首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We recently reported that laminin-5, expressed by human mesenchymal stem cells (hMSC), stimulates osteogenic gene expression in these cells in the absence of any other osteogenic stimulus. Here we employ two-dimensional liquid chromatography and tandem mass spectrometry, along with the Database for Annotation, Visualization and Integrated Discovery (DAVID), to obtain a more comprehensive profile of the protein (and hence gene) expression changes occurring during laminin-5-induced osteogenesis of hMSC. Specifically, we compare the protein expression profiles of undifferentiated hMSC, hMSC cultured on laminin-5 (Ln-5 hMSC), and fully differentiated human osteoblasts (hOST) with profiles from hMSC treated with well-established osteogenic stimuli (collagen I, vitronectin, or dexamethazone). We find a marked reduction in the number of proteins (e.g., those involved with calcium signaling and cellular metabolism) expressed in Ln-5 hMSC compared to hMSC, consistent with our previous finding that hOST express far fewer proteins than do their hMSC progenitors, a pattern we call "osteogenic gene focusing." This focused set, which resembles an intermediate stage between hMSC and mature hOST, mirrors the expression profiles of hMSC exposed to established osteogenic stimuli and includes osteogenic extracellular matrix proteins (collagen, vitronectin) and their integrin receptors, calcium signaling proteins, and enzymes involved in lipid metabolism. These results provide direct evidence that laminin-5 alone stimulates global changes in gene/protein expression in hMSC that lead to commitment of these cells to the osteogenic phenotype, and that this commitment correlates with extracellular matrix production.  相似文献   

2.
3.
4.
5.
6.
This study attempted to characterize the ability of thermoreversible gelation polymer (TGP) to induce differentiation of human mesenchymal stem cells (hMSC) into osteoblasts. Using a long oligo microarray system consisting of 3760 genes, we compared the expression profiles of the cells in 2-dimensional (2D) culture, 3D culture in collagen gel, and 3D culture in TGP with or without osteogenic induction. Compared to 2D culture, the gene expression profile of hMSC showed almost the same pattern in TGP without osteogenic induction, but 72% of genes (2701/3760) were up-regulated in collagen gel. With osteogenic induction, hMSC showed higher ALP activity and osteocalcin production in TGP as compared to 2D culture. Moreover, up-regulation and down-regulation of osteogenic genes were augmented in 3D culture in TGP as compared to 2D culture. As TGP is chemically synthesized and completely free from pathogen such as prion in bovine spongiform encephalopathy, these results suggest that TGP could be applied clinically to induce osteogenic differentiation of hMSC.  相似文献   

7.
通过外源表达人端粒酶基因,构建了具有长期传代能力的骨髓间充质干细胞系(hTERT-hMSC),并在传代过程中尚未发现有丧失接触性生长抑制和转型现象.本文主要目的是采用双向凝胶电泳技术和MALDI-TOF-MS蛋白质谱技术分析hTERT-hMSC 细胞的蛋白差异表达图谱,研究表达外源端粒酶基因对骨髓间充质干细胞生物学特性影响的可能机制.通过分析原代第12代hMSC、第95代和275代hTERT-hMSC的蛋白凝胶图,获得原代第12代hMSC总共1543±145个蛋白点,第95代hTERT-hMSC 1 611±186个蛋白点、275代hTERT-hMSC 1451±126 个蛋白点.质谱分析鉴定100种蛋白质,其中有20种有显著差异表达.结果表明,膜联蛋白(ANX)和GSTP1表达的下调以及内质网钙结合蛋白1(RCN1)、伴侣素CCT、TUBA1B和ACTG1表达的上调可能提升了人骨髓间充质干细胞扩增的能力,而prohibitin 蛋白和p53 蛋白维持正常表达可能对hTERT-hMSC 维持细胞接触性生长抑制起着重要作用.  相似文献   

8.
Human placenta-derived mesenchymal stem cells (hPDMSCs) can differentiate into different types of cells and thus have tremendous potential for cell therapy and tissue engineering. LIM mineralization protein-1 (LMP-1) plays an important role in osteoblast differentiation, maturation and bone formation. To determine a global effect of LMP-1 on hPDMSCs, we designed a study using a proteomic approach combined with adenovirus-mediated gene transfer of LMP-1 to identify LMP-1-induced changes in hPDMSCs on proteome level. We have generated proteome maps of undifferentiated hPDMSCs and LMP-1 induced hPDMSCs. Two dimensional gel electrophoresis revealed 22 spots with at least 2.0-fold changes in expression and 15 differently expressed proteins were successfully identified by MALDI-TOF-MS. The proteins regulated by LMP-1 included cytoskeletal proteins, cadmium-binding proteins, and metabolic proteins, etc. The expression of some identified proteins was confirmed by further Western blot analyses. Our results will play an important role in better elucidating the underlying molecular mechanism in LMP-1 included hPDMSCs differentiation into osteoblasts.  相似文献   

