首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant clonality, the ability of a plant species to reproduce itself vegetatively through ramets (shoot-root units), occurs in many plant species and is considered to be more frequent in cold or wet environments. However, a deeper understanding on the clonality-climate relationships along large geographic gradients is still scarce. In this study we revealed the clonality-climate relationships along latitudinal gradient of entire China spanning from tropics to temperate zones using clonality data for 4015 vascular plant species in 545 terrestrial communities. Structural equation modeling (SEM) showed that, in general, the preponderance of clonality increased along the latitudinal gradient towards cold, dry or very wet environments. However, the distribution of clonality in China was significantly but only weakly correlated with latitude and four climatic factors (mean annual temperature, temperature seasonality, mean annual precipitation, precipitation seasonality). Clonality of woody and herbaceous species had opposite responses to climatic variables. More precisely, woody clonality showed higher frequency in wet or climatically stable environments, while herbaceous clonality preferred cold, dry or climatically instable environments. Unexplained variation in clonality may be owed to the influences of other environmental conditions and to different clonal strategies and underlying traits adopted by different growth forms and phylogenetic lineages. Therefore, in-depth research in terms of more detailed clonal growth form, phylogeny and additional environmental variables are encouraged to further understand plant clonality response to climatic and/or edaphic conditions.  相似文献   

2.
The frequency of clonal plants in different vegetation types is known to be influenced by environmental and land-use factors. However, the underlying behavior of individual clonal traits or clonal trait diversity has received little attention. Here, we assess for species- and trait-diverse grasslands of the Swiss Alps the relative importance of temperature, soil moisture, land use and species richness on the diversity and frequency of individual compared with all clonal traits. We further analyzed how cover-weighted data alters the relationships found with commonly used presence-absence data. We combined species compositional, land-use and environmental data from 236 28-m2 grassland plots with clonal trait information for 527 species following the Clonal Growth Organ (CGO) classification. Test results are based on linear models, ANOVAs and ANCOVAs. The grassland sites were 84% dominated by clonal species. Drought-prone grasslands harbored the least clonal species. No increase in clonality was detected with decreasing temperature (= altitude). Mown or pastured grasslands had more clonal species than fallows. Certain sets of traits were correlated. Rhizomatous species especially reacted strongly to climatic and land-use gradients and had highest frequencies in cold, moist and disturbed sites. Clonal diversity was strongly dependent on species richness. Cover-weighted and presence-absence based estimates were largely similar. Overall, our data outlined that common clonal traits react differently to natural and land-use gradients as well as differently to the sum of clonal traits. Also, soil moisture was more decisive than temperature (= altitude) for the presence of clonal species. Lastly, the strong correlation between species-richness and clonal trait diversity needs to be accounted for when interpreting the functional role of clonal traits.  相似文献   

3.
Question: The vegetation of high mountain regions in Himalaya remains poorly assessed despite the expected vulnerability of these ecosystems to global change drivers. What are the main vegetation types in East Ladakh and which environmental factors influence the species composition and growth forms distribution? Location: The south‐westernmost extension of the Tibetan Plateau, an arid mountainous area, in East Ladakh, Jammu & Kashmir State, India. Methods: Species composition was recorded for 369 plots (each 100 m2). Plots, sampled from 4180 m a.s.l. (bottom of the Indus Valley) up to 6060 m a.s.l. (close to the snowline), covered a wide range of environmental conditions. Results: TWINSPAN clusters discriminated eight ecologically interpretable vegetation types, corresponding to the main habitats in the area: animal resting places, salt marshes, semi‐deserts and steppes, shrublands, alpine screes and boulder fields, alpine grasslands, water bodies and subnival zone. The most important environmental factors influencing the species composition were altitude, soil moisture and salinity. Screes and alpine grasslands were found to be the most species‐rich. The species were ranged into 20 growth forms with regard to life‐form and clonality, with growth forms showing different changes in proportion among vegetation types and along the different environmental gradients. Conclusion: The study summarizes the main vegetation types of East Ladakh in terms of species and growth form compositions. The results can have a heuristic value for designing future monitoring schemes and assess the effects of global change in these diverse, but poorly studied, regions.  相似文献   

