450–463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment with low-dose interleukins themselves or in combination with hsp70 derived (TKD) peptide.  相似文献   

18.
Human natural killer (NK) cells are one major component of lymphocytes that mediate early protection against viruses and tumor cells, and play an important role in immune regulatory functions. In this study, we demonstrated that human NK cells could be divided into four subsets, CD56hi CD16(-), CD56lo CD16(-), CD56+CD16+ and CD56(-)CD16+, based on the expression of cell surface CD56 and CD16 molecules. Phenotypic analysis of NK cell subsets indicated that the expression of activation markers, adhesion molecules, memory cell markers, inhibitory and activating receptors, and intracellular proteins (granzyme B and perforin) were heterogeneous. Following interleukin (IL)-2 stimulation, interferon-gamma was preferentially produced by CD56+CD16(-) NK cells and this subset showed more proliferative capacity. The cytolytic activity of both CD56+CD16(-) and CD56+/-CD16+ subsets could be augmented in response to IL-2. The data provided a new definition for NK cell subsets demonstrating their phenotypic and functional diversity and possible stage of NK cell differentiation in peripheral blood.  相似文献   

19.
We examined the antigenic and functional characteristics of human peripheral blood lymphocytes that differentially express the CD16 (Leu-11) and Leu-19 (NKH-1) antigens. Leu-19 is a approximately 220,000 daltons protein expressed on approximately 15% of freshly isolated peripheral blood lymphocytes. Within the Leu-19+ subset, three distinct populations were identified: CD3-,CD16+,Leu-19+ cells; CD3+,CD16-,Leu-19+ cells; and CD3-,CD16-,Leu-19bright+ cells. Both the CD3+,CD16-,Leu-19+ and CD3-,CD16+,Leu-19+ populations mediated non-major histocompatibility complex (MHC)-restricted cytotoxicity against the NK-sensitive tumor cell K562 and were large granular lymphocytes. CD3-,CD16+,Leu-19+ NK cells were the most abundant (comprising approximately 10% of peripheral blood lymphocytes) and the most efficient cytotoxic effectors. The finding that CD3+,Leu 19+ lymphocytes mediated cytotoxicity against K562 unequivocally demonstrates that a unique subset of non-MHC-restricted cytotoxic CD3+ T lymphocytes are present in the peripheral blood of unprimed, normal individuals. However, CD3+,CD16-,Leu-19+ cells comprised less than 5% of peripheral blood lymphocytes, and the cytotoxic activity of this subset was significantly less than CD3-,CD16+,Leu-19+ NK cells. Most CD3+,Leu-19+ T cells co-expressed the CD2, CD8, and CD5 differentiation antigens. The antigenic and functional phenotype of peripheral blood CD3+,Leu-19+ cytotoxic T lymphocytes corresponds to the interleukin 2-dependent CD3+ cell lines that mediate non-MHC-restricted cytotoxicity against NK-sensitive tumor cell targets. A small population of Leu-19bright+ lymphocytes lacking both CD3 and CD16 was also observed. This population (comprising less than 2% of peripheral blood lymphocytes) contained both large agranular lymphocytes and large granular lymphocytes. CD3-,CD16-,Leu-19bright+ lymphocytes also mediate non-MHC-restricted cytotoxicity. The relationship of these CD3-CD16-,Leu-19bright+ lymphocytes to CD3+ T cells or CD16+ NK cells is unknown.  相似文献   

20.
We report that human peripheral NK cells expressing high CD56 levels (CD56(+high)) are terminally differentiated cells indistinguishable from mature NK cells recently activated in the presence of IL-12, and not a functionally distinct NK-cell subset or progenitors to mature CD56(+low) NK cells. CD56(+high) NK cells coexpress all differentiation Ags constitutive or inducible in mature (CD56(+)) NK cells, except CD16, present at lower level than on most mature NK cells. Also, activation markers, activating receptors and adhesion molecules, and most inducible receptors are expressed exclusively and constitutively and are inducible at higher levels on CD56(+high) than on CD56(+low) NK cells. Consistent with their activated phenotype, many CD56(+high) NK cells are cycling and mediate heightened effector functions (proliferation, IFN-gamma and IL-10 but not IL-13 production) in response to IL-12 and other NK cell-specific stimuli. Conversely, IL-12 induces on CD56(+low) NK cells all markers constitutively expressed on the CD56(+high) NK cells, concomitantly preventing the IL-2 (and IL-15)-inducible expression of NKp44 and CD16 re-expression after immune complex-induced down-modulation, and CD56(-/+low) NK cells acquire a CD56(+high) NK cell phenotype in short term in vitro culture with IL-12. The significance of these findings to the NK cell-mediated regulation of immune responses and NK cell development is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号