首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Summary The mechanism of Ca2+-dependent control of hypotonic cell volume regulation was investigated in the isolated, nonperfused renal proximal straight tubule. When proximal tubules were exposed to hypotonic solution with 1 mM Ca2+, cells swelled rapidly and then underwent regulatory volume decrease (RVD). This treatment resulted in an increase in intracellular free calcium concentration ([Ca2+]i) by a mechanism that had two phases: the first was a transient increase from baseline (136 nM) to a peak (413 nM) that occurred in the first 15–20 sec, but was followed by a rapid decay toward the pre-swelling levels. The second phase was characterized by a sustained elevation of [Ca2+]i above the baseline (269 nM), which was maintained over several minutes. The dependence of these two phases on extracellular Ca2+ was determined. Reduction of bath [Ca2+] to 10 or 1 M partially diminished the transient phase, but abolished the sustained phase completely, such that [Ca2+]i fell below the base-line levels during RVD. It was concluded that the transient increase resulted predominantly from swelling-activated release of intracellular Ca2+ stores and that the sustained phase was due to swelling-activated Ca2+ entry across the plasma membrane. Ca2+ entry probably also contributed to the transient increase in [Ca2+]i. The time dependence of swelling-activated Ca2+ entry was also investigated, since it was previously shown that RVD was characterized by a calcium window period (<60 sec). during which extracellular Ca2+ was required. Outside of this time period, RVD would inactivate and could not be reactivated by subsequent addition of Ca2+. It was found that the Ca2+ permeability did not inactivate over several minutes, indicating that the temporal dependence of RVD on extracellular Ca2+ is not due to the transient activation of a Ca2+ entry pathway.  相似文献   

2.
We investigated whether amyloid--peptide (A1–42) has an effect on the elevations of the intracellular concentration of Ca2+ ions ([Ca2+]i) induced by depolarizations of NG108-15 cells and on related Ca2+ channels. A1–42 (10-1000 nM) had no immediate effect on depolarization-induced [Ca2+]i elevations. [Ca2+]i increases were slightly diminished in cells grown in the presence of 100 or 1000 nM A1–42. Nifedipine (1 M) reduced these elevations equally in cells grown in the absence or presence of A1–42. In contrast, the ability of -conotoxin GVIA to diminish the depolarization-induced [Ca2+]i responses became lost in cells grown in the presence of 100 nM A1–42. This indicates that the influx of calcium through the N-type Ca2+ channels was compromised by the chronic exposure of cells to a submicromolar concentration of A1–42, presumably because of impairement of their function or diminished expression. This may be important in the pathogeny of Alzheimer's dementia in view of the pivotal role of N-type Ca2+ channels in neurotransmitter release.  相似文献   

3.
Fedirko  N. V.  Klevets  M. Yu.  Kruglikov  I. A.  Voitenko  N. V. 《Neurophysiology》2001,33(4):216-223
Using a Ca2+-sensitive fluorescent indicator, fura-2/AM, we recorded calcium transients in secretory cells of isolated acini of the rat submandibular salivary gland; these transients were induced by hyperpotassium-induced depolarization (after an increase in [K+] e up to 50 mM) of the plasma membrane of the above cells. Calcium transients were significantly suppressed by 50 M nifedipine. Addition of 10 M carbonyl cyanide m-chlorophenylhydrazone to the normal extracellular solution was accompanied by a rise in [Ca2+] i , whereas when hyperpotassium solution is used the effect was less expressed. Blockers of CA2+-ATPase in the cellular membrane and in the endoplasmic reticulum, eosin Y (5 M) and cyclopiazonic acid (CPA, 5 M), respectively, evoked a significant increase in [Ca2+] i and a decrease in the K+-depolarization-induced calcium transient. Extracellular application of caffeine (2, 10, or 30 mM) was accompanied by a concentration-dependent rise in [Ca2+] i . Therefore, potassium depolarization of the plasma membrane of acinar cells of the rat submandibular salivary gland activates both the voltage-dependent Ca2+ influx and Ca2+-induced Ca2+ release from the endoplasmic reticulum; the initial level of [Ca2+] i was restored at the joint involvement of Ca2+-ATPases in the plasma membrane and the membranes of the endoplasmic reticulum and mitochondria.  相似文献   