9.
The study of ES cell-mediated neuronal differentiation allows elucidating the mechanism of neuronal development in spite of the complexity and the difficult accessibility. During the differentiation of embryonic stem cells into neuronal cell, the expression profiles in the level of protein were extensively investigated by proteomic analysis. These cells were analyzed for charges in proteome during the differentiation of ES cells by 2-dimensional electrophoresis (2-DE) and MALDI-TOF MS. Seven unique proteins were identified, some of which were differentially expressed at each stage. A complex system of neuronal differentiation can be activated in cultured embryonic stem cells and our two dimensional electrophoresis data should be useful for investigating some of the mechanism that regulates neuronal differentiation.  相似文献   

10.
Multipotent mesenchymal stem cells (MSCs) derived from human umbilical cord blood (hUCB) represent promising candidates for the development of future cellular therapy strategies. MSCs have been found to be able to differentiate into various tissues. One of the primary limitations in our understanding of the biology of human MSCs is the absence of prospective markers required for the monitoring of lineage-specific differentiation. hUCB-derived MSCs have been found to have significantly greater osteogenic potential. In this study, we focused on proteins that were differentially expressed during osteogenic differentiation of hUCB-MSCs. And we analyzed the protein expression inherent to osteogenic differentiation by two-dimensional gel electrophoresis, ESI-Q-TOF, and Western blotting. Eleven differentially expressed spots were observed between the two groups (before and after differentiation) on the 2-DE map. These might also be proved as useful cytosolic biomarker proteins for osteogenesis, and might be employed in quality control of osteoblasts in cell-therapy applications.  相似文献   

11.
The differentiation of bone marrow mesenchymal stem cells (MSCs) into osteoblasts is a crucial step during bone formation. However, the exact mechanisms regulating the early stages of osteogenic differentiation remain unknown. In the present study, we found that ZnT7, a member of the zinc transporter family SLC30A(ZnTs), was downregulated during dexamethasone-induced differentiation of rat MSCs into osteoblasts. Dexamethasone treatment resulted in significantly lower levels of ZnT7 compared with cocultured cells without dexamethasone. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and staining for ALP, von Kossa, collagen type I, and osteocalcin. Overexpression of ZnT7 decreased the expression of the osteoblast alkaline phosphatase, type I collagen, as well as calcium deposition in mesenchymal cells. In contrast, knockdown of ZnT7 using siRNA promoted gene expression associated with osteoblast differentiation and matrix mineralization in vitro. Moreover, according to the ZnT7 inhibition or activation experiments, Wnt and ERK signaling pathways were found to be important signal transduction pathways in mediating the osteogenic effect of MSCs, and this effect is intensified by a decrease in the level of ZnT7 induced by dexamethasone. These findings suggest that ZnT7 is involved in the switch from the undifferentiated state of MSC to an osteogenic program, and marking the expression level of ZnT7 may be useful in the detection of early osteogenic differentiation.  相似文献   

12.
The intracellular signaling events controlling human mesenchymal stem cell (hMSC) differentiation into osteoblasts are poorly understood. Collagen-binding domain is considered an essential component of bone mineralization. In the present study, we investigated the regulatory mechanism of osteoblastic differentiation of hMSC by the peptide with a novel collagen-binding motif derived from osteopontin. The peptide induced influx of extracellular Ca2+ via calcium channels and increased intracellular Ca2+ concentration ([Ca2+]i) independent of both pertussis toxin and phospholipase C, and activated ERK, which was inhibited by Ca2+/calmodulin-dependent protein kinase (CaMKII) antagonist, KN93. The peptide-induced increase of [Ca2+]i is correlated with ERK activation in a various cell types. The peptide stimulated the migration of hMSC but suppressed cell proliferation. Furthermore, the peptide increased the phosphorylation of cAMP-response element-binding protein, leading to a significant increase in the transactivation of cAMP-response element and serum response element. Ultimately, the peptide increased AP-1 transactivation, c-jun expression, and bone mineralization, which are suppressed by KN93. Taken together, these results indicate that the novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/CaMKII/ERK/AP-1 signaling pathway in hMSC, suggesting the potential application in cell therapy for bone regeneration.  相似文献   