4.
Permanent plots with a fine scale recording system were used to trace the spatiotemporal process within two mountain grasslands in the Krkono?e Mts., Czech Republic. The analysis used autocorrelation over increasing lags in space and/or time. Moran'sI was used to measure the autocorrelation. There was a lot of variation between species both in spatial and temporal correlograms. The spatiotemporal pattern of species correlated well with the growth form of the species and the degree of its clonality. Clonally-growing species tended to have high clumping at distances of a few cells, whereas rosette species often did not show any clumping. The type of clonal growth (compact vs. long spacers) is well corrlated, with the temporal correlogram (species mobility). There is a relation between low mobility and high clumping at low distances. Attempts to explain the mechanisms of species coexistence in these grasslands should take into account the particular structure of the fine-scale dynamics of these communities of predominantly clonal plants. *** DIRECT SUPPORT *** A02DO006 00007  相似文献   

5.
Individuals of clonal plants consist of physically and physiologically connected ramets. In splitters, they are integrated for a time shorter than ramet generation time (i.e. the time it takes to produce the first offspring ramet), whereas in integrators connections between ramets persist for a longer time. It has been predicted that integrators should prevail in stressful environments, such as habitats poor in nutrients, whereas splitters are expected to dominate in benign habitats, such as fertile areas with a moderate climate. I tested these predictions in four dry mountain areas of the Trans-Himalaya, in high altitudes subjected to multiple stresses. In accordance with the expectations I found that clonal plants with integrated ramets reach higher mean and maximum altitudes than splitters. Integrators were over-represented in nutrient-poor habitats, such as dry semi-deserts, sandy steppes and in subnival habitats, whereas splitters preferentially colonised mesic habitats, saline sites and wetlands. While there was no difference in the representation of splitters and integrators in habitats with an unstable surface, such as screes, dunes and water bodies, fully integrated clonal plants preferred very stable environments, such as banks of streams covered by closed-canopy vegetation. Most relationships between clonal integration and environmental factors were explainable by the phylogenetic relationship between the species, only the significant preference of splitters for shaded environments persisted in phylogenetically corrected analysis. The results indicate that clonal integration belongs to a set of evolutionarily conservative plant traits, usually shared by related species. Consequently, the adaptive value of clonal integration in individual habitats remains questionable.  相似文献   

6.
Specific composition and species clonal traits were characterized along combined flooding and grazing gradients to answer two questions. i) To what extent does the interaction of flooding and grazing influence the clonal characteristics of the vegetation? ii) Are the effects of both environmental factors independent or interactive? This study was carried out in a wet meadow along the Atlantic coast (France). Three plant communities (hygrophilous, meso-hygrophilous and mesophilous) were distinguished along a flooding gradient and five levels of grazing pressure were controlled through an experimental design (from no grazing to heavy grazing). We monitored species composition and retrieved, for each species, the type of clonal growth organs (CGOs) and clonal traits from the CLO-PLA3 database. We identified two syndromes of clonal traits: ??above-ground splitters?? and ??below-ground integrators??. Clonal traits played a key role in plant assembly in the studied meadows. The interaction of both environmental factors selected for particular syndromes of clonal traits; however, flooding had a stronger filtering effect than grazing. The hygrophilous community was dominated by above-ground splitters, whereas the meso-hygrophilous vegetation was dominated by below-ground integrators. In the mesophilous community, clonal composition was the most diverse and shared clonal traits with the vegetation of both the hygrophilous and meso-hygrophilous communities. Grazing impact on CGOs and clonal traits differed between plant communities, i.e., the effect of grazing was modulated by the flooding regime. This study confirmed that vegetation responses to grazing might depend on the pool of traits, primarily filtered by environmental factors such as flooding.  相似文献   

