共查询到20条相似文献,搜索用时 0 毫秒
1.
The enantioselective esterification of racemic ibuprofen with n-propanol by immobilized Mucor miehel lipase in supercritical carbon dioxide was studied. The enantiomeric excess of the product (eep) was 70 % at 15...20 % conversion. The enantioselectivity was faintly affected by temperature and the concentration of ibuprofen and lipase. The optimum temperature was 45 °C. The initial reaction rate increased with pressure, but enantioselectivity was not affected by pressure changes. The reaction rates in supercritical carbon dioxide at optimized conditions and in n-hexane were similar. 相似文献
2.
An extracellular, thermostable, alkaline lipase was partially purified from a thermophilic Bacillus strain J 33. It was optimally active at pH 8.0 at 60°C, retaining 50% activity at 70°C for 30 min. It had native molecular mass of 45 kDa. The lipase was stable in 90% (v/v) hexane or benzene mixtures in water. It converted 66% oleic acid at 0.25 M with 0.4 M methanol in hexane to methyl oleate at 60°C in 16 h. Activity was stimulated by Mg2 (10 mM) but inhibited by EDTA (10 mM) and PMSF (10 mM). It was stable in Triton X-100, Tween 20 and Tween 80 (0.1% v/v). © Rapid Science Ltd. 1998 相似文献
3.
Enantioselective esterification of glycidol by surfactant-lipase complexes in organic media 总被引:1,自引:0,他引:1
Shin-ya Okazaki Noriho Kamiya Masahiro Goto Fumiyuki Nakashio 《Biotechnology letters》1997,19(6):541-543
Enantioselective esterification of glycidol has been performed with lauric acid in organic media dosed with surfactant-lipase complexes as catalysts. Lipase derived from various biomaterial sources was complexed with nonionic surfactant, dioleyl-N-D-glucono-L-glutamate, prior to use. Surfactant-lipase D (from Rhizopus delemar) complex had a higher enantioselectivity (v R /v S = 7.6) than the other lipases and the corresponding initial reaction rate was averaging 100-fold better than that of native powder lipase D in cyclohexane at 35°C. 相似文献
4.
The enzymatic esterification of octanoic acid with racemic butanol-2 was investigated. Esterifications of the acid were performed in a forced flow enzyme membrane reactor. The used membrane was prepared by a phase inversion process in polyamide-6 solution followed by the chemical immobilization of a lipase-catalyst. Influences of water content and pH were estimated. Their optimum values are equal to 0.5% w/w and pH 8. The reaction rate (at 303 K) of 5.1 × 10?5 mol/h·cm2 of the membrane area, and at least 85% enantiomeric excess in the produced ester mixture were obtained. The activity of immobilized lipase in the membrane process is about two times higher than that of the native lipase in the esterification performed in a tank reactor. 相似文献
5.
The purpose of this research work was to obtain directly compressible agglomerates of ibuprofen with talc by a novel crystallo-co-agglomeration
(CCA) technique, which is an extension of spherical crystallization. Ibuprofen-talc agglomerates were prepared using dichloromethane
(DCM)-water as the crystallization system. DCM acted as a good solvent for ibuprofen as well as a bridging liquid for agglomeration
of crystallized drug with talc. The agglomerates were characterized by differential scanning calorimetry, powder X-ray diffraction,
and scanning electron microscopy and were evaluated for tableting properties and for drug release. The process yielded spherical
agglomerates containing ∼95% to 96% wt/wt of ibuprofen. Agglomerates containing talc showed uniform distribution of hydroxypropylmethylcellulose
and decreased crystallinity, and deformed under pressure. The miniscular form of ibuprofen and the hydrophobicity of talc
governed the drug release rate. The batch containing a higher proportion of talc showed zeroorder kinetics and drug release
was extended up to 13 hours. The CCA technique developed in this study is suitable for obtaining agglomerates of drug with
talc as an excipient. 相似文献
6.