4.
Intracellular Ca2+ mobilization events were assessed in mouse L cells, which contain native prostaglandin E1 receptors and transfected human 2 adrenergic receptors. Both Fura2 (single cell measurements) and Quin 2, (cuvette assays) were used to determine [Ca2+]i levels. Our results demonstrate that in the transfected cells there is a dose-dependent increase in [Ca2+]i in response to isoproterenol (0.1 nM–100 nM), which is inhibited by the -adrenergic antagonist, propranolol, and is a result of intracellular Ca2+ release. [Ca2+]1 in these cells was also increased by prostaglandin E1, 8 bromo cyclic AMP, and aluminum fluoride. Both 8 bromo cAMP and isoproterenol induced a rapid increase in the levels of IP1, IP2, and IP3. The data presented demonstrate that the elevation of intracellular cyclic AMP induces an increase in IP3 production which leads to an elevation in [Ca2+];. We propose that this cyclic AMP dependent activation of the IP3 generating system occurs at a post-receptor site.Abbreviations cAMP Adenosine Cyclic 3-5-Monophosphate - [Ca2+]i intracellular [Ca2+]i - 8 Br cAMP 8 Bromo Adenosine Cyclic 3-5-Monophosphate - DAG Diacylglycerol - EGTA] [Ethylene Bis (oxyethylenenitrilo)] Tetracetic acid - BSA Bovine Serum Albumin - HBSS-H Hanks' Balanced Salt Solution buffered with HEPES to pH 7.4 - HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid - PIP2 Phosphatidylinositol 4,5-bisphosphate - IP2 Inositol 4 Phosphate - IP2 Inositol 4,5 Bisphosphate - IP3 Inositol Trisphosphate - PGE1 Prostaglandin E1 - PBS Phosphate Buffered Saline Solution  相似文献   

5.
Verkhratsky  A.  Solovyova  N. 《Neurophysiology》2002,34(2-3):112-117
For many years, the endoplasmic reticulum (ER) was considered to be involved in rapid signalling events due to its ability to serve as a dynamic calcium store capable of accumulating large amounts of Ca2+ ions and of releasing them in response to physiological stimulation. Recent data significantly increased the importance of the ER as a signalling organelle, by demonstrating that the ER is associated with specific pathways regulating long-lasting adaptive processes and controlling cell survival. The ER lumen is enriched by enzymatic systems involved in protein synthesis and correcting post-translational folding of these proteins. The processes of post-translational protein processing are controlled by a class of specific enzymes known as chaperones, which in turn are regulated by the free Ca2+ concentration within the ER lumen ([Ca2+]L). At the same time, a high [Ca2+]L determines the ability of the ER to generate cytosolic Ca2+ signals. Thus, the ER is able to produce signals interacting within different temporal domains. Fast ER signals result from Ca2+ release via specific Ca2+-release channels and from rapid movements of Ca2+ ions within the ER lumen (calcium tunneling). Long-lasting signals involve Ca2+-dependent regulation of chaperones with subsequent changes in protein processing and synthesis. Any malfunctions in the ER Ca2+ homeostasis result in accumulation of unfolded proteins, which in turn activates several signalling systems aimed at appropriate compensatory responses or (in the case of severe ER dysregulation) in cellular pathology and death (ER stress responses). Thus, the Ca2+ ion emerges as a messenger molecule, which integrates various signals within the ER: fluctuations of the [Ca2+]L induced by signals originating at the level of the plasmalemma (i.e., Ca2+ entry or activation of the metabotropic receptors) regulate in turn protein synthesis and processing via generating secondary signalling events between the ER and the nucleus.  相似文献   