7.
Extensively managed and flower‐rich mountain hay meadows, hotspots of Europe''s biodiversity, are subject to environmental and climatic gradients linked to altitude. While the shift of pollinators from bee‐ to fly‐dominated communities with increasing elevation across vegetation zones is well established, the effect of highland altitudinal gradients on the community structure of pollinators within a specific habitat is poorly understood. We assessed wild bee and hoverfly communities, and their pollination service to three plant species common in mountain hay meadows, in eighteen extensively managed yellow oat grasslands (Trisetum flavescens) with an altitudinal gradient spanning approx. 300 m. Species richness and abundance of pollinators increased with elevation, but no shift between hoverflies and wild bees (mainly bumblebees) occurred. Seedset of the woodland cranesbill (Geranium sylvaticum) increased with hoverfly abundance, and seedset of the marsh thistle (Cirsium palustre) increased with wild bee abundance. Black rampion (Phyteuma nigrum) showed no significant response. The assignment of specific pollinator communities, and their response to altitude in highlands, to different plant species underlines the importance of wild bees and hoverflies as pollinators in extensive grassland systems.  相似文献   

8.
The research aim was to understand how variation of temperature and water availability drives trait assemblage of seminatural grasslands in sub-Mediterranean climate, where climate change is expected to intensify summer aridity. In the central Italy, we recorded species abundance and elevation, slope aspect and angle in 129 plots. The traits we analysed were life span, growth form, clonality, belowground organs, leaf traits, plant height, seed mass, and palatability. We used Ellenberg's indicators as a proxy to assess air temperature and soil moisture gradients. From productive to harsh conditions, we observed a shift from tolerance to avoidance strategies, and a change in resource allocation strategies to face competition and stress or that maximize exploitation of patchily distributed soil resource niches. In addition, we found that the increase of temperature and water scarcity leads to the establishment of regeneration strategies that enable plants to cope with the unpredictability of changes in stress intensity and duration. Since the dry habitats of higher elevations are also constrained by winter cold stress, we argue that, within the sub-Mediterranean bioclimate, climate change will likely lead to a variation in dominance inside plant communities rather than a shift upwards of species ranges. At higher elevations, drought-adaptive traits might become more abundant on south-facing slopes that are less stressed by winter low temperatures; traits related to productive conditions and cold stress would be replaced on north-facing slopes by those adapted to overcome both the drought and the cold stresses.  相似文献   

9.
Abstract. Aim: Patterns of plant functional traits related to clonality (clonal growth modes; CGM) in plant communities were studied and hypotheses on the importance of the selected traits in plant communities supported by soils differing in moisture and nutrient status were tested. Material and Methods: Selected plant functional traits, such as the position of the mother‐daughter plants connections, length of spacers, frequency of multiplication, persistency of ramets connections, presence of storage organs and bud protection were studied in two contrasting plant communities (xeric and mesic abandoned pastures) typical of central Apennines, Italy. Results and Discussion: Clonality was shown to be of great importance in both mesic and xeric grasslands. The major differences between the two communities were due to the dominant CGMs: turf graminoids (having effective protection of growth meristems in dense tussocks) dominated xeric grasslands, while rhizomatous graminoids (typical of competitive resource‐rich environments) dominated mesic grasslands. Below‐ground CGOs (clonal growth organs), shorter spacers, higher multiplication potential, permanent ramet connection, large bud bank and increased importance of bud protection were found to be of importance in water stressed xeric grassland. Contrary to our expectations, the mesic (less stressed) grasslands have the higher number of clonal plants possessing storage organs.  相似文献   