13.
对小鼠睾丸中未分化(Undifferentiated)和分化中(Differentiating)的两类精原细胞进行定量蛋白质组研究,探讨两类精原细胞蛋白质组的表达差异,探索与精原细胞分化相关的蛋白质。利用Thy1和c-Kit两个特异抗体结合的磁珠分选技术,分别将生后7 d雄性小鼠睾丸中的Thy1+细胞和c-Kit+细胞分别作为未分化和分化中的精原细胞分选出来,其中Thy1阳性细胞3组,c-Kit阳性细胞4组,分别代表了未分化精原细胞和分化中的精原细胞。采用高效液相色谱串联质谱方法(LC-MS/MS)分析两类细胞蛋白表达差异。并且对两类细胞的差异蛋白进行基因本体(Gene ontology,GO)功能注释、KEGG代谢通路和聚类分析。质谱分析共鉴定了3228种蛋白,其中有256种蛋白在两类细胞中表达差异。其中,差异蛋白的富集分析发现,在生物过程方面,注释结果显示差异蛋白主要在代谢过程(Primary metabolic process),细胞代谢过程(Cellular metabolic process),分子代谢过程(Macromolecule metabolic process)和氮化合物代谢过程(Nitrogen compound metabolic process)中富集;在细胞组分方面,蛋白主要富集在细胞(Cell part)、细胞内组分(Intracellular part)和细胞器(Intracellular organelle)中;在分子功能方面,鉴定到的蛋白主要参与蛋白结合(Protein binding)、核苷结合(Nucleotide binding)、水解酶活性(Hydrolase activity)和核酸结合过程(Nucleic acid binding)。基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路注释结果显示:88个蛋白质在KEGG通路分析数据库中有功能注释,共参与了18条代谢通路,其中,最主要的代谢通路是剪接体(Spliceosome)和泛素介导的蛋白水解作用(Ubiquitin mediated proteolysis)。获得小鼠睾丸中未分化和分化中的两类精原细胞蛋白质组表达谱,揭示精原细胞分化的蛋白质组的组成、筛选出差异蛋白。  相似文献   

14.
15.
The proteome of a proliferating human stem cell line was analyzed and then utilized to detect stem cell differentiation-associated changes in the protein profile. The analysis was conducted with a stable human fetal midbrain stem cell line (ReNcell VM) that displays the properties of a neural stem cell. Therefore, acquisition of proteomic data should be representative of cultured human neural stem cells (hNSCs) in general. Here we present a 2-DE protein-map of this cell line with annotations of 402 spots representing 318 unique proteins identified by MS. The subsequent proteome profiling of differentiating cells of this stem cell line at days 0, 4 and 7 of differentiation revealed changes in the expression of 49 identified spots that could be annotated to 45 distinct proteins. This differentiation-associated expression pattern was validated by Western blot analysis for transgelin-2, proliferating cell nuclear antigen, as well as peroxiredoxin 1 and 4. The group of regulated proteins also included NudC, ubiquilin-1, STRAP, stress-70 protein, creatine kinase B, glial fibrillary acidic protein and vimentin. Our results reflect the large rearrangement of the proteome during the differentiation process of the stem cells to terminally differentiated neurons and offer the possibility for further characterization of specific targets driving the stem cell differentiation.  相似文献   

16.
Understanding neurogenesis is valuable for the treatment of nervous system disorders. However, there is currently limited information about the molecular events associated with the transition from primate ES cells to neural cells. We therefore sought to identify the proteins involved in neurogenesis, from Macaca fascicularis ES cells (CMK6 cell line) to neural stem (NS) cells to neurons using two-dimensional gel electrophoresis (2-DE), peptide mass fingerprinting (PMF), and liquid chromatography-tandem mass spectrometry (LC-MS-MS). During the differentiation of highly homogeneous ES cells to NS cells, we identified 17 proteins with increased expression, including fatty acid binding protein 7 (FABP7), collapsin response mediator protein 2 (CRMP2), and cellular retinoic acid binding protein 1 (CRABP1), and seven proteins with decreased expression. In the differentiation of NS cells to neurons, we identified three proteins with increased expression, including CRMP2, and 10 proteins with decreased expression. Of these proteins, FABP7 is a marker of NS cells, CRMP2 is involved in axon guidance, and CRABP1 is thought to regulate retinoic acid access to its nuclear receptors. Western blot analysis confirmed the upregulation of FABP7 and CRABP1 in NS cells, and the upregulation of CRMP2 in NS cells and neurons. RT-PCR results showed that CRMP2 and FABP7 mRNAs were also upregulated in NS cells, while CRABP1 mRNA was unchanged. These results provide insight into the molecular basis of monkey neural differentiation.  相似文献   