6.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+-induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+-induced increase in [Ca2+]i was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25–2.0 mM). The L-type Ca2+-channel blockers, verapamil and diltiazem, at low concentrations (1 M) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 M), and diltiazem (5 and 10 M) as well as with amiloride (5–20 M), nickel (1.25–5.0 mM), cyclopiazonic acid (25 and 50 M) and thapsigargin (10 and 20 M). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 M). These data suggest that in addition to the sarcolemmal Na+–Ca2+ exchanger, both sarcolemmal Na+–K+ATPase, as well as the sarcoplasmic reticulum Ca2+-pump play prominent roles in the low Na+-induced increase in [Ca2+]i. (Mol Cell Biochem 263: 151–162, 2004)  相似文献   

7.
1. Cultured dorsal root ganglion neurons of rat pups were depolarized by exposure to 50 mM K+ and the rise of [Ca2+]i was measured using fura-2 as an indicator.2. Lead in the extracellular solution reduced the rise of [Ca2+]i in a concentration-dependent manner, with a threshold concentration of 0.25 M. More than 80% of the calcium entry was prevented by 5 M lead. The IC50 and the Hill coefficient were 1.3 M and 1, respectively.3. This effect was considered to be due to a reduction of VACCCs, since applications of NMDA did not result in any rise of [Ca2+]i.4. Since Pb2+ itself changes the fura-2 signal in a typical and characteristic manner, fura-2 is also an indicator for Pb2+. No changes in fura-2 signals were detected when lead (5 M) was applied for several minutes in the absence of calcium, indicating that Pb2+ did not enter the cells.5. Thus it is concluded that lead prevents calcium entry by reducing VACCCs but does not cross the cell membrane itself.  相似文献   

8.
Na+/Ca2+ exchange (NCX) is a major Ca2+ extrusion system in cardiac myocytes, but can also mediate Ca2+ influx and trigger sarcoplasmic reticulum Ca2+ release. Under conditions such as digitalis toxicity or ischemia/reperfusion, increased [Na+]i may lead to a rise in [Ca2+]i through NCX, causing Ca2+ overload and triggered arrhythmias. Here we used an agent which selectively blocks Ca2+ influx by NCX, KB-R7943 (KBR), and assessed twitch contractions and Ca2+ transients in rat and guinea pig ventricular myocytes loaded with indo-1. KBR (5 M) did not alter control steady-state twitch contractions or Ca2+ transients at 0.5 Hz in rat, but significantly decreased them in guinea pig myocytes. When cells were Na+-loaded by perfusion of strophanthidin (50 M), the addition of KBR reduced diastolic [Ca2+]i and abolished spontaneous Ca2+ oscillations. In guinea pig papillary muscles exposed to substrate-free hypoxic medium for 60 min, KBR (10 M applied 10 min before and during reoxygenation) reduced both the incidence and duration of reoxygenation-induced arrhythmias. KBR also enhanced the recovery of developed tension after reoxygenation. It is concluded that (1) the importance of Ca2+ influx via NCX for normal excitation-contraction coupling is species-dependent, and (2) Ca2+ influx via NCX may be critical in causing myocardial Ca2+ overload and triggered activities induced by cardiac glycoside or reoxygenation.  相似文献   

9.
The effects of catecholamines on intracellular Ca2+concentrations ([Ca2+]i) in single acutely dissociated bovine adrenal medulla endothelial cells (BAMECs) were measured using the intracellular fluorescent probe Fluo-3 AM. 100 m epinephrine or norepinephrine induced a biphasic [Ca2+]i rise with an initial peak followed by a delayed phase. 10 m phenylephrine (1-adrenergic agonist) caused a [Ca2+]i rise similar to that evoked by catecholamines. The increase in [Ca2+]i induced by 10 m phenylephrine was reverted by 10 m phenoxybenzamine (-adrenergic antagonist). Neither isoproterenol (-adrenergic agonist) nor clonidine (2-adrenergic agonist) induced [Ca2+]i rise. The initial peak was insensitive to zero external Ca2+ and it was abolished after Ca2+ internal storages were emptied by 10 mM caffeine. The delayed phase was reduced to near zero by external Ca2+ removal. These results indicate that BAMECs possess 1-adrenergic receptors associated to both the release of caffeine-sensitive intracellular Ca2+ stores and the entry of extracellular Ca2+ We suggest that chromaffin cell secretion may activate BAMECs in vivo through an increase in [Ca2+]i which could induce the secretion of vasoactive factors allowing a rapid entry of hormones into the circulation. (Mol Cell Biochem 000: 000-000,1999)  相似文献   

