首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
几种藻类蛋白核的超微结构研究   总被引:4,自引:1,他引:3  
应用电镜及免疫电镜技术对莱茵藻、小球藻、条浒苔和紫菜等藻类的叶绿体蛋白核的超微结构及主要组成成分进行了观察和研究。结果显示:不同藻类的蛋白核结构不同,显示了藻类蛋白核的多样性。蛋白核为球形或椭圆形,由蛋白质组成。莱茵藻、小球藻和条浒苔的蛋白核外围被淀粉鞘所包围,而紫菜的蛋白核外围无淀粉鞘而直接被叶绿体的类囊体所包围。淀粉鞘由淀粉组成,淀粉鞘的厚薄与藻体藻龄及增养状态有关系。在蛋白核中央,一般都具有由类囊体形成的孔道,使蛋白核与外界联系,小球藻和条浒苔蛋白核具有1条纵向孔道,而莱茵藻和紫菜为多条孔道。金相免疫技术检测结果显示Rubisco和Rubisco活化酶均在蛋白核及淀粉鞘区域中定位,表明蛋白核具有光合作用功能.  相似文献   

2.
运用免疫金标记电镜技术研究了禾本科C3植物大麦(Hordeum vulgare L.)和C4植物玉米(Zea mays L.)叶片中Rubisoo及其活化酶(RCA)的细胞定位,结果表明:两种植物叶片解剖结构及叶绿体超微结构差别明显.在大麦叶细胞中,只有一种叶肉细胞叶绿体,Rubisoo和RCA主要分布于叶绿体的间质中.在玉米叶细胞中,存在着维管束鞘细胞和叶肉细胞两种类型叶绿体,Rubisco主要分布于鞘细胞叶绿体的基质中,但在叶肉细胞叶绿体中亦有少量特异性标记;RCA在鞘细胞叶绿体和叶肉细胞叶绿体的基质中都有分布.两种植物叶绿体结构及光合作用关键酶定位的不同,体现了C3植物和C4植物在光合器结构与功能上的差异.  相似文献   

3.
以生长快速、细胞具多个蛋白核的大型海藻条浒苔作为材料研究CO2浓度对条浒苔Rubisco酶在蛋白核和叶绿体基质之间迁移的影响.应用金标免疫电镜分子定位技术对Rubisco酶集中蛋白核程度进行数值化分析.电镜下可观察到标记Rubisco的金颗粒大部分集中分布在蛋白核中.根据Morita(1997)提出的方法,设定PR-ratio值(蛋白核内分布的Rubisco酶总量与蛋白核外类囊体基质中的Rubisco酶总量之比)作为衡量Rubisco集中蛋白核程度的分析指标.不同CO2浓度对于Kubisco酶分布的长期影响和短期影响研究均显示CO2浓度升高时,Rubisco倾向于向叶绿体基质中扩散;CO2浓度较低或无CO2培养时,Kubisco酶不断向蛋白核中集中.研究结果显示,蛋白核可能在光合作用和CCM机制中具有重要作用.  相似文献   

4.
采用免疫胶体金标记电镜技术对水稻(0ryza sativa subsp.indica cv.浙农952)叶片中的Rubisco及其活化酶(RCA)进行细胞器定位和定量,同时用免疫扩散法进行叶片含量分析,研究了这两种酶含量及活力的日变化.结果表明Rubisco主要分布于叶绿体,RCA分布于叶绿体和线粒体中;光合速率(Pn)、Rubisco初始活力和RCA活力与光合日变化密切相关;在光照最强的13时,出现光合"午休",叶绿体中Rubisco的密度有一定程度降低,而全叶的总Rubisco保持稳定,Rubisco初始活力也有明显的"午休",这意味着体内Rubisco的活力除受RCA调节外,可能还与叶绿体中Rubisco的分布有关.RCA活力变化与叶绿体中RCA含量变化较为一致,表明RCA在叶绿体中的分布对调节其本身活力和Rubisco活性有重要作用.  相似文献   

