首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of efficient directed elimination of human erythroblastoid cells by the conjugate of IgM-monoclonal antibody HAE9 directed against the erythroblast antigen and the A-chain of a plant toxin ricin has been demonstrated. The conjugate contained 2 molecules of A-chain per one antibody molecule. The efficiencies of the cytotoxic effect of native ricin and the conjugate were compared according to the number of binding sites on the surface of K562 cells as well as to the internalization rate of these molecules. As was shown, that the number of binding sites for the antibody approaches 2.7.10(4) molecules/cell, K a being equal to 1.7.10(8) M-1 while for ricin these indices constitute 2.4.10(5) and 4.6.10(8) M-1. Almost 100% of antibodies and 36% of ricin are internalized within 10 min at 37 degrees C. At a concentration 10(-11) of native ricin and 10(-10) of immunotoxin the 50% inhibition of growth of K562 cells carrying the erythroblast antigen on their surface is observed.  相似文献   

2.
The therapeutic activity of ricin A-chain immunotoxins is undermined by their rapid clearance from the bloodstream of animals by the liver. This uptake has generally been attributed to recognition of the mannose-terminating oligosaccharides present on ricin A-chain by receptors present on the non-parenchymal (Kupffer and sinusoidal) cells of the liver. However, we demonstrate here that, in the mouse, the liver uptake of a ricin A-chain immunotoxin occurs in both parenchymal and non-parenchymal cells in equal amounts. This is in contrast to the situation in the rat, where uptake of the immunotoxin is predominantly by the non-parenchymal cells. Recognition of sugar residues on the A-chain portion of the immunotoxin plays an important role in the liver uptake by both cell types in both species. However it is not the only mechanism since, firstly, an immunotoxin containing ricin A-chain which had been effectively deglycosylated with metaperiodate and cyanoborohydride was still trapped to a significant extent by hepatic non-parenchymal cells after it was injected into mice. Secondly, deglycosylation, while eliminating uptake of the free A-chain by parenchymal and non-parenchymal cells in vitro, only reduced the uptake of an immunotoxin by either cell type by about half. Thirdly, the addition of excess D-mannose or L-fucose inhibited the uptake of free A-chain by mouse liver cell cultures by more than 80% but only inhibited the uptake of the native A-chain immunotoxin by about half and had little effect on the uptake of the deglycosylated ricin A-chain immunotoxin. Recognition of the antibody portion of the immunotoxin by liver cells seems improbable, since antibody alone or an antibody-bovine serum albumin conjugate were not taken up in appreciable amounts by the cultures. Possibly attachment of the A-chain to the antibody exposes sites on the A-chain that are recognised by liver cells in vitro and in vivo.  相似文献   

3.
A covalent conjugate of avidin with ricin subunit A-chain (avidin-RA) was prepared by using N-succinimidyl 3-(2-pyridyldithio)propionate as a coupling agent. Selective cytotoxic activity after the combined treatment of spleen cells with biotinylated antibody and avidin-RA was demonstrated by the fact that the responsiveness to LPS was selectively abrogated by pretreatment of the cells with biotinylated rabbit anti-mouse immunoglobulin (MIg) antibody, but not with biotinylated anti-Thy-1.2 antibody. Neither the biotinylated antibody alone nor avidin-RA alone was effective in decreasing the responses to mitogens. Moreover, a high anti-DNP PFC response elicited by DNP-KLH-primed BALB/c mouse spleen cells stimulated in vitro with DNP-KLH was mostly abrogated by the pretreatment of the cells with biotinylated anti-MIg antibody and avidin-RA. Again, neither the biotinylated antibody alone nor avidin-RA alone was effective in decreasing the anti-DNP PFC response. This cell-killing method with the use of biotinylated antibody and avidin-RA was applied and evaluated in experimental systems in which the helper action of T cells on B cells was mediated by T cell-replacing factor (TRF) or was performed by the direct interaction of T cells with B cells (cognate interaction). When DNP-KLH-primed splenic B cells, pretreated with biotinylated F(ab')2 fragment of DCF1 male anti-BALB/c-B IgG antibody against acceptor site(s) for TRF followed by treatment with avidin-RA, were stimulated with DNP-OVA in the presence of monoclonal TRF, the anti-DNP PFC response was significantly decreased, whereas the same treated B cells responded well to stimulation with DNP-PPD in the presence of Tbc-primed T cells (cognate interaction). These results indicate that B cells responsible for the cognate interaction and those having TRF acceptor site(s) belong to a distinct subpopulation of B cells, and that the cytocidal action of the noncovalent conjugate of the antibody and RA formed from the biotinylated antibody and avidin-RA via an avidin-biotin complex has immunologic selectivity, eliminating only the latter subset of B cells recognized by the antibody.  相似文献   

4.
A conjugate was developed between ricin A-chain and monoclonal antiallotypic antibody specific for L-chains of the rat Ig. Incubation of spleen cells with the conjugate (10(-7) M) resulted in a strong decrease of 1a-positive B-lymphocyte growth. At the same time spleen cells that lacked this antigen were not affected by immunotoxin (IT). Both the isolated antibodies and ricin A-chain did not inhibit cell growth in the same concentrations. IT injection to 10-day-old heterozygous rats (1a/1b) resulted in a partial suppression of Ig production with 1a-allotype. The conjugate was 4.5 times more effective than the isolated antibodies used to form it. The in vivo and in vitro differences in IT cytotoxicity were probably connected with insufficient efficacy of conjugate targeting in vivo.  相似文献   

5.
A method is described for preparing specific cytotoxic agents by linking intact ricin to antibodies in a manner that produces obstruction of the galactose