10.
In this paper we assess the relationship between the frequency of clonal traits and environmental factors in plant communities facing abiotic constraints imposed by an alpine environment. The study was conducted in the Vanoise Massif,inner part of the French Alps, at 1,620 to 2,800 m a.s.l. We sampled 169 communities that encounter a broad set of environmental constraints, and that were distributed over the entire Massif. For all species, we documented clonal traits using data available in the literature (e.g., the CLOPLA database), completed by other sources and our own measurements. Four traits that have previously been shown to be correlated with abiotic stress and disturbances were considered: duration of clonal integration, clonal production, spreading rate, and bud-bank size. Clonal characteristics of plant communities (aggregated traits) along the two main environmental gradients (altitude and duration of snow cover) were assessed. The distribution of clonal traits was significantly but weakly correlated with environmental factors. The duration of clonal integration and bud-bank size increased with altitude, and clonal production decreased. The duration of clonal integration and the size of the bud bank were also higher in snow beds. Scree communities were characterized by a high spreading rate and a large bud bank. The duration of integration was unexpectedly shorter in disturbance-prone habitats, and spatial mobility was unexpectedly higher in one of the most stressed habitats.  相似文献   

11.
Abstract

Helianthemetea guttati communities are pioneer spring and early summer ephemeral grasslands, dominated by non-nitrophilous therophytes. In Continental Portugal, these communities have not yet been fully investigated, and thus the objectives of the present study are: (1) to identify community types in therophytic grasslands; (2) to recognize those communities that configure the European priority habitat 6220* (pseudo-steppe with grasses and annuals); (3) to establish environmental gradients underlying their spatial variation; (4) to assess how floristic composition is affected by land use factors. Vegetation sampling using phytosociological methodology was carried out on 80 grasslands. Modified Twinspan classification and canonical correspondence analysis (CCA) was applied for the classification and ordination of relevés whereas partial CCA (pCCA) and variation partitioning were used to assess the relative influence of individual land use factors. Some 270 species were identified across 11 community types whose floristic patterns were mainly explained by environmental gradients related to altitude and soil type while land use variables could only explain a small part of the floristic variation. Based on biogeography and the determination of diagnostic species, four phytosociological new associations and a new subassociation are proposed: Holco-Brachypodietum distachyi, Holco-Micropyretum tenellae, Micropyro-Anthoxanthetum aristati and Leontodonto-Vulpietum bromoidis vulpietosum membranaceae.  相似文献   

12.
Many major biomes throughout the world are dominated by plants with clonal growth forms. While many recent studies have examined the effects of clonality on the growth of individual plants, relatively few studies have tested the community level effects of clonality as a function of environmental characteristics. By investigating six sand dune sites that have undergone different numbers of years of natural restoration constituting a succession sere, we quantified if the abundance and importance of clonal plants was related to successional age in the stressful environment of a semi-arid sand dune region in northeastern China. We expected that clonal plants would dominate at every stage of the succession sere. We also predicted that species diversity would decrease in later stages of the succession sere due to the extremely high proportion of clonal plants in the community. Our results showed that, through 45 years of succession, the total plant species richness and Shannon–Wiener diversity index continually increased. While the species number of clonal plants was consistently low during the succession, the importance of clonal plants increased gradually from none at 3 years to 49 % of the total, approximately equal to that of aclonal plants, at the 45-year site. Clonal plants with phalanx strategies were more important than guerillas at all ages in sand dune succession. At the beginning and early stages of sand dune succession, aclonal plants were more important than clonal plants, perhaps due to greater seed propagation. The distribution or arrangement of aclonal and clonal plants in the whole process of sand dune complemented each other. The results presented give new perceptions on the function of biodiversity in maintaining ecosystems.  相似文献   

