首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In plants, stomata play a pivotal role in the regulation of gas exchange and are distributed throughout the aerial epidermis. SDD1, a gene isolated from Arabidopsis thaliana has been demonstrated to specialize in stomatal density and distribution. In our present study, a comprehensive survey of global gene expression performed by using an A. thaliana whole genome Affymetrix gene chip revealed SDD1 tends to be significantly lower in tetraploid Isatis indigotica than in diploid ones. To intensively investigate different SDD1 expression in response to polyploidy, a full-length cDNA clone (IiSDD1) encoding SDD1 was isolated from the traditional Chinese medicinal herb I. indigotica cDNA library. IiSDD1 shared a high level of identity with that from A. thaliana, containing some basic features of subtilases: D, H and S regions, as well as a substrate-binding site. Real-time quantitative PCR analysis indicated that IiSDD1 was constitutively expressed in all tested tissues, including roots, stems and leaves, both in tetraploid and diploid I. indigotica, and with the highest expression in leaves. In addition, IiSDD1 was also found to be down-regulated by signalling molecules for plant defence responses, such as abscisic acid (100 μM) and gibberellin (100 mg/L), as well as by environmental stresses including salt, darkness, coldness and drought. Our study, for the first time, indicates SDD1 participates not only in the defense/stress responsive pathways, but also probably involves in plants polyploidy evolution.  相似文献   

4.
Abstract-Effects of mechanical wounding on gene expression involved in artemisinin biosynthesis and artemisinin production in Artemisia annua leaves were investigated. HPLC-ELSD analysis indicated that there was a remarkable enhancement of the artemisinin content in 2 h after wounding treatment, and the content reached the maximum value at 4 h (nearly 50% higher than that in the control plants). The expression profile analysis showed that many important genes (HMGR, ADS, CPR, and CYP71AV1) involved in the artemisinin biosynthetic pathway were induced in a short time after wounding treatment. This study indicates that the artemisinin biosynthesis is affected by mechanical wounding. The possible mechanism of the control of gene expression during wounding is discussed.  相似文献   

5.
Lactic acid bacteria (LAB) are generally sensitive to hydrogen peroxide (H2O2), Lactobacillus sakei YSI8 is one of the very few LAB strains able to degrade H2O2 through the action of a heme-dependent catalase. Lactobacillus rhamnosus strains are very important probiotic starter cultures in meat product fermentation, but they are deficient in catalase. In this study, the effect of heterologous expression of L. sakei catalase gene katA in L. rhamnosus on its oxidative stress resistance was tested. The recombinant L. rhamnosus AS 1.2466 was able to decompose H2O2 and the catalase activity reached 2.85 μmol H2O2/min/108 c.f.u. Furthermore, the expression of the katA gene in L. rhamnosus conferred enhanced oxidative resistance on the host. The survival ratios after short-term H2O2 challenge were increased 600 and 104-fold at exponential and stationary phase, respectively. Further, viable cells were 100-fold higher in long-term aerated cultures. Simulation experiment demonstrated that both growth and catalase activity of recombinant L. rhamnosus displayed high stability under environmental conditions similar to those encountered during sausage fermentation.  相似文献   

6.
1-Deoxy-d-xylulose 5-phosphate (DXP) reductoisomerase (DXR; EC 1.1.1.267) catalyzes the first committed step of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in plants. The present study describes the cloning and characterization of a cDNA encoding DXR from Salvia miltiorrhiza (designated as SmDXR, GenBank Accession No. FJ476255). Comparative and bioinformatic analyses revealed that SmDXR showed extensive homology with DXRs from other plant species. Phylogenetic tree analysis indicated that SmDXR belongs to the plant DXR superfamily and has the closest relationship with DXR from Lycopersicon esculentum. Tissue expression pattern analysis revealed that SmDXR expressed strongly in leaves, followed by roots and stems, implying that SmDXR was a constitutively expressed gene. This is the first report on the mRNA expression profile of genes encoding key enzymes involved in tanshinone biosynthetic pathway in Salvia plants. The expression profiles revealed by RT-PCR under different elicitor treatments such as methyl jasmonate (MJ) and salicylic acid (SA) were compared for the first time, and the results revealed that SmDXR was an elicitor-responsive gene, which could be induced by SA in leaves and inhibited by exogenous MJ in three tested tissues. The functional color assay in Escherichia coli showed that SmDXR could accelerate the biosynthesis of lycopene, indicating that SmDXR encoded a functional protein. The characterization, expression profile and functional analysis of SmDXR gene will be helpful for further study in the role of SmDXR in tanshinones biosynthetic pathway and metabolic engineering to increase tanshinones production in S. miltiorrhiza.  相似文献   

7.
8.