10.
Reetz  G.  Wiesinger  H.  Reiser  G. 《Neurochemical research》1997,22(5):621-628
Oscillations of cytosolic Ca2+ activity ([Ca2+]i) induced by stimulation with ATP in rat astrocytes in primary cultures were analysed. Astrocytes, prepared from the brains of newborn rats, loaded with the fluorescent Ca2+ indicator fura-2/AM, were continuously stimulated with ATP (10 M). ATP caused a large initial [Ca2+ peak, followed by regular [Ca2+]i oscillations (frequencies 1–5/min). Astrocytes were identified by glial fibrillary acidic protein staining of cells after [Ca2+]i recording. The oscillations were reversibly blocked by the P2 purinoceptor antagonist suramin (30 M). Influx of extracellular Ca2+ and mobilization of Ca2+ from intracellular stores both contributed to the oscillations. The effects of hypertonic and hypotonic superfusion medium on ATP-induced [Ca2+]i oscillations were examined. Hypertonic medium (430 mOsm) reversibly suppressed the ATP-induced oscillations. Hypotonic medium (250 mOsm), in spite of having heterogeneous effects, most frequently induced a rise in [Ca2+]i, or reversibly increased the frequency of the oscillations. Thus, a change in cell volume might be closely connected with [Ca2+]i oscillations in astrocytes indicating that [Ca2+]i oscillations in glial cells play an important role in regulatory volume regulation in the brain.  相似文献   

11.
Maitotoxin (MTX) induces an increase of [Ca2+]i and of phosphoinositide breakdown in various cell types. The [Ca2+]i increase followed with fluorescent probes on cell suspensions has been described as slow and lasting, in contrast to the signal induced by calcium ionophores such as ionomycin. MTX effects have been studied on two fibroblastic cell lines, BHK21 C13 and FR 3T3, synchronized by serum deprivation treatment performed in an isoleucine-free medium for BHK21 C13 cells. In BHK21 C13 cells, flow cytometry analysis showed that two stages, G1/S and G2/M, were particularly susceptible to MTX treatment. Scanning laser cytometry demonstrated that calcium response of FR 3T3 fibroblasts followed with Indo-1 varied during the cell division cycle. The [Ca2+]i increase was almost always vertical, but its delay after MTX addition lasted from zero (S and G2/M transition) to 10–20 min (G1) or more (G2). No [Ca2+]i change could be detected during mitosis. The [Ca2+]i response at the S phase was biphasic. These observations suggest that (1) the lasting response described in the literature represents a global cell population effect, and (2) cells are more sensitive to MTX at specific stages of the cell division cycle, which could correspond to periods when calcium signals have been detected in different cell types.Abbreviations MTX maitotoxin - [Ca2+]i intracellular calcium concentration - IP3 inositol triphosphate  相似文献   

12.
The alkaloid derivative vinpocetine (14-ethoxycarbonyl-(3,16-ethyl)-14,15-eburnamine; Cavinton) has a well known beneficial effect on brain function in hypoxic and ischemic conditions. While it increases CNS blood flow and improves cellular metabolism, relatively little is known about vinpocetine's underlying molecular mechanisms on the single cell level. Since apoptotic and necrotic cell damage is always preceded by an increase in [Ca2+]i, this study investigated the effect of vinpocetine on [Ca2+]i increases in acute brain slices. Sodium influx is an early event in the biochemical cascade that takes place during ischemia. The alkaloid veratridine can activate this Na+ influx, causing depolarization and increasing [Ca2+]i in the cells. Therefore, it can be used to simulate an ischemic attack in brain cells. Using a cooled CCD camera-based ratio imaging system and cell loading with fura 2/AM, the effect of vinpocetine on [Ca2+]i changes in single pyramidal neurons in the vulnerable CA1 region of rat hippocampal slices was investigated. Preperfusion and continuous administration of vinpocetine (10 M) significantly inhibited the elevation in [Ca2+]i induced by veratridine (10 M). When the drug was administered after veratridine, it could accelerate the recovery of cellular calcium levels. Piracetam, another nootropic used in clinical practice, could attenuate the elevation of [Ca2+]i only at a high, 1 mM, concentration. We have concluded that vinpocetine, at a pharmacologically relevant concentration, can decrease pathologically high [Ca2+]i levels in individual rat hippocampal CA1 pyramidal neurons; this effect might contribute to the neuroprotective property of the drug.  相似文献   