13.
Upland fringes of the White Carpathians (Czech Republic) are known to support grasslands with the world’s highest local plant species richness. We investigated whether this unusually high plant richness has a parallel in snail communities, whether patterns of species composition of snail and plant communities in grasslands co-vary and how they are affected by local environment and landscape history. We compared plant and snail communities of dry to mesic grasslands in three neigh bouring regions: (1) hilly lowland of the Central Moravian Carpathians, (2) upland fringes and (3) upland of the White Carpathians. Both snail and plant communities exhibited a strong gradient in species composition associated with altitude, annual temperature and precipitation, soil calcium and pH. However, there was no correlation between local species richness of plants and snails in individual plots. The upland fringes of the White Carpathians were richest in snail species, probably due to intermediate environmental conditions, supporting the occurrence of species with contrasting environmental requirements. The highest local numbers of plant species were also recorded there, although differences among regions were not significant. The regional species richness of plants was also highest in the upland fringes, whereas that of snails was highest in the hilly lowland. Similarities in the diversity patterns of plants and snails among regions suggest the importance of regional factors for local richness, although local abiotic factors, which are partly correlated with the three regions, also influence local species composition and richness.  相似文献   

14.
The knowledge of broad-scale floristic variation in wet grasslands, which are endangered throughout Europe, is still limited and some regions have remained unexplored so far. In addition, hitherto published phytosociological studies were concentrated at the national level and therefore national vegetation classifications are not consistent with each other. In order to overcome these shortcomings of traditional phytosociology, we gathered original data from Bulgaria and analysed them together with the data from Central Europe. We further analysed major compositional gradients within Bulgarian wet grasslands and changes in species richness along them. We sampled 164 wet grassland vegetation plots throughout Bulgaria. We further prepared a restricted data set of wet grasslands from Central-European phytosociological databases. Both data sets were merged and classified by modified TWINSPAN. Four distinct vegetation types were differentiated. Even if they correspond with traditional alliances, which are primarily drawn as geographically defined units in Western and Central Europe (sub-Mediterranean Trifolion resupinati, sub-continental Deschampsion cespitosae and Molinion caeruleae and sub-oceanic Calthion palustris), they all occur in Bulgaria. When more precise classification was applied, two types of sub-Mediterranean wet grasslands and one high-altitude type of Calthion grasslands were detected solely in Bulgaria. DCA analysis showed that altitude is a dominant gradient controlling variation in Balkan wet grasslands. The second DCA axis was interpreted as the gradient of nutrient availability. Species richness shows skewed-unimodal trends along both major gradients, with the highest species richness in intermittently wet nutrient-limited grasslands. Tukey post-hoc test of altitudinal differences amongst vegetation types is significant for all pairs of clusters, suggesting that altitudinal differentiation is responsible for co-occurrence of nearly all European types of wet grasslands in Bulgaria. Our results suggest that (1) climate is an important factor for the diversity of wet grasslands; (2) Balkan vegetation of middle altitudes matches with that of Central Europe, whereas that of the lowest altitudes corresponds rather to the sub-Mediterranean region and high mountains are specific; (3) upward shift of Central-European vegetation types in southern Europe, so often described in forest vegetation is also evident for grassland vegetation and (4) the high diversity of Balkan vegetation is determined by a diverse relief enabling confluence of habitats possessing different climatic conditions.  相似文献   

15.
Relationships between environmental factors and plant species-richness as well as the composition of plant species in wet grasslands from the order Molinietalia caeruleae were studied with a view to quantifying the relative contribution of different abiotic factors, such as soil chemical parameters, climatic conditions and human impact to diversity of vascular plants and floristic composition. Data and soil samples were collected from 88 plots across Slovenia from regions at the eastern edge of the Po plain, karstic and pre-Alpine mountain regions and the western part of the Pannonian plain, which are classified to sub-Mediterranean, Dinnaric, pre-Alpine and sub-Pannonian phytogeographic areas. Plant diversity was positively correlated with the content of exchangeable Ca2+ in soil and the amount of annual precipitation, while significant negative correlation was calculated in case of the plant-available phosphorous content and altitude. Moreover, plant species richness was also negatively correlated with altitude. Among the groups of environmental factors the group of soil factors revealed the strongest correlation with species richness, followed by climatic and topographic group. The order of these groups was the same in the explanation of species composition. Variance of plant species composition was best explained with altitude, soil pH, geographical gradient, frequency of flooding, mean annual temperature, date of mowing, humidity, annual amount of precipitation as well as with the content of plant-available phosphorous, total nitrogen, exchangeable Mg2+ and Ca2+ in the soil.  相似文献   

