首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We have previously reported [(1991) EMBO J. 10, 3239-3245] the sequence of an invertebrate gamma-aminobutyric acid (GABA) type A (GABAA) receptor polypeptide which forms homo-oligomeric GABA-gated, bicuculline-sensitive, chloride-ion channels upon heterologous expression. We now demonstrate that the benzodiazepines Ro5-4864 (4'-chlorodiazepam) and diazepam, that are active at mammalian peripheral benzodiazepine sites, and not those benzodiazepines specific for central sites, directly active the homo-oligomeric receptor and evoke larger maximal responses than those elicited by GABA. In addition, members of the cyclodiene class of insecticides block the channel of the receptor in a manner indistinguishable from that of picrotoxin.  相似文献   

2.
Benzodiazepine agonists such as Ro 11-6896 [B10(+)], diazepam, clonazepam, and flurazepam were found to enhance muscimol-stimulated 36Cl- uptake into rat cerebral cortical synaptoneurosomes. The rank order of potentiation was B10(+) greater than diazepam greater than clonazepam greater than flurazepam. These benzodiazepines had no effect on 36Cl-uptake in the absence of muscimol. Further, the inactive enantiomer, Ro 11-6893 [B10(-)], and the peripheral benzodiazepine receptor ligand Ro 5-4864 did not potentiate muscimol-stimulated 36Cl- uptake at concentrations up to 10 microM. In contrast, the benzodiazepine receptor inverse agonists ethyl-beta-carboline-3-carboxylate and 6,7-dimethoxy-4-ethyl-beta- carboline-3-carboxylic acid methyl ester inhibited muscimol stimulated 36Cl- uptake. Benzodiazepines and beta-carbolines altered the apparent K0.5 of muscimol-stimulated 36Cl- uptake, without affecting the Vmax. The effects of both benzodiazepine receptor agonists and inverse agonists were reversed by the benzodiazepine antagonists Ro 15-1788 and CGS-8216. These data further confirm that central benzodiazepine receptors modulate the capacity of gamma-aminobutyric acid receptor agonists to enhance chloride transport and provide a biochemical technique for studying benzodiazepine receptor function in vitro.  相似文献   

3.
Benzodiazepine agonists such as diazepam, flunitrazepam and clonazepam enhanced GABA (30 microM)-stimulated 36Cl- uptake in membrane vesicles from the rat cerebral cortex. The rank order of potencies was flunitrazepam greater than diazepam = clonazepam. beta-Carboline-3-carboxylate esters beta-CCM, beta-CCE and DMCM inhibited GABA-stimulated 36Cl- uptake. The rank order of inhibitory potencies was DMCM greater than beta-CCM greater than beta-CCE. The benzodiazepine antagonist Ro15-1788 antagonized the enhancement of flunitrazepam and the inhibition of DMCM on GABA-stimulated 36Cl- uptake in a competitive inhibitory manner. These results suggest that benzodiazepine receptors regulate GABA-stimulated 36Cl- uptake and there is a functional coupling between the GABA and benzodiazepine receptors, and chloride channels in membrane vesicles from the rat cerebral cortex.  相似文献   

4.
In an attempt to elucidate the physiological relevance of the peripheral type of benzodiazepine receptor in adrenocortical mitochondria, we examined the effect of three different benzodiazepines (diazepam, Ro5-4864, and chlordiazepoxide) on the conversion of cholesterol to pregnenolone, the rate-limiting step in steroidogenesis, by using cholesterol-loaded mitochondria from bovine adrenal zona fasciculata. These benzodiazepines, except chlordiazepoxide, caused a dose-dependent stimulation of the cholesterol side chain cleavage in the mitochondria. The stimulatory effect of Ro5-4864 was approximately 10 times more potent than that of diazepam. No inhibitory effect of YM-684 (Ro15-1788), a potent antagonist to central-type benzodiazepine receptors, was observed in the stimulation induced by diazepam and Ro5-4864. Both external calcium ion and voltage-dependent calcium channel blocker, (+)-PN200-110, were without effect on the diazepam-induced steroidogenesis. By contrast, pretreatment of mitochondria with digitonin abolished the stimulatory effect of diazepam on the mitochondrial steroidogenesis. The present results indicate that the peripheral-type benzodiazepine receptor of adrenocortical mitochondria plays an essential role in regulating cholesterol side chain cleavage without any change of calcium channels.  相似文献   