5.
水稻Rubisco和RCA的日变化及其细胞定位   总被引:7,自引:0,他引:7  
采用免疫胶体金标记电镜技术对水稻(Oryza satova subsp.indica cv.浙农952)叶片中的Rubisco及其活化酶(RCA)进行细胞器定位和定量,同时用免疫扩散法进行叶片含量分析,研究了这两种酶含量及活力的日变化。结果表明Rubisco主要分布于叶绿体,RCA分布于叶绿体和线粒体中;光合速率(Pn)、Rubisco初始活力和RCA活力与光合日变化密切相关;在光照最强的13时,出现光合“午休”,叶绿体中Rubisco的密度有一定程度降低,而全叶的总Rubisco保持稳定,Rubisco初始活力也有明显的“午休”,这意味着体内Rubisco的活力除受RCA调节外,可能还与叶绿体中Rubisco的分布有关。RCA活力变化与叶绿体中RCA含量变化较为一致,表明RCA在叶绿体中的分布对调节其本身活力和Rubisco活性有重要作用。  相似文献   

6.
采用蓝绿温和胶电泳系统可以非常有效地分离叶绿体蛋白质复合物,包括PSⅠ, PSⅡ, ATP合酶,细胞色素b6f复合物,捕光色素复合物和1,5-二磷酸核酮糖羧化酶.还结合SDS-聚丙烯酰胺凝胶电泳将叶绿体多亚基复合物的50多种蛋白质分开,利用免疫印迹对蛋白质复合物进行了初步鉴定,同时还应用蓝色温和胶电泳分析基质、基粒类囊体复合物的组成.  相似文献   

7.
以河西走廊荒漠地区不同生态型芦苇为研究材料,提取并纯化得Rubisco蛋白,经SDS-PAGE凝胶电泳将Rubisco大、小亚基分离,用Rubisco全酶蛋白及其大、小亚基分别注射昆明系雄性小白鼠制备抗体,经Western-blotting鉴定结果表明:(1)水芦Rubisco全酶抗体可与水芦、沙芦及菠菜Rubisco大亚基发生反应,而与小亚基均未见显色反应,且水芦显色最深,沙芦略浅,菠菜最浅;(2)水芦、沙芦Rubisco大亚基抗体可与水芦、沙芦、菠菜大亚基发生抗原交叉反应,且均不与小亚基发生反应,并且其与菠菜Rubisco大亚基的反应程度明显低于水芦和沙芦;(3)用与Rubisco大亚基抗体同样的制备方法,均未检测到水芦、沙芦Rubisco小亚基抗体的产生;(4)菠菜Rubisco全酶抗体可与菠菜、水芦、沙芦、水稻Rubisco大亚基均发生抗原交叉反应,但仅与其自身小亚基反应,且与菠菜Rubisco大亚基显色反应最深,水稻略浅,沙芦、水芦稍有反应.由此说明,水芦、沙芦Rubisco全酶蛋白及其大亚基免疫学特性差异较小,而与双子叶植物菠菜相比差异较大;水芦、沙芦Rubisco蛋白免疫化学决定簇的差异主要决定于小亚基上,且其小亚基不具有抗原活性或抗原活性较弱.  相似文献   

8.
拟南芥中已有466个PPR蛋白,已有研究证实许多PPR蛋白参与细胞器基因表达的转录后调节,但大部分PPR蛋白分子作用机制尚不清楚.Delayed greening 1(DG1)是定位于叶绿体中的的PPR蛋白,研究结果证实该蛋白是通过与SIG6因子相互作用降低PEP转录活性从而影响叶绿体早期发育.本研究利用拟南芥Dg1基因功能缺陷型突变体研究了DG1蛋白对光系统蛋白复合体组成及其光转化效率的影响.77K荧光发射光谱分析发现dg1突变体幼叶PSII中电子传递速度明显低于野生型,而成熟叶片与野生型基本一致;蓝绿温和胶分析结果表明:相对于野生型在dg1突变体新生叶中PSII、PS玉及其超聚复合物含量均有不同程度降低;进一步温和胶二向电泳及蛋白免疫印迹分析显示,在dg1突变体新生叶中,由叶绿体编码的光系统蛋白复合物组成亚基含量显著降低,而核编码复合物组成亚基含量与野生型相比没有明显区别.上述实验结果进一步确定了DG1蛋白是通过调控叶绿体编码基因的表达进而调节光系统复合物的生物合成与组装,最终影响拟南芥叶绿体早期发育.因此,我们认为DG1蛋白对于叶绿体发育早期光合蛋白的合成是必需的.  相似文献   