Enantioselective synthesis of ibuprofen esters in AOT/isooctane microemulsions by Candida cylindracea lipase 总被引:5,自引:0,他引:5
The enantioselective esterification of racemic ibuprofen, catalyzed by a Candida cylindracea lipase, was studied in a water-in-oil microemulsion (AOT/isooctane). By using n-propanol as the alcohol, an optimal W(0) ([H(2)O]/[AOT] ratio) of 12 was found for the synthesis of n-propyl-ibuprofenate at room temperature. The lipase showed high preference for the S(+)-enantiomer of ibuprofen, which was esterified to the corresponding S(+)-ibuprofen ester. The R(-)-ibuprofen remained unesterified in the microemulsion. The calculated enantioselectivity value (E) for S-ibuprofen ester was greater than 150 (conversion 0.32). The enzyme activities of n-alcohols with different chain lengths (3-12) were compared, and it appeared that short- (propanol and butanol) and long-chained (decanol and dodecanol) alcohols were better substrates than the intermediate ones (pentanol, hexanol, and octanol). However, unlike secondary and tertiary alcohols, all of the tested primary alcohols were substrates for the lipase. The reversible reaction (i.e., the hydrolysis of racemic ibuprofen ester in the microemulsion) was also carried out enantioselectively by the enzyme. Only the S form of the ester was hydrolyzed to the corresponding S-ibuprofen. The reaction yield was, however, only about 4% after 10 days of reaction. The corresponding yield for the esterification of ibuprofen was about 35% (10 days). The high enantioselectivity displayed by the lipase in the microemulsion system was seen neither in a similar esterification reaction in a pure organic solvent system (isooctane) nor in the hydrolysis reaction in an aqueous system (buffer). The E value for S-ibuprofen ester in the isooctane system was 3.0 (conversion 0.41), and only 1.3 for S-ibuprofen in the hydrolysis reaction (conversion 0.32). The differences in enantioselectivity for the lipase in various systems are likely due to interfacial phenomena. In the microemulsion system, the water in which the enzyme is dissolved is separated from the solvent by a layer of surfactant molecules, thus creating an interface with a relatively large area. Such interfaces are not present in the pure organic solvent systems (no surfactant) nor in aqueous systems. (c) 1993 John Wiley & Sons, Inc. 相似文献
7.
The thermophilic soil isolate, Bacillus pallidus Dac521, expresses a constitutive nitrile hydratase. The purified enzyme was found to be a 110 kDa tetramer composed of two alpha and two beta subunits with molecular masses of 27 kDa and 29 kDa, respectively. The enzyme electrophoresed as a single protein band on native PAGE but two protein bands with isoelectric points of 4.7 and 5.5 on isoelectric focusing suggested the presence of isozymes. The purified enzyme was moderately thermostable up to 55 degrees C and the enzyme activity was stable over a broad pH range. Comparisons of the N-terminal amino acid sequences of the nitrile hydratase subunits with those of other nitrile hydratases showed up to 90% identity for the beta subunit sequence but no significant identity for the alpha subunit. The enzyme hydrolysed a narrow range of aliphatic substrates and did not hydrolyse any of the cyclic, hydroxy-, di- or aromatic nitriles tested. The activity was irreversibly inhibited by the aromatic nitrile, benzonitrile. The kinetic constants for acetonitrile, acrylonitrile and propionitrile compared favourably with those of mesophilic nitrile hydratases. 相似文献
8.
A systematic study of the enantioselective resolution of ibuprofen by commercial Rhizomucor miehei lipase (Lipozyme(R) IM20) has been carried out using isooctane as solvent and butanol as esterificating agent. The main variables controlling the process (temperature, ibuprofen concentration, ratio butanol:ibuprofen) have been studied using an orthogonal full factorial experimental design, in which the selected objective function was enantioselectivity. This strategy has resulted in a polynomial function that describes the process. By optimizing this function, optimal conditions for carrying out the esterification of racemic ibuprofen have been determined. Under these conditions, enantiomeric excess and total conversion values were 93.8% and 49.9%, respectively, and the enantioselectivity was 113 after 112 h of reaction. These conditions have been considered in the design of a continuous reactor to scale up the process. The esterification of ibuprofen was properly described by pseudo first-order kinetics. Thus, a packed bed reactor operating as a plug-flow reactor (PFR) is the most appropriate in terms of minimizing the residence time compared with a continuous stirred tank reactor (CSTR) to achieve the same final conversion. This reactor shows a similar behavior in terms of enantioselectivity, enantiomeric excess, and conversion when compared with batch reactors. A residence-time distribution (RTD) shows that the flow model is essentially a plug flow with a slight nonsymmetrical axial dispersion (Peclet number = 43), which was also corroborated by the model of CSTR in series. The stability of the system (up to 100 h) and the possibility of reutilization of the enzyme (up to four times) lead to consider this reactor as a suitable configuration for scale up of the process. 相似文献
9.