5.
Ro 5-4864 is a 1,4 benzodiazepine lacking typical benzodiazepine behavioural actions, and which has very low affinity for the “classical” CNS benzodiazepine binding sites. However, Ro 5-4864 has very high affinity for the peripheral type of binding site in the periphery and in the brain. Evidence is reviewed that Ro 5-4864 is sedative, convulsant and anxiogenic in rodents. We also describe the effects of combining Ro 5-4864 treatment with benzodiazepines (e.g. diazepam, chlordiazepoxide) and with other drugs that modify the activity of benzodiazepines (Ro 15-1788, CGS 8216, picrotoxin, PK 11195, phenytoin). The binding sites that might be mediating these behavioural actions of Ro 5-4864 are discussed.  相似文献   

6.
The nervous system of the cockroach Periplaneta americana is well suited to studies of invertebrate amino acid receptors. Using a combination of radioligand binding and electrophysiological techniques, several distinct receptors have now been identified. These include an l-glutamate-gated chloride channel which has no known counterpart in the vertebrate nervous system, and a putative kainate/quisqualate receptor with pharmacological properties different from those of the existing categories of vertebrate excitatory amino acid receptors. GABA receptors have also been characterized in the cockroach nervous system. Bicuculline, benzodiazepines and steroids have revealed important differences between certain insect GABA-gated chloride channels and vertebrate GABA receptors. Identifiable neurones may facilitate the allocation of specific functions to amino acid receptor subtypes. In view of the existence of subtypes of amino acid receptors in insects, it is of interest to examine how this is reflected at the molecular level in terms of receptor subunit composition and amino acid sequence. Preliminary molecular cloning studies on insect GABA receptors are described.  相似文献   

7.
Benzodiazepine receptors on human blood platelets   总被引:3,自引:0,他引:3  
Binding studies conducted on membrane preparation from human platelets using (3H) Ro5-4864 and (3H) diazepam showed specific and saturable binding. Scatchard analysis revealed a single class of binding sites with KD = 10.8 +/- 0.9 nM and Bmax = 775 +/- 105 fmol/mg protein for (3H) Ro5-4864 and KD = 10.5 +/- 1.1 nM and Bmax = 133 +/- 19 fmol/mg for (3H) diazepam. We were unable to detect any GABA binding site on crude membrane preparation, nor did GABA enhance the binding of (3H) Ro5-4864 or (3H) diazepam. This suggests that benzodiazepine receptors are uncoupled to GABA system on human platelets. Ro15-1788, a specific antagonist for "central type" benzodiazepine (BDZ) binding sites was inactive in displacing (3H) Ro5-4864 from membrane receptors, while PK 11195 (a specific ligand for the "peripheral type" receptor) was the most potent of the drugs tested in inhibiting (3H) Ro5-4864 binding. These results indicate that human blood platelets bear "peripheral-type" BDZ receptor. Moreover, we could not detect any (3H) propyl beta carboline specific binding on platelet membranes. Results on benzodiazepine receptors on human circulating lymphocytes are also reported and similarity in pharmacological properties with platelet benzodiazepine receptors is suggested.  相似文献   

8.
The binding of [3H]diazepam to cell homogenates of embryonic rat brain neurons grown in culture was examined. Under the conditions used to prepare and maintain these neurons, only a single, saturable, high-affinity binding site was observed. The binding of [3H]diazepam was potently inhibited by the CNS-specific benzodiazepine clonazepam (Ki = 0.56 +/- 0.08 nM) but was not affected by the peripheral-type receptor ligand Ro5-4864. The KD for [3H]diazepam bound specifically to cell homogenates was 2.64 +/- 0.24 nM, and the Bmax was 952 +/- 43 fmol/mg of protein. [3H]Diazepam binding to cell membranes washed three times was stimulated dose-dependently by gamma-aminobutyric acid (GABA), reaching 112 +/- 7.5% above control values at 10(-4) M. The rank order for potency of drug binding to the benzodiazepine receptor site in cultured neurons was clonazepam greater than diazepam greater than beta-carboline-3-carboxylate ethyl ester greater than Ro15-1788 greater than CL218,872 much greater than Ro5-4864. The binding characteristics of this site are very similar to those of the Type II benzodiazepine receptors present in rat brain. These data demonstrate that part, if not all, of the benzodiazepine-GABA-chloride ionophore receptor complex is being expressed by cultured embryonic rat brain neurons in the absence of accompanying glial cells and suggest that these cultures may serve as a model system for the study of Type II benzodiazepine receptor function.  相似文献   