9.
运用SDS-PAGE和分子克隆技术,对小伞山羊草(Aegilops umbellulata,UU, 2n = 2x = 14)的高分子量麦谷蛋白亚基(1Ux, 1Uy)及其编码基因进行了鉴定.SDS-PAGE分析表明小伞山羊草不同基因型中的1Ux的电泳迁移率接近或慢于普通小麦1Dx2.2亚基的电泳迁移率,1Uy亚基的电泳迁移率一般接近或慢于普通小麦的1Dy类亚基.采用PCR扩增技术获得了1Ux和1Uy亚基编码基因的全长编码区,并对一个1Uy基因的全长编码区进行了全序列测定.对推导的氨基酸序列进行比较发现1Ux和1Uy亚基具有与来自于其他物种的高分子量麦谷蛋白亚基一致的一级结构,聚类分析显示1Ux和1Uy亚基与D基因组编码的高分子量麦谷蛋白亚基在起源和进化上具有较高的相似性.  相似文献   

10.
水稻等作物组份I蛋白大小亚基的等电聚焦分析   总被引:1,自引:0,他引:1  
组份I蛋白广泛存在于植物界,分子量ft 为55万道尔顿[[10a。该蛋白具有核酮搪-1,,一二 磷酸毅化酶/加氧酶的活性,是光合作用以及 光呼吸作用中重要的酶类〔3,。它由8个大亚基 (分子量为55,000)和s个小亚基(分子量戈 15,000)构成。大亚基由叶绿体DNA编码,并在 叶绿体内合成;而小亚基则由核DNA编码,并 在细胞质中合成[[7]。组份I蛋白经接甲基化后, 在育材,一尿素中进行等电二聚焦电泳,大亚基可分 出3条电泳带,而小亚基可分出1--4条电泳带, 电泳带的位置因品种不同而异。因此,被用作 核基因和细胞质基因的表型标记闭,是研究进 化、遗传、核质关系以及体细胞杂交等方面十分 有用的指标山。  相似文献   

11.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a first key enzyme in the Calvin Circle of plant cell photosynthesis. This paper mainly studied gold immunolocalization of Rubisco of Chlorella spp. 640909, and the Native-PAGE and, SDS-PAGE and Western bloting analysis, as well as the observation to pyrenoid ultra structure. The Native-PAGE result showed a main band, evidenced as the Rubisco band by the Western blot with the antibody against the Rubisco from C. prototothecoides, The special immunoacton of Rubisco from Chlorella spp. 640909 and the antibody to large subunit of Rubisco from C. prothecoides showed the large subunit proteins of Rubisco in the two species of Chlorella shared the high homology. The SDS-PAGE and Western blotting maps showed the molecule weight of the large subunit of Rubisco of Chlorella spp. 640909 was about 55 KD. The shape of pyrenoid ultra structure of the electronic microscope was oblong, and was embedded in starch sheath, with 2 swelling thylakoids through out a center portrait channel of the pyrenoid. There were some connections between pyrenoid and the chloroplast stroma. The distribution of the large subunits and the whole Rubisco in the chloroplast of Chrolella spp. 640909 was studied by immunoelectron microscopy by embedded sections with antibody to large subunit and whole enzyme followed by second antibody, goad anti-rabbit immunoglobulin G conjugated to 10 nm gold particles(Sigma production). The result showed the antibodies against large subunit and whole enzyme heavily labeled the pyrenoid, as well as starch sheath region, whereas the thylakoid region of the plastid was lightly labeled. And the whole Rubisco antibody labeled the pyrenoid surface more heavily than the large subunit antibody did. It is demonstrated the pyrenoid and starch sheath have the photosynthesis function. Rubisco concentrating in pyrenoid and starch sheath is valuable to fix CO2 for photosynthesis in algae.  相似文献   