17.
18.
The pathways involved in the maintenance of human embryonic stem (hES) cells remain largely unknown, although some signaling pathways have been identified in mouse embryonic stem (mES) cells. Fibroblast feeder layers are used to maintain the undifferentiated growth of hES cells and an examination of the conditioned media (CM) of human neonatal fibroblasts (HNFs) could provide insights into the maintenance of hES cells. The neonatal foreskin fibroblast line (HNF02) used in this study was shown to have a normal 2n = 46, XY chromosomal complement and to support the undifferentiated growth of the Embryonic Stem Cell International Pte. Ltd.-hES3 cell line. The CM of HNF02 was examined using two-dimensional liquid chromatography-tandem mass spectrometry (2-D LCMS) and two-dimensional electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry (2-DE/MALDI). A total of 102 proteins were identified, 19 by 2-DE/MALDI, 53 by 2-D LCMS and 30 by both techniques. These proteins were classified into 15 functional groups. Proteins identified in the extracellular matrix and differentiation and growth factor functional categories were considered most likely to be involved in the maintenance of hES cell growth, differentiation and pluripotency as these groups contained proteins involved in a variety of events including cell adhesion, cell proliferation and inhibition of cell proliferation, Wnt signaling and inhibition of bone morphogenetic proteins.  相似文献   

19.
Ying W  Zhang K  Qian X  Xie L  Wang J  Xiang X  Cai Y  Wu D 《Proteomics》2003,3(1):64-72
To probe the mechanism of carcinogenesis of lung cancer at the molecular level and to find potential protein markers involved in the early phase of tumorgenesis, differential proteome analysis on primary passage cell line R15H, and early transformed cell line R15H20 derived from (238)Pu alpha-particle irradiation of human papillomavirus (HPV) 18-immortalized human bronchial epithelial cell line (BEP2D), was carried out using two-dimensional electrophoresis (2-DE) and peptide mass fingerprinting (PMF) with matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Image analysis and Student's t-test (p < 0.05) showed that three protein spots were only expressed in R15H, intensities of 43 protein spots on the gels were altered between R15H and R15H20. Two of the three spots that were only expressed in R15H were identified as high mobility group protein 1. Two proteins decreased in abundance in R15H20 were identified as maspin precursor, a tumor suppressor and aminoacylase-1. Ornithine aminotransferase and peptidyl-prolyl cis-trans isomerase A that were increased in R15H20, were also identified. Relationships between these differentially expressed proteins and the carcinogenesis mechanism of lung cancer are discussed. The protein expression profile of the R15H cell line was also constructed during the study as a reference map for further comparative proteome analysis of the irradiation induced BEP2D cell line. Of the 90 spots analyzed with PMF in the 2-DE gel of R15H cell line, 50 proteins were identified by searching the nonredundant protein database SWISS-PROT/TrEMBL.  相似文献   

20.
Lee HK  Lee BH  Park SA  Kim CW 《Proteomics》2006,6(4):1223-1229
Adipose tissues play a crucial endocrine role in the control of whole body glucose homeostasis and insulin sensitivity. Considering the current substantial rise in obesity and obesity-related diseases, including diabetes, it is important to understand the molecular basis of adipocyte differentiation and its control. In this study, we have analyzed the protein expression inherent to adipogenic differentiation, by 2-DE, MALDI-TOF, and RT-PCR. This study focused on proteins that were differentially expressed by the differentiation of human mesenchymal stem cells (hMSCs) to adipocytes. We conducted 2-DE for each set of proteins in the cytosol of adipocytes that had differentiated from hMSC, in a pH range from 3-10. Thirty-two protein spots were shown to have different expression levels. Among these, eight up-regulated proteins were identified by MALDI-TOF/MS, as the following: syntaxin binding protein 3, OSBP-related protein 3, phosphodiesterase, glycophorin, immunoglobulin kappa chain variable region, peroxisome proliferative activated receptor gamma (PPAR-gamma), bA528A10.3.1 (novel protein similar to KIAA01616, isoform 1), and T cell receptor V-beta 4. Four proteins: syntaxin-3, OSBP-related protein 3, PPAR-gamma and glycophorin were associated with adipogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号