Background  

A traditional concept in bacterial genetics states that housekeeping genes, those involved in basic metabolic functions needed for maintenance of the cell, are encoded in the chromosome, whereas genes required for dealing with challenging environmental conditions are located in plasmids. Exceptions to this rule have emerged from genomic sequence data of bacteria with multipartite genomes. The genome sequence of R. etli CFN42 predicts the presence of panC and panB genes clustered together on the 642 kb plasmid p42f and a second copy of panB on plasmid p42e. They encode putative pantothenate biosynthesis enzymes (pantoate-β-alanine ligase and 3-methyl-2-oxobutanoate hydroxymethyltransferase, respectively). Due to their ubiquitous distribution and relevance in the central metabolism of the cell, these genes are considered part of the core genome; thus, their occurrence in a plasmid is noteworthy. In this study we investigate the contribution of these genes to pantothenate biosynthesis, examine whether their presence in plasmids is a prevalent characteristic of the Rhizobiales with multipartite genomes, and assess the possibility that the panCB genes may have reached plasmids by horizontal gene transfer.  相似文献   

9.
Capsicum chinense is a recalcitrant species for in vitro morphogenesis, and up to date there is no efficient system for genetic transformation and regeneration of this species via somatic embryogenesis. Here, we carried out an in vitro transformation of C. chinense via Agrobacterium tumefaciens co-cultivation with a system that expresses the heterologous gene WUSCHEL from Arabidopsis thaliana. WUSCHEL has been shown to promote the transition from vegetative to embryogenic state when overexpressed. We tested if the expression of WUSCHEL in C. chinense would promote an embryogenic response in this species. After 15 days of induction, the segments of transformed stems begun to form globular structures, suggesting that heterologus WUSCHEL was active and involved in the process of morphogenesis.  相似文献   

10.
Direct genetic transformation of mesophyll protoplasts was studied in Pelargonium × hortorum. Calcein and green-fluorescent protein (GFP) gene were used to set up the process. Electroporation (three electric pulses from a 33-μF capacitor in a 250-V cm−1 electric field) was more efficient than PEG 6000 for membrane permeation, protoplast survival and cell division. Transient expression of GFP was detected in 33–36% of electroporated protoplasts after 2 days and further in colonies. A protoplast suspension conductivity of >1,500 μS cm−1 allowed high colony formation and plant regeneration. Stable transformation was obtained using the plasmid FAJ3000 containing uidA and nptII genes. When selection (50 mg l−1 kanamycin) was achieved 6 weeks after electroporation, regenerated shoots were able to grow and root on 100 mg l−1 kanamycin. The maximum transformation efficiency was 4.5%, based on the number of colonies producing kanamycin-resistant rooted plants or 0.7% based on the number of cultured protoplasts. Polymerase chain reaction (PCR) analysis on in vitro micropropagated plants showed that 18 clones out of 20 contained the nptII gene, while the uidA gene was absent. These results were confirmed after PCR analyses of five glasshouse-acclimatized clones.  相似文献   

11.
A gene encoding the thermostable α-amylase in Thermobifida fusca NTU22 was amplified by PCR, sequenced, and cloned into Yarrowia lipolytica P01g host strain using the vector pYLSC1 allowing constitutive expression and secretion of the protein. Recombinant expression resulted in high levels of extracellular amylase production, as high as 730 U/l in the Hinton flask culture broth. It is higher than that observed in P. pastoris expression system and E. coli expression system. The purified amylase showed a single band at about 65 kDa by SDS-polyacrylamide gel electrophoresis and this agrees with the predicted size based on the nucleotide sequence. About 70% of the original activity remained after heat treatment at 60°C for 3 h. The optimal pH and temperature of the purified amylase were 7.0 and 60°C, respectively. The purified amylase exhibited a high level of activity with raw sago starch. After 72-h treatment, the DP w of raw sago starch obviously decreased from 830,945 to 237,092. The boiling stable resistant starch content of the sago starch increased from 8.3 to 18.1%. The starch recovery rate was 71%.  相似文献   