13.
Summary We have investigated muscarinic receptor-operated Ca2+ mobilization in a salivary epithelial cell line, HSG-PA, using an experimental approach which allows independent evaluation of intracellular Ca2+ release and extracellular Ca2+ entry. The carbachol (Cch) dose response of intracellular Ca2+ release indicates the involvement of a single, relatively low-affinity, muscarinic receptor site (K 0.510 or 30 m, depending on the method for [Ca2+] i determination). However, similar data for Ca2+ entry indicate the involvement of two Cch sites, one consistent with that associated with Ca2+ release and a second higher affinity site withK 0.52.5 m. In addition, the Ca2+ entry response observed at lower concentrations of Cch (2.5 m) was completely inhibited by membrane depolarization induced with high K+ (>55mm) or gramicidin D (1 m), while membrane depolarization had little or no effect on Ca2+ entry induced by 100 m Cch. Another muscarinic agonist, oxotremorine-M (100 m; Oxo-M), like Cch, also induced an increase in the [Ca2+] i of HSG-PA cells (from 72±2 to 104±5nm). This response was profoundly blocked (75%) by the inorganic Ca2+ channel blocker La3+ (25–50 m) suggesting that Oxo-M primarily mobilizes Ca2+ in these cells by increasing Ca2+ entry. Organic Ca2+ channel blockers (verapamil or diltiazem at 10 m, nifedipine at 1 m), had no effect on this response. The Oxo-M induced Ca2+ mobilization response, like that observed at lower doses of Cch, was markedly inhibited (70–90%) by membrane depolarization (high K+ or gramicidin D). At 100 m Cch the formation of inositol trisphosphate (IP3) was increased 55% above basal levels. A low concentration of carbachol (1 m) elicited a smaller change in IP3 formation (25%), similar to that seen with 100 m Oxo-M (20%). Taken together, these results suggest that there are two modes of muscarinic receptor-induced Ca2+ entry in HSG-PA cells. One is associated with IP3 formation and intracellular Ca2+ release and is independent of membrane potential; the other is less dependent on IP3 formation and intracellular Ca2+ release and is modulated by membrane potential. This latter pathway may exhibit voltage-dependent gating.  相似文献   

14.
Strong evidence supports that nitric oxide (NO) alters cell signaling pathways involving arachidonic acid (AA). Little is known, however, about the reciprocal modulation of nitrergic pathways by AA. The effects of exogenous AA on signal transduction of M1 muscarinic acetylcholine receptors were investigated in a model system of stably transfected Chinese hamster ovary cells. AA concentration-dependently inhibited the effects of carbachol in producing NO (IC50 = 191 M) but did not alter inositol phosphate production or M1 receptor binding. AA inhibited both carbachol-induced transient and sustained increase in intracellular calcium concentration ([Ca2+]i; IC50 = 11 and 12 M, respectively). Furthermore, AA-induced increase in [Ca2+]i cross-desensitizes with thapsigargin, but AA does not inhibit Ca2+-ATPase activity. These data support the concept that AA concentration-dependently inhibits receptor-mediated NO production at the level of calcium mobilization.  相似文献   