9.
Motor neurones of the crayfish walking system display inhibitory responses evoked either by γ-amino butyric acid (GABA) or glutamate, possibly involving the same receptor (Pearlstein et al. 1994). In order to test if this sensibility to both GABA and glutamate was a specific property of crayfish GABA receptors, pharmacological characteristics of GABA-evoked responses in both sensory terminals from CB chordotonal organ and motor neurones of the walking system have been compared. Both receptors are GABA-gated Cl channels activated by specific GABAA (muscimol, isoguvacine), GABAB (3-aminopropyl phosphinic acid), and GABAC (cis-4-amino crotonic acid) agonists, and blocked by competitive (β-guanidino propionic acid) and non-competitive (picrotoxin) antagonists. They were insensitive to specific GABAA (bicuculline, SR-95531) and GABAB (phaclofen) antagonists. Furthermore, in both cases, nipecotic acid and the modulatory drug diazepam had no effect. However, our results demonstrate that GABA receptors of sensory terminals are different from those of motor neurones. GABA-induced desensitisation only occurred in sensory terminals. Moreover, glutamate was shown to activate GABA-gated Cl channels in motor neurones, but not in sensory terminals. Therefore, GABA is likely to be the endogenous neurotransmitter of presynaptic inhibition in sensory terminals, whereas inhibition between antagonistic motor neurones would be achieved by glutamate. Accepted: 10 July 1996  相似文献   

10.
Autoradiography utilizing photoaffinity labelling with [3H]flunitrazepam was used in living cultures of fetal mouse cerebral cortex in situ to localize benzodiazepine receptor binding sites. There was a predominant localization of silver grains over neurons; however, substantial labelling also occurred over nonneuronal background cells. Clonazepam (0.1 microM) and Ro 5-4864 (0.1 microM) displaced substantial numbers of silver grains over neurons and background cells, respectively. In addition, clonazepam displaced 58-68% of specific grains over background cells and Ro 5-4864 displaced 30% of grains over neurons, suggesting that multiple cell types in the CNS may participate in the neuropharmacologic actions of the benzodiazepines.  相似文献   

11.
The benzodiazepines, Ro 5-4864, diazepam, clonazepam, and also PK-11195, inhibited, at micromolar concentrations, the proliferation of rat C6 glioma and mouse neuro-2A neuroblastoma cells in culture. The cells possessed high levels of "peripheral-type" high-affinity benzodiazepine binding sites as judged by binding assays and displacement potencies. However, the different potencies and specificities of compounds for the antiproliferative actions and binding affinities for the binding site suggest that the antiproliferative actions were not mediated through the peripheral-type binding site. In support of this, these compounds have also been shown to inhibit proliferation of some nonneuronal cultured cell lines, e.g., mouse SP2/O-Ag 14 hybridoma and rat NCTC epithelial cells, which have no detectable high-affinity peripheral-type benzodiazepine binding sites.  相似文献   

12.
Neosurugatoxin (NSTX), a neurotoxin isolated from the Japanese ivory mollusc Babylonia japonica, is a potent neuronal nicotinic acetylcholine receptor (nAChR) antagonist. Hitherto, NSTX has been found to block only neuronal nAChRs that are insensitive to α-Bgt. Here, we report for the first time that NSTX blocks an α-Bgt-sensitive nAChR on an identified insect motor neurone. Bath-applied NSTX at a concentration of 10 nM and above reversibly blocks the nicotine-induced depolarizations recorded from the cockroach (Periplaneta americana) fast coxal depressor motor neurone (Df) and is without effect on GABA-induced responses detected on the same cell. NSTX is among the most potent blockers tested to date on nAChRs of motor neurone Df. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Diethylpyrocarbonate (DEP), an amino acid modifying reagent, causes complete inactivation of particulate and deoxycholate-solubilized benzodiazepine-receptors from calf cerebral cortex. No heterogeneity was observed in DEP-sensitivity of the receptors. Protection from DEP-induced inactivation was provided by the centrally active benzodiazepines, diazepam and nitrazepam, but not by the peripherally active Ro5-4864, suggesting that DEP modifies a residue which is essential for the central actions of benzodiazepines. GABA did not protect against inactivation or influence the protection afforded by diazepam, indicating that the DEP-modifiable residue is independent of GABA binding sites, or that GABA binding sites are also sensitive to DEP. DEP-induced inactivation of benzodiazepine-receptors proceeds much faster at pH 10.1 than at pH 8.1 or 6.0, indicating the modification of a high pKa side group, possibly the phenol of a tyrosyl residue. This postulation is in accord with our previous findings with the modifying reagents tetranitromethane and N-acetylimidazole.  相似文献   