16.
Plant traits associated with resource acquisition strategies (specific leaf area (SLA), leaf dry matter content (LDMC), leaf size and plant height) change along gradients of soil properties, being the most conservative in a resource-poor environment and the most dynamic in a resource-rich environment. Clonal attributes also vary along soil and other environmental conditions. We hypothesized that in alpine communities in the Scandian Mts. (1) the average composition of traits in a plant assemblage in terms of i) the predominance of different clonal growth organ types, ii) the number of buds in the bud bank, iii) the distribution of the bud-bank (above- and below ground), iv) the distance of lateral spread and v) the longevity of plant – offspring connections would change along a gradient of soil properties and (2) that this variation would be in correspondence with that of traits associated with resource acquisition strategies (SLA, LDMC, leaf size and plant height). Analysis of clonal and bud bank traits for species of alpine communities supported our first hypothesis: with decreasing soil quality the most common clonal growth organs were rhizomes, and there was a predominance of perennial bud banks located at the soil surface or below-ground, low rates of lateral spread and long persistence of plant – offspring connections. Our second hypothesis was partly supported. As predicted, at the level of the plant assemblage, these clonal and bud bank traits were positively associated with LDMC, and negatively with leaf size and plant height. These observations reinforce the hypotheses about trade-offs between acquisition and retention strategies in plants. The only result that was in contradiction with our expectations was the lack of correspondence between clonal and bud bank traits and SLA that could be attributed to errors associated to the measurement of the area of narrow and small leaves or to the dependence of the SLA index on species-specific morphological attributes.  相似文献   

17.
Questions: Do growth forms and vascular plant richness follow similar patterns along an altitudinal gradient? What are the driving mechanisms that structure richness patterns at the landscape scale? Location: Southwest Ethiopian highlands. Methods: Floristic and environmental data were collected from 74 plots, each covering 400 m2. The plots were distributed along altitudinal gradients. Boosted regression trees were used to derive the patterns of richness distribution along altitudinal gradients. Results: Total vascular plant richness did not show any strong response to altitude. Contrasting patterns of richness were observed for several growth forms. Woody, graminoid and climber species richness showed a unimodal structure. However, each of these morphological groups had a peak of richness at different altitudes: graminoid species attained maximum importance at a lower elevations, followed by climbers and finally woody species at higher elevations. Fern species richness increased monotonically towards higher altitudes, but herbaceous richness had a dented structure at mid‐altitudes. Soil sand fraction, silt, slope and organic matter were found to contribute a considerable amount of the predicted variance of richness for total vascular plants and growth forms. Main Conclusions: Hump‐shaped species richness patterns were observed for several growth forms. A mid‐altitudinal richness peak was the result of a combination of climate‐related water–energy dynamics, species–area relationships and local environmental factors, which have direct effects on plant physiological performance. However, altitude represents the composite gradient of several environmental variables that were interrelated. Thus, considering multiple gradients would provide a better picture of richness and the potential mechanisms responsible for the distribution of biodiversity in high‐mountain regions of the tropics.  相似文献   