CL 277,082: a novel inhibitor of ACAT-catalyzed cholesterol esterification and cholesterol absorption 总被引:1,自引:0,他引:1
CL 277,082 (I) was found to be a potent inhibitor of acyl CoA:cholesterol acyltransferase (ACAT, EC 2.3.1.26) in microsomes from a variety of tissues with IC50 values of 0.14 microM for intestinal mucosal microsomes, 0.74 microM for liver, and 1.18 microM for rat adrenal. I was also shown to inhibit ACAT in cultured smooth muscle cells (IC50 = 0.8 microM) and was found to be specific in inhibiting cholesterol esterification since it did not inhibit fatty acid incorporation into triglycerides or phospholipids. Also, other cholesterol esterifying enzymes such as lecithin:cholesterol acyltransferase (LCAT) and pancreatic cholesterol esterase were not inhibited by I, nor was esterification of retinol by acyl CoA:retinol acyltransferase (ARAT) from intestinal mucosal microsomes inhibited. I was a potent inhibitor of cholesterol absorption in cholesterol-fed rats by markedly inhibiting increases in liver and serum cholesterol concentration (ED50 = 5.2 mg/kg per day) while increasing the excretion of neutral 14C-labeled sterol in the feces. 相似文献
10.
Rui Tian Chun-Hua Yang Xiao-Fei Wei Er-Na Xun Ren Wang Shu-Gui Cao Zhi Wang Lei Wang 《Biotechnology and Bioprocess Engineering》2011,16(2):337-342
Aeropyrum pernix esterase (APE1547) was successfully used to catalyze the enantioselective transesterification of (R/S)-2-methyl-1-butanol in an ionic liquid (IL). Effects of various reaction conditions on the synthetic activity of the enzyme as well as enantioselectivity, including the type of IL, acyl donor, temperature, water activity, and substrate molar ratio were inverstigated. APE1547 showed good catalytic performance (activity > 0.8 μmol/min/mg, E > 25), and the enzyme-IL mixture was recycled five times with only a slight decrease in catalytic performance. 相似文献
11.
Perfumo A Banat IM Canganella F Marchant R 《Applied microbiology and biotechnology》2006,72(1):132-138
Thermophilic bacterial cultures were isolated from a hot spring environment on hydrocarbon containing mineral salts media. One strain identified as Pseudomonas aeruginosa AP02-1 was tested for the ability to utilize a range of hydrocarbons both n-alkanes and polycyclic aromatic hydrocarbons as sole carbon source. Strain AP02-1 had an optimum growth temperature of 45°C and degraded 99% of crude oil 1% (v/v) and diesel oil 2% (v/v) when added to a basal mineral medium within 7 days of incubation. Surface activity measurements indicated that biosurfactants, mainly glycolipid in nature, were produced during the microbial growth on hydrocarbons as well as on both water-soluble and insoluble substrates. Mass spectrometry analysis showed different types of rhamnolipid production depending on the carbon substrate and culture conditions. Grown on glycerol, P. aeruginosa AP02-1 produced a mixture of ten rhamnolipid homologues, of which Rha-Rha-C10-C10 and Rha-C10-C10 were predominant. Rhamnolipid-containing culture broths reduced the surface tension to ≈28 mN and gave stable emulsions with a number of hydrocarbons and remained effective after sterilization. Microscopic observations of the emulsions suggested that hydrophobic cells acted as emulsion-stabilizing agents. 相似文献
12.