14.
Receptor endocytosis is an important mechanism for regulating the synaptic efficacy of neurotransmitters. There is strong evidence that GABA(A) receptor endocytosis is clathrin-dependent; however, this process is not well understood. Here we demonstrate that in HEK 293 cells, endocytosis of GABA(A) receptors composed of either alpha1beta2gamma2Lor alpha1beta2 subunits is blocked by the dominant negative dynamin construct K44A. Furthermore, we identify a dileucine AP2 adaptin-binding motif within the receptor beta2 subunit that is critical for endocytosis. Internalization of GABAA receptors lacking this motif is dramatically inhibited, and the receptors appear to accumulate on the cell surface. Patch clamp analysis of receptors lacking the dileucine motif show that there is an increase in the peak amplitude of GABA-gated chloride currents compared with wild-type receptors. Additionally, GABA-gated chloride currents in HEK 293 cells expressing wild-type receptors are increased by introduction of a peptide corresponding to the dileucine motif region of the receptor beta2 subunit but not by a control peptide containing alanine substitutions for the dileucine motif. In mouse brain cerebral cortical neurons, the dileucine motif peptide increases GABA-gated chloride currents of native GABA(A) receptors. This is the first report to our knowledge that an AP2 adaptin dileucine recognition motif is critical for the endocytosis of ligand-gated ion channels belonging to this superfamily.  相似文献   

15.
The density of bovine peripheral-type benzodiazepine receptors (PBR) in four tissues was highest in adrenal cortex. The adrenal cortex PBR cofractionated with a mitochondrial membrane marker enzyme and could be solubilized with intact ligand binding properties using digitonin. The membrane bound and soluble mitochondrial receptors were pharmacologically characterized and showed the rank order of potency to inhibit [3H]PK 11195 binding was PK 11195 greater than protoporphyrin IX greater than benzodiazepines (clonazepam, diazepam, or Ro5-4864). [3H]PK 11195 binding to bovine adrenal mitochondria was unaffected by diethylpyrocarbonate, a histidine residue modifying reagent that decreased binding to rat liver mitochondria by 70%. [3H]PK 14105 photolabeled the bovine PBR and the Mr was estimated under nondenaturing (200 kDa) and denaturing (17 kDa) conditions. These results demonstrate the bovine peripheral-type benzodiazepine receptor is pharmacologically and biochemically distinct from the rat receptor, but the receptor component photolabeled by an isoquinoline ligand has a similar molecular weight.  相似文献   

16.
Abstract: GABAA and benzodiazepine receptors are allosterically coupled, and occupation of either receptor site increases the affinity of the other. Chronic exposure of primary neuronal cultures to benzodiazepine agonists reduces these allosteric interactions. Neurons express multiple GABAA receptor subunits, and it has been suggested that uncoupling is due to changes in the subunit composition of the receptor. To determine if uncoupling could be observed with expression of defined subunits, mouse Ltk cells stably transfected with GABAA receptors (bovine α1, β1, and γ2L subunits) were treated with flunitrazepam (Flu) or clonazepam. The increase in [3H]Flu binding affinity caused by GABA (GABA shift or coupling) was significantly reduced in cells treated chronically with the benzodiazepines, whereas the K D and B max of [3H]Flu binding were unaffected. The uncoupling caused by clonazepam treatment occurred rapidly with a t 1/2 of ∼30 min. The EC50 for clonazepam treatment was ∼0.3 µ M , and cotreatment with the benzodiazepine antagonist Ro 15-1788 (5.6 µ M ) prevented the effect of clonazepam. The uncoupling observed in this system was not accompanied by receptor internalization, is unlikely to be due to changes in receptor subunit composition, and probably represents posttranslational changes. The rapid regulation of allosteric coupling by benzodiazepine treatment of the stably transfected cells should provide insights to the mechanisms of coupling between GABAA and benzodiazepine receptors as well as benzodiazepine tolerance.  相似文献   