15.
Summary Electrical uncoupling of crayfish septate axons with acidification has been shown to cause a substantial increase in [Ca2+]i which closely matches in percent the increase in junctional resistance. To determine the origin of [Ca2+]i increase, septate axons have been exposed either to drugs that influence Ca2+ release from internal stores, caffeine and ryanodine, or to treatments that affect Ca2+ entry. A large increase in junctional resistance and [Ca2+]i maxima above controls resulted from addition of caffeine (10–30mm) to acetate solutions, while a substantial decrease in both parameters was observed when exposure to acetate-caffeine was preceded by caffeine pretreatment. In contrast, ryanodine (1–10 m) always caused a significant decrease in junctional resistance and [Ca2+]i maxima when applied either together with acetate or both before and with acetate. Calcium channel blockers such as La3+, Cd2+ and nisoldipine had no effect, while an increase in the [Ca2+] of acetate solutions either decreased junctional resistance and [Ca2+]i maxima or had no effect. The data suggest that cytoplasmic acidification causes an increase in [Ca2+]i by releasing Ca2+ from caffeine and ryanodine-sensitive Ca2+ stores. The increase in [Ca2+]i results in a decrease in gap junction conductance.  相似文献   

16.
Y. Iwadate  M. Kikuyama  H. Asai 《Protoplasma》1999,206(1-3):11-19
Summary Trichocyst discharge, ciliary reversal, and cell body contraction inParamecium spp. have all been claimed to be regulated by the intracellular Ca2+ concentration ([Ca2+]i) at the cortical region of the cell. We injected caged Ca2+ intoP. caudatum cells and applied ultraviolet (UV) light to the cell for 125 ms. This did not induce trichocyst discharge but did induce both ciliary reversal and cell body contraction. A re-application of UV for 125 ms triggered trichocyst discharge. These results demonstrate that (1) trichocyst discharge and ciliary reversal and cell body contraction are controlled by [Ca2+]i and (2) the threshold of [Ca2+]i for trichocyst discharge is higher than those for the other two functions.Abbreviations DTT dithiothreitol - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - ICL infraciliary lattice - [Ca2+]i intracellular Ca2+ concentration - NP-EG o-nitrophenyl EGTA - PMT photomultiplier tube - UV ultraviolet  相似文献   

17.
The possible role of Ca2+ as a second messenger mediating regulatory volume decrease (RVD) in osmotically swollen cells was investigated in murine neural cell lines (N1E-115 and NG108-15) by means of novel microspectrofluorimetric techniques that allow simultaneous measurement of changes in cell water volume and [Ca2+]i in single cells loaded with fura-2. [Ca2+]i was measured ratiometrically, whereas the volume change was determined at the intracellular isosbestic wavelength (358 nm). Independent volume measurements were done using calcein, a fluorescent probe insensitive to intracellular ions. When challenged with ∼40% hyposmotic solutions, the cells expanded osmometrically and then underwent RVD. Concomitant with the volume response, there was a transient increase in [Ca2+]i, whose onset preceded RVD. For hyposmotic solutions (up to ∼−40%), [Ca2+]i increased steeply with the reciprocal of the external osmotic pressure and with the cell volume. Chelation of external and internal Ca2+, with EGTA and 1,2-bis-(o -aminophenoxy) ethane-N,N,N ′,N ′-tetraacetic acid (BAPTA), respectively, attenuated but did not prevent RVD. This Ca2+-independent RVD proceeded even when there was a concomitant decrease in [Ca2+]i below resting levels. Similar results were obtained in cells loaded with calcein. For cells not treated with BAPTA, restoration of external Ca2+ during the relaxation of RVD elicited by Ca2+-free hyposmotic solutions produced an increase in [Ca2+]i without affecting the rate or extent of the responses. RVD and the increase in [Ca2+]i were blocked or attenuated upon the second of two ∼40% hyposmotic challenges applied at an interval of 30–60 min. The inactivation persisted in Ca2+-free solutions. Hence, our simultaneous measurements of intracellular Ca2+ and volume in single neuroblastoma cells directly demonstrate that an increase in intracellular Ca2+ is not necessary for triggering RVD or its inactivation. The attenuation of RVD after Ca2+ chelation could occur through secondary effects or could indicate that Ca2+ is required for optimal RVD responses.  相似文献   