Highly active, stable, and magnetically separable immobilized enzymes were developed using carboxymethyl cellulose (CMC) and diethylaminoethyl cellulose DEAE-C; hereafter designated "DEAE" as supporting materials. Iron oxide nanoparticles penetrated the micropores of the supporting materials, rendering them magnetically separable. Lipase (LP) was immobilized on the surface of the supporting materials by using cross-linked enzyme aggregation (CLEA) by glutaraldehyde. The activity of enzyme aggregates coated on DEAE was approximately 2 times higher than that of enzyme aggregates coated on CMC. This is explained by the fact that enzyme aggregates with amine residues are more efficient than those with carboxyl residues. After a 96-h enantioselective ibuprofen esterification reaction, 6% ibuprofen propyl ester was produced from the racemic mixture of ibuprofen by using DEAE-LP, and 2.8% using CMC-LP. 相似文献
13.
Chromobacterium viscosum lipase (c.v. lipase) was immobilized in microemulsion-based órganogels and successfully utilized for the enantioselective esterification of (+/?)-2-methylbutynic acid to preferentially form ethyl-(+)-2-methylbutyrate. The reaction time course and enantioselectivity obtained with the organogel—lipase system was compared and contrasted to that achieved in a reversed micellar solution system that contained lipase solubilized in its inner water core as well as that in which powdered lipases were directly dispersed in an organic solvent. The unique properties and potential benefits of the organogel system are discussed. © 1994 Wiley-Liss, Inc. 相似文献
14.
Summary and Conclusion The coprocessed superdisintegrant proved to be superior to the physical blend in terms of flow due to size enlargement. Furthermore,
the coprocessed superdisintegrant displayed superiority in terms of crushing strength, disintegration time, and drug dissolution.
The advantages of the proposed method are easy adaptability in industry and the possibility of bypassing the existing patents
in the ereas of quick disintegration and dissolution.
Published: February 16, 2007 相似文献
15.
Characterization of a novel non-specific nuclease from thermophilic bacteriophage GBSV1 总被引:1,自引:0,他引:1
Background
Thermostable enzymes from thermophiles have attracted extensive studies. In this investigation, a nuclease-encoding gene (designated as GBSV1-NSN) was obtained from a thermophilic bacteriophage GBSV1 for the first time. 相似文献16.
Reduction of Technetium by Desulfovibrio desulfuricans: Biocatalyst Characterization and Use in a Flowthrough Bioreactor 总被引:2,自引:0,他引:2
下载免费PDF全文

J. R. Lloyd J. Ridley T. Khizniak N. N. Lyalikova L. E. Macaskie 《Applied microbiology》1999,65(6):2691-2696
Resting cells of Desulfovibrio desulfuricans coupled the oxidation of a range of electron donors to Tc(VII) reduction. The reduced technetium was precipitated as an insoluble low-valence oxide. The optimum electron donor for the biotransformation was hydrogen, although rapid rates of reduction were also supported when formate or pyruvate was supplied to the cells. Technetium reduction was less efficient when the growth substrates lactate and ethanol were supplied as electron donors, while glycerol, succinate, acetate, and methanol supported negligible reduction. Enzyme activity was stable for several weeks and was insensitive to oxygen. Transmission electron microscopy showed that the radionuclide was precipitated at the periphery of the cell. Cells poisoned with Cu(II), which is selective for periplasmic but not cytoplasmic hydrogenases, were unable to reduce Tc(VII), a result consistent with the involvement of a periplasmic hydrogenase in Tc(VII) reduction. Resting cells, immobilized in a flowthrough membrane bioreactor and supplied with Tc(VII)-supplemented solution, accumulated substantial quantities of the radionuclide when formate was supplied as the electron donor, indicating the potential of this organism as a biocatalyst to treat Tc-contaminated wastewaters. 相似文献
17.