18.
A number of studies show contrasting results in how plant species with specific life‐history strategies respond to fragmentation, but a general analysis on whether traits affect plant species occurrences in relation to habitat area and isolation has not been performed. We used published data from forests and grasslands in north‐central Europe to analyse if there are general patterns of sensitivity to isolation and dependency of area for species using three traits: life‐span, clonality, and seed weight. We show that a larger share of all forest species was affected by habitat isolation and area as compared to grassland species. Persistence‐related traits, life‐span and clonality, were associated to habitat area and the dispersal and recruitment related trait, seed weight, to isolation in both forest and grassland patches. Occurrence of clonal plant species decreased with habitat area, opposite to non‐clonal plant species, and long‐lived plant species decreased with grassland area. The directions of these responses partly challenge some earlier views, suggesting that further decrease in habitat area will lead to a change in plant species community composition, towards relatively fewer clonal and long‐lived plants with large seeds in small forest patches and fewer clonal plants with small seeds in small grassland patches. It is likely that this altered community has been reached in many fragmented European landscapes consisting of small and isolated natural and semi‐natural patches, where many non‐clonal and short‐lived species have already disappeared. Our study based on a large‐scale dataset reveals general and useful insights concerning area and isolation effects on plant species composition that can improve the outcome of conservation and restoration efforts of plant communities in rural landscapes.  相似文献   

19.
神农架川金丝猴栖息地森林群落的数量分类与排序   总被引:1,自引:0,他引:1  
在神农架川金丝猴生境典型地段设立样方58块,根据样方资料对神农架川金丝猴栖息地的森林群落用组平均法分类和DCA排序.用组平均法将58块样地分为9个群系,依据《中国植被》的分类原则和系统将研究区植物群落划归为7个植被型.样地的DCA排序较好地揭示了该区森林群落的分布格局与环境梯度的关系;DCA第二轴明显地反映出森林群落的海拔梯度变化,沿DCA第二轴从右到左,海拔逐渐升高;第一轴表现了各植物群落或植物种所在环境的坡度、坡向,即水分和光照因素,沿第一轴从下到上,坡度渐缓、坡向渐向阳.其中海拔梯度是环境因子中对森林群落起决定性作用的因子.研究表明,巴山冷杉+糙皮桦-大齿槭+尾萼蔷薇-高原露珠草+星果草群系发育较好,高大树木占有较大的比例,是神农架川金丝猴最适宜栖息地.7个植被型物种丰富度指数在群落梯度上呈规律性波动.其中针叶林和针叶-阔叶混交林中,物种丰富度指数在群落梯度上的总体趋势表现为灌木层>草木层>乔木层;在常绿阔叶林和常绿-落叶阔叶混交林中,该趋势为灌木层>乔木层>草本层;在落叶阔叶林中,其丰富度指数的趋势为灌木层>草本层和乔木层.不同植被类型川金丝猴食源植物种类在群落梯度上的变化趋势与物种丰富度指数相同,但地衣类植物作为川金丝猴冬季的重要食物只在针叶林和针叶-阔叶混交林中生长.本研究为制定栖息地保护计划,更好地保护神农架川金丝猴提供了科学理论依据.  相似文献   

20.
The nature of ecological stability is still debated, and there is a need to establish which types of communities show resistance to environmental change and to explore community responses in relation to their environmental context. This study aims to investigate the effects of reinstating cutting management on abandoned wet grasslands by comparing responses in two different communities with contrasting environmental conditions, to elucidate the restoration potential of wet grasslands. Two coastal wet grassland plant communities in Estonia were monitored over 5?years: a species-poor lower shore grassland and a more diverse tall grassland. Piezometers and soil samples were used to characterise the hydrology, while cutting effects and ongoing abandonment were compared using replicate quadrats in both grasslands. Annual changes and significant differences in community composition were analysed using Detrended and Canonical Correspondence Analyses, diversity indices, and inferential statistics. The results showed that cutting produced greater changes in composition and species abundance in the lower shore community compared to the tall grassland, including a greater proportion of significant differences. The increased responsiveness of the lower shore community may be related to its variable hydrological regime, especially flooding, which creates a dynamic environment favouring adaptable species. In contrast, the tall grassland featured a more stable water regime and species that responded less to perturbation, and manifested resistance to cutting management. Thus, restoring abandoned wet grasslands through vegetation management may be a slow process, especially where there is residual diversity, and the importance of hydrological regime in determining wet grassland communities should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号