12.
Chloroplasts of peridinin-containing dinoflagellates have recently been shown to contain Form II Rubisco, which consists of large subunits only and is coded by nuclear genes. We have used immunoelectron microscopy to determine the distribution of Form II and Form I Rubisco in dinoflagellates. In sections of Amphidinium carterae Hulburt, the pyrenoid was intensely labeled and the rest of the chloroplast moderately labeled by antisera to Form II Rubisco from the purple non-sulfur bacterium Rhodospirillum rubrum and the symbiotic dinoflagellate Symbiodinium sp. No labeling was observed when sections were exposed to antiserum against Form I Rubisco of the haptophyte alga Isochrysis galbana. In contrast, cell sections of the dinoflagellate Peridinium foliaceum (Stein) Biecheler, whose chloroplasts belong to a diatom endosymbiont, showed no labeling with the two antisera against Form II Rubisco, but heavy pyrenoid labeling was present after treatment with antiserum against Form I Rubisco of I. galbana. The same immunolabeling results were obtained with the free-living diatom Phaeodactylum tricornutum Bohlin. Volumetric analysis of the distribution of Form II Rubisco in the chloroplast of A. carterae showed that, in cells grown under moderate photon irradiance, 72.9% of the plastid's Rubisco was localized in the pyrenoid, whereas in cells grown under low irradiance only 37.0% of the Rubisco was found in the pyrenoid. This light-induced concentration of Rubisco in the pyrenoid suggests that a CO2–concentrating mechanism may elevate CO2 within the pyrenoid, favoring the efficient fixation of CO2 by pyrenoid Rubisco.  相似文献   

13.
The distribution of the large and small subunits of ribulose-1,5-bisphosphate carboxylase in the chloroplast of Chlamydomonas reinhardtii was studied by immunoelectron microscopy by labeling Lowicryl-embedded sections with antibody to each subunit followed by protein A-gold. In light-harvested synchronously dividing cells, antibodies to each subunit heavily labeled the pyrenoid, whereas the thylakoid region of the plastid was lightly labeled. By estimating the volume of each chloroplast compartment, it was determined that approximately 40% of the total small subunit in the plastid and 30% of the large subunit are localized in the thylakoid region, presumably in the stroma. In synchronously dividing cells exposed to an extended dark period, the amount of labeling of the pyrenoid region by antibody to the small subunit stayed constant, but the labeling of the thylakoid region decreased. In stationary phase cells, the proportion of the label over the pyrenoid is higher than in synchronously dividing cells suggesting that the pyrenoid may be a storage organelle.  相似文献   

14.
The in situ localization of the chloroplast enzymes ribulose-1,5-bisphosphate carboxylase (Rubisco), Rubisco activase, ribose-5-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase, nitrite reductase, ferredoxin-NADP+ reductase, and H+-ATP synthase was studied by immunoelectron microscopy in Chlamydomonas reinhardtii. Immunogold labeling revealed that, despite Rubisco in the pyrenoid matrix, Calvin cycle enzymes, Rubisco activase, nitrite reductase, ferredoxin-NADP+ reductase, and H+-ATP synthase are associated predominantly with chloroplast thylakoid membranes and the inner surface of the pyrenoid membrane. This is in accord with previous enzyme localization studies in higher plants (K.H. Suss, C. Arkona, R. Manteuffel, K. Adler [1993] Proc Natl Acad Sci USA 90: 5514-5518). Pyrenoid tubules do not contain these enzymes. The pyrenoid matrix consists of Rubisco but is devoid of the other photosynthetic enzymes investigated. Evidence for the occurrence of two Rubisco forms differing in their spatial localization has also been obtained: Rubisco form I appears to be membrane associated like other Calvin cycle components, whereas Rubisco form II is confined to the pyrenoid matrix. It is proposed that enzyme form I represents an active Rubisco when assembled into Calvin cycle enzyme complexes, whereas Rubisco form II may be part of a CO2-concentrating mechanism. Pyrenoidal Calvin cycle complexes are thought to be highly active in CO2 fixation and important for the synthesis of starch around the pyrenoid.  相似文献   