Ledbetter RN Connon SA Neal AL Dohnalkova A Magnuson TS 《Applied and environmental microbiology》2007,73(18):5928-5936
The Alvord Basin in southeast Oregon contains a variety of hydrothermal features which have never been microbiologically characterized. A sampling of Murky Pot (61 degrees C; pH 7.1) led to the isolation of a novel arsenic-metabolizing organism (YeAs) which produces an arsenic sulfide mineral known as beta-realgar, a mineral that has not previously been observed as a product of bacterial arsenic metabolism. YeAs was grown on a freshwater medium and utilized a variety of organic substrates, particularly carbohydrates and organic acids. The temperature range for growth was 37 to 75 degrees C (optimum, 55 degrees C), and the pH range for growth was 6.0 to 8.0 (optimum, pH 7.0 to 7.5). No growth was observed when YeAs was grown under aerobic conditions. The doubling time when the organism was grown with yeast extract and As(V) was 0.71 h. Microscopic examination revealed Gram stain-indeterminate, non-spore-forming, nonmotile, rod-shaped cells, with dimensions ranging from 0.1 to 0.2 microm wide by 3 to 10 microm long. Arsenic sulfide mineralization of cell walls and extracellular arsenic sulfide particulate deposition were observed with electron microscopy and elemental analysis. 16S rRNA gene analysis placed YeAs in the family Clostridiaceae and indicated that the organism is most closely related to the Caloramator and Thermobrachium species. The G+C content was 35%. YeAs showed no detectable respiratory arsenate reductase but did display significant detoxification arsenate reductase activity. The phylogenetic, physiological, and morphological characteristics of YeAs demonstrate that it is an anaerobic, moderately thermophilic, arsenic-reducing bacterium. This organism and its associated metabolism could have major implications in the search for innovative methods for arsenic waste management and in the search for novel biogenic mineral signatures. 相似文献
18.
Abstract When a thermophilic bacillus was incubated with progesterone for approx. 18 h at 65°C, four progesterone-based metabolites were produced in moderate quantities. Two products were found to be hydroxy derivatives, i.e. 6α-hydroxyprogesterone and 6β-hydroxyprogesterone and two were C-20 reduced epimers of progesterone, i.e. 20α- and 20β-dihydroprogesterone. 6α-Hydroxyprogesterone is a rare microbial transformation product.
Inhibition of hydroxylation by azole-based fungicides and the presence of a carbon-monoxide-reduced difference-spectrum absorbance maximum at 448 nm in the soluble cell fraction suggest that the hydroxylase(s) might be cytochromes(s) P450. The dihydroprogesterones were probably produced by oxidoreductases. 相似文献
Inhibition of hydroxylation by azole-based fungicides and the presence of a carbon-monoxide-reduced difference-spectrum absorbance maximum at 448 nm in the soluble cell fraction suggest that the hydroxylase(s) might be cytochromes(s) P450. The dihydroprogesterones were probably produced by oxidoreductases. 相似文献
19.
Background
Ibuprofen and paracetamol differ in their mode of action and related therapeutic effects, suggesting that combined administration may offer improved analgesia. Reported here are the results of two studies on the pharmacokinetic properties of a novel ibuprofen (200 mg) and paracetamol (500 mg) fixed-dose combination tablet. 相似文献20.
Gwo-Jenn Shen Kailash C. Srivastava Badal C. Saha J. Gregory Zeikus 《Applied microbiology and biotechnology》1990,33(3):340-344
Summary A new thermophilic Bacillus strain 3183 (ATCC 49341) was isolated from hot-spring sediments. The organism grew on pullulan as a carbon source and showed optimum pH and temperature at pH 5.5 and 62° C, respectively, for growth. The strain reduced nitrate to nitrite both aerobically and anaerobically. It produced extracellular thermostable pullulanase and saccharidase activities which degraded pullulan and starch into maltotriose, maltose, and glucose. Medium growth conditions for pullulanase production were optimized. The optimum pH and temperature for pullulanase activity were at pH 6.0 and 75° C, respectively. The enzyme was stable at pH 5.5-7.0 and temperature up to 70° C in the absence of substrate. The K
m for pullulan at pH 6.0 and 75° C was 0.4 mg/ml. The pullulanase activity was stimulated and stabilized by Ca2+. It was inhibited by ethylenediaminetetraacetate (EDTA), beta and gamma-cyclodextrins but not by alpha-cyclodextrin and reagents that inhibit essential enzyme SH-groups.
Offprint requests to: B. C. Saha 相似文献