18.
Fedirko  N.  Vats  Ju.  Klevets  M.  Kruglikov  I.  Voitenko  N. 《Neurophysiology》2002,34(2-3):127-129
We showed that 5 M acetylcholine (ACh) and 100 M norepinephrine (NE) cause increases in the total Ca2+ content in acinar cells by 30 and 87% and in the exocytosis intensity by 15 and 20%, respectively. Application of 5 M ACh and 100 M NE increased the free cytosolic Ca2+ concentration ([Ca2+] i ) by 87 ± 2 and 140 ± 7 nM, respectively. Application of ACh and NE in a Ca2+-free external solution caused a [Ca2+] i increase that was 40 and 67% lower than in physiological solution. We postulate that the exocytosis developing upon neural stimulation of the gland results from generation of Ca2+ transients that are spreading from the basal to the apical region of the exocrine cell, where secretory granules are concentrated.  相似文献   

19.
Signal transduction systems, including cholinergic pathways, which are likely to be of pathophysiological significance are altered in Alzheimer's disease (AD). Muscarinic cholinergic receptors are linked to the hydrolysis of phosphoinositide, involving the production of inositol 1,4,5-trisphosphate [Ins (1,4,5)P3] and the mobilization of cytosolic free calcium concentrations ([Ca2+]i). Effects of amyloid peptide (A) on these signals prior to neuronal degeneration were examined in cultured rat cortical cells. A increased the release of lactate dehydrogenase (LDH) in a concentration-dependent manner, however, it was blocked by B27 supplement. Prolonged exposure to a sublethal dose of A 25–35 or 1–42 disrupted carbachol-mediated release of Ins(1,4,5)P3 and [Ca2+]i, which was inhibited in media supplemented with B27 or the antioxidant vitamin E. In order to determine the specificity of the effect of A, various agonists glutamate or KCl but not bradykinin which utilize the phosphoinositide cascade were investigated. Our results indicated that A did not affect the stimulation of glutamate or KCl-mediated production of Ins(1,4,5)P3 or cause elevation in [Ca2+]i. Furthermore, metabotropic agonist trans-1-amino-cyclopentane-1,3,-dicarboxylate (ACPD) elevated calcium level was not inhibited by A pretreatment. Taken together, the results demonstrate that a sublethal dose of A selectively impaired cholinergic receptor-mediated signal transduction pathways, and antioxidant or B27 supplement attenuated this effect of A. Alterations of cholinergic signaling by prolonged exposure to A could be involved in cortical neurodegeneration that occurs in AD. Because functional loss of cholinergic pathways is an important aspect of AD, the differences in susceptibility of these two types of receptors prior to other signs of A action is important and requires further investigation.  相似文献   

20.
Summary Neutral-carrier pH-and Ca-sensitive microelectrodes were used to investigate the relationship between junctional electrical resistance and either pHi or [Ca2+]i in crayfish septate axons uncoupled by acidification. For measuring [Ca2+]i a new neutral carrier sensor sensitive to picomolar [Ca2+] and virtually insensitive to other ions was used. Uncoupling was induced by superfusing the axons with Na-acetate solutions (pH 6.3). With acetate, the time course of changes in junctional resistance differed markedly from that of pHi or [H+]i peaked 40–90 sec before junctional resistance. The difference in shape and peak time between pHi and junctional resistance curves caused significant hysteresis in the pHi versus junctional resistance relationship. In addition, junctional resistance maxima reached with slow acidification rates were 3–4 times greater than those with fast acidifications of similar magnitude. With acetate, [Ca2+]i, increased by approximately one order of magnitude from basal values of 0.1–0.3 m. The curves describing the time course of changes in [Ca2+]i and junctional resistance matched well with each other in shape, peak time and magnitude. Both junctional resistance and [Ca2+]i recovered following a single exponential decay with a time constant of 2 min. Different rates of acidification caused increases in [Ca2+]i and junctional resistance comparable in magnitude. The data indicate that the increase in junctional resistance induced by acidification is more closely related to [Ca2+]i than to [H+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号