15.
CO2 enters the biosphere via the slow, oxygen‐sensitive carboxylase, Rubisco. To compensate, most microalgae saturate Rubisco with its substrate gas through a carbon dioxide concentrating mechanism. This strategy frequently involves compartmentalization of the enzyme in the pyrenoid, a non‐membrane enclosed compartment of the chloroplast stroma. Recently, tremendous advances have been achieved concerning the structure, physical properties, composition and in vitro reconstitution of the pyrenoid matrix from the green alga Chlamydomonas reinhardtii. The discovery of the intrinsically disordered multivalent Rubisco linker protein EPYC1 provided a biochemical framework to explain the subsequent finding that the pyrenoid resembles a liquid droplet in vivo. Reconstitution of the corresponding liquid‐liquid phase separation using pure Rubisco and EPYC1 allowed a detailed characterization of this process. Finally, a large high‐quality dataset of pyrenoidal protein‐protein interactions inclusive of spatial information provides ample substrate for rapid further functional dissection of the pyrenoid. Integrating and extending recent advances will inform synthetic biology efforts towards enhancing plant photosynthesis as well as contribute a versatile model towards experimentally dissecting the biochemistry of enzyme‐containing membraneless organelles.  相似文献   

16.
The pyrenoid is a prominent proteinaceous structure found in the stroma of the chloroplast in unicellular eukaryotic algae, most multicellular algae, and some hornworts. The pyrenoid contains the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase and is sometimes surrounded by a carbohydrate sheath. We have observed in the unicellular green alga Chlamydomonas reinhardtii Dangeard that the pyrenoid starch sheath is formed rapidly in response to a decrease in the CO2 concentration in the environment. This formation of the starch sheath occurs coincidentally with the induction of the CO2-concentrating mechanism. Pyrenoid starch-sheath formation is partly inhibited by the presence of acetate in the growth medium under light and low-CO2 conditions. These growth conditions also partly inhibit the induction of the CO2-concentrating mechanism. When cells are grown with acetate in the dark, the CO2-concentrating mechanism is not induced and the pyrenoid starch sheath is not formed even though there is a large accumulation of starch in the chloroplast stroma. These observations indicate that pyrenoid starch-sheath formation correlates with induction of the CO2-concentrating mechanism under low-CO2 conditions. We suggest that this ultrastructural reorganization under lowCO2 conditions plays a role in the CO2-concentrating mechanism C. reinhardtii as well as in other eukaryotic algae.  相似文献   

17.
The CO2-concentrating mechanism (CCM) was induced in the green unicellular alga Chlorella when cells were transferred from high (5% CO2) to low (0.03%) CO2 concentrations. The induction of the CCM correlated with the formation of a starch sheath specifically around the pyrenoid in the chloroplast. With the aim of clarifying whether the starch sheath was involved in the operation of the CCM, we isolated and physiologically characterized a starchless mutant of Chlorella pyrenoidosa, designated as IAA-36. The mutant strain grew as vigorously as the wild type under high and low CO2 concentrations, continuous light and a 12 h light/12 h dark photoperiod. The CO2 requirement for half-maximal rates of photosynthesis [K0.5(CO2)] decreased from 40 μM to 2–3 μM of CO2 when both wild type and mutant were switched from high to low CO2. The high affinity for inorganic carbon indicates that the IAA-36 mutant is able to induce a fully active CCM. Since the mutant does not have the pyrenoid starch sheath, we conclude that the sheath is not involved in the operation of the CCM in Chlorella cells.  相似文献   

18.
Euglena gracilis strain (Z) cells were synchronized under photoautotrophic conditions using a 14 hour light:10 hour dark regimen. The cells grew during the light period (growth phase) and divided during the following 10 hour period either in the dark or in the light (division phase). Changes in morphology of the pyrenoid and in the distribution of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) within the chloroplasts were followed by immunoelectron microscopy during the growth and division phases of Euglena cells. Epon-embedded sections were labeled with an antibody to the holoenzyme followed by protein A-gold. The immunoreactive proteins were concentrated in the pyrenoid, and less densely distributed in the stroma during the growth phase. During the division phase, the pyrenoid could not be detected and the gold particles were dispersed throughout the stroma. Toward the end of the division phase, the pyrenoid began to form in the center of a chloroplast, and the immunoreactive proteins started to concentrate over that rudimentary pyrenoid. During the growth phase, small areas rich in gold particles, called `satellite pyrenoid,' were observed, in addition to the main pyrenoid. From a comparison of photosynthetic CO2-fixation with the total carboxylase activity of Rubisco extracted from Euglena cells in the growth phase, it is suggested that the carboxylase in the pyrenoid functions in CO2-fixation in photosynthesis.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号