12.
Scopolamine is widely used for its anticholinergic properties. Because of higher physiological activity and less side effects the world demand of scopolamine is estimated to be ten times greater than other anticholinergic agents, hyoscyamine and atropine. Since natural production is limited, alternatives are required to boost the production. We report the introduction of mouse odc gene of polyamine biosynthesis pathway which is also the primary pathway of tropane alkaloids in Datura innoxia. Polyamines, mainly putrescine, serve as the common metabolite for tropane alkaloids and nicotine. We have overexpressed odc gene to modulate the metabolic flux downstream and eventually achieved higher accumulation of scopolamine in transgenic plants. Among six independent transformed lines one line (O10) produced scopolamine (0.258 μg/g dry weight) almost six times higher than that produced by control plants (0.042 μg/g DW). To our knowledge, this is the first report of odc overexpression in D. innoxia leading to higher scopolamine yield.  相似文献   

13.
14.
This paper provides evidence that salicylic acid (SA) can activate artemisinin biosynthesis in Artemisia annua L. Exogenous application of SA to A. annua leaves was followed by a burst of reactive oxygen species (ROS) and the conversion of dihydroartemisinic acid into artemisinin. In the 24 h after application, SA application led to a gradual increase in the expression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene and a temporary peak in the expression of the amorpha-4,11-diene synthase (ADS) gene. However, the expression of the farnesyl diphosphate synthase (FDS) gene and the cytochrome P450 monooxygenase (CYP71AV1) gene showed little change. At 96 h after SA (1.0 mM) treatment, the concentration of artemisinin, artemisinic acid and dihydroartemisinic acid were 54, 127 and 72% higher than that of the control, respectively. Taken together, these results suggest that SA induces artemisinin biosynthesis in at least two ways: by increasing the conversion of dihydroartemisinic acid into artemisinin caused by the burst of ROS, and by up-regulating the expression of genes involved in artemisinin biosynthesis.  相似文献   

15.
The eukaryotic transposon Mos1 is a class-II transposable element that moves using a “cut-and-paste” mechanism in which the transposase is the only protein factor required. The formation of the excision complex is well documented, but the integration step has so far received less investigation. Like all mariner-like elements, Mos1 was thought to integrate into a TA dinucleotide without displaying any other target selection preferences. We set out to synthesize what is currently known about Mos1 insertion sites, and to define the characteristics of Mos1 insertion sequences in vitro and in vivo. Statistical analysis can be used to identify the TA dinucleotides that are non-randomly targeted for transposon integration. In vitro, no specific feature determining target choice other than the requirement for a TA dinucleotide has been identified. In vivo, data were obtained from two previously reported integration hotspots: the bacterial cat gene and the Caenorhabditis elegans rDNA locus. Analysis of these insertion sites revealed a preference for TA dinucleotides that are included in TATA or TA × TA motifs, or located within AT-rich regions. Analysis of the physical properties of sequences obtained in vitro and in vivo do not help to explain Mos1 integration preferences, suggesting that other characteristics must be involved in Mos1 target choice.  相似文献   