17.
Both alprazolam and triazolam displaced clonazepam (but not Ro 5-4864) from rat brain membranes with high affinity, showing them to act at central but not peripheral benzodiazepine receptors. At 0 degrees C, 10 microM gamma-aminobutyric acid (GABA) increased the ability of alprazolam, but not of triazolam, to displace ethyl-beta-carboline-3-carboxylate (beta-CCE) and Ro 15-1788 from these receptors. At 37 degrees C, GABA increased the affinity of the receptors for both drugs, with a +GABA/-GABA ratio of 1.5 for each in promoting Ro 15-1788 binding displacement. As both triazolam and alprazolam act as anxiolytics in vivo, the results at 37 degrees C would be compatible with the hypothesis that GABA causes an increase in affinity of drugs that act in this way, but the results at 0 degrees C would not be compatible. At 37 degrees C, alprazolam had a higher IC50 for the benzodiazepine receptor than at 0 degrees C, whereas triazolam showed the reverse effect. The relative IC50 values in vitro at 37 degrees C correlated better with the potency in vivo than those obtained at 0 degrees C. At 0 degrees C, both drugs showed Hill plots with slopes of 0.9-1 with beta-CCE and Ro 15-1788. At 37 degrees C, the slopes with triazolam were much reduced, indicating that the drug may have a selective action on a subclass of central benzodiazepine receptors. In the studies reported here, alprazolam behaved like other benzodiazepines, whereas triazolam showed several anomalous properties. It would be of interest if these properties could be related either to the drug's use as a hypnotic or to the side effects it sometimes induces.  相似文献   

18.
1. The effect of the benzodiazepines Ro5-4864, AHN 086 and clonazepam on the release of Ca2+ from rat heart and kidney mitochondria was studied. 2. The peripheral-type benzodiazepines Ro5-4864 and AHN 086 induced Ca2+ release which was blocked by Mg2+ whereas the central-type benzodiazepine clonazepam was ineffective. 3. An associated collapse of membrane potential and swelling were also induced by AHN 086 in the presence of Ca2+. 4. However, no oxidation of pyridine nucleotides or increased rate or respiration were observed. 5. Release of Sr2+ was induced by AHN 086 in the absence of inorganic phosphate but not in its presence. 6. These data are discussed in the context of the current hypotheses on the mechanism of mitochondrial Ca2+ release.  相似文献   

19.
Previous studies have shown that Ro 5-4864 is a potent convulsant and increases the firing rate of substantia nigra zona reticulata neurons. The pharmacologic profile of compounds that antagonize these actions suggested that the effects of Ro 5-4864 were not mediated by "brain-type" benzodiazepine receptors. We examined a number of compounds that are structurally related to Ro 5-4864 for their capacities to displace [3H]Ro 5-4864 from "peripheral-type" binding sites and their potencies as convulsants (or as antagonists of Ro 5-4864-induced convulsions). It was observed that compounds such as KW 3600 (the N-desmethyl analog of Ro 5-4864), which have very low affinities for "peripheral-type" sites, are convulsants with a potency nearly equal to that of Ro 5-4864. In contrast, compounds such as Ro 5-6900 and PK 11195, which bind with very high affinities to "peripheral-type" binding sites, are neither convulsants nor do they antagonize the convulsant actions of Ro 5-4864. Within a series of compounds that are structurally related to Ro 5-4864 there is a good correlation (r = 0.93; p less than 0.01) between their potencies as convulsants and their capacities to displace [35S]t-butylbicyclophosphorothionate from sites that may be associated with the chloride ionophore. Thus, it appears that occupation of "peripheral-type" binding sites by high-affinity ligands may not be directly involved in the convulsant actions of Ro 5-4864 and related compounds.  相似文献   

20.
Abstract

[3H]Phenytoin binding to rat cortical membrane was significantly enhanced in the presence of diazepam. This binding is saturable, reversible and displacable by unlabelled phenytoin. Analyses of the binding data either by the Scatchard plot or by the displacement curve revealed a high and a low affinity sites with Kd values of 32 ± 5 nM and 8.5 ± 1.1 μM, respectively. Similar enhancement of [3H]phenytoin binding was observed when diazepam was replaced by Ro 5–4864 (4″-chlorodiazepam) which is selective for the ‘peripheral’ type benzodiazepine binding sites. In contrast, neither the ‘central’ type receptor selective agonist clonazepam nor the antagonist Ro 15–1788 enhanced [3H]phenytoin binding. Therefore, it seems that these phenytoin binding sites in rat cerebral cortex are associated with a benzodiazepine site similar to the ‘peripheral’ type binding site for its selective affinity for Ro 5–4864. However, judging from the micromolar concentrations required for the enhancement of [3H]phenytoin binding, they appear unlikely to be the same ‘peripheral’ type binding sites as measured by [3H]Ro 5–4864 binding (Kd approx. 1 nM). The micromolar affinity benzodiazepine recognition sites are a possibility, if they indeed exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号