16.
17.
The effect of feeding Lactobacillus fermentum I5007 on the immune system of weaned pigs with or without E. coli challenge was determined. Twenty-four weaned barrows (6.07 ± 0.63 kg BW) were randomly assigned to one of four treatments (N = 6) in a factorial design experiment. The first two treatments consisted of healthy piglets with half of the pigs receiving no treatment while the other half was orally administered with L. fermentum I5007 (108 CFU/ml) at a daily dose of 20 ml. Pigs in the second two treatments were challenged on the first day with 20 ml of E. coli K88ac (108 CFU/ml). Half of these pigs were not treated while the remaining pigs were treated with 20 ml of L. fermentum I5007 (108 CFU/ml). Peripheral blood lymphocytes subsets were determined using flow cytometry. The intestinal mucosal immunity of the pigs was monitored by real time polymerase chain reaction. The cytokine content of the pig’s serum was also analyzed. Oral administration of L. fermentum I5007 increased blood CD4+ lymphocyte subset percentage as well as tumor necrosis factor-α and interferon-γ expression in the ileum. Pigs challenged with E. coli had elevated jejunal tumor necrosis factor-α while interferon-γ expression was increased throughout the small intestine. There was no difference in the concentration of the cytokines interleukin-2, interleukin-6, tumor necrosis factor-α and interferon-γ in the serum. CD8+ and CD4+/CD8+ in peripheral blood were not affected by treatment. In conclusion, L. fermentum I5007 can enhance T cell differentiation and induce ileum cytokine expression suggesting that this probiotic strain could modulate immune function in piglets.  相似文献   

18.
A recently established rice breeding program in low latitudes aims to develop varieties with extremely long basic vegetative growth (BVG) periods and weak photoperiod sensitivities. The Taiwanese japonica variety Taichung 65 (T65) harbors a recessive allele ef1 at the Ef1 (Early flowering 1) locus, thereby exhibiting an extremely long BVG period. The previous reported functional allele Ehd1 (Early heading date 1), located on chromosome 10, encodes a B-type response regulator, thereby shortening the BVG period, whereas its nonfunctional allele ehd1 greatly prolongs the BVG period. A conventional analysis using F2 and F3 populations and a subsequent CAPS analysis based on the amino acid sequences of Ehd1 and ehd1 showed that Ef1 and Ehd1 were at the same locus. The CAPS analysis also indicated that the Taiwanese japonica varieties with extremely long BVG periods all harbor ef1, but that ef1 does not exist among indica and japonica varieties in the low latitudes. Since ef1 has not been found in any japonica varieties outside Taiwan, this allele might have originated in Taiwan. Sequence analysis revealed that the mutant allele ef1-h, which prolongs the BVG period even more than ef1 does, harbors an mPing insertion in exon 2, which causes the complete loss of gene function. Our results indicate that both ef1 or ef1-h alleles can be used as new gene sources in developing rice varieties with extremely long BVG periods for low latitudes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Lead (Pb) exposure poses devastating effects on central nervous system development of children. To replicate aspects of this neurotoxicity, we examined the effect of lead on the expression of apoptosis and of apoptosis-related genes, XIAP (X chromosome-linked inhibitor of apoptosis protein) and Smac (second mitochondrial activator of caspase), in the hippocampus of developing rats. A total of 48 rats (30-day old) were randomly divided into four groups for intragastrical perfusion of lead acetate [Pb(Ac)2]: untreated, low (2 mg/kg/d), medium (20 mg/kg/d), and high (200 mg/kg/d) dose groups. Pb content was determined in blood, and the apoptosis indexes and XIAP and Smac gene expression were analyzed in the hippocampus. There was a significant difference in apoptosis indexes (AI) between the exposed and control groups (p < 0.01). AI was highest in the high exposure group. XIAP gene expression was reduced in the exposed groups and the expression was negatively correlated with blood lead levels (BLLs) (p < 0.05). But the four groups did not differ in the expression of Smac (p > 0.05). Our data indicate that exposure to Pb(Ac)2 caused a dose-dependent and significant increase of apoptosis in the hippocampus of developing rats through depressing the expression of the XIAP but not the Smac genes.  相似文献   

20.
Two genes involved in central carbon metabolism were inactivated to modulate intracellular glucose 6-phosphate and to evaluate its effects on xanthan production in wild-type Xanthomonas oryzae pv. oryzae. Upon the inactivation of the phosphogluconate dehydratase gene (edd), intracellular glucose 6-phosphate increased from 0.05 to 1.17 mmol/g (dry cell wt). This was accompanied by increased xanthan production of up to 2.55 g/l (culture medium). In contrast, inactivation of 6-phosphogluconate dehydrogenase gene (gndA) did not influence intracellular glucose 6-phosphate nor xanthan production. The intracellular availability of glucose 6-phosphate is proposed as a rate-limiting factor in xanthan production, and it may be possible to increases production of xanthan by modulating the activities of enzymes in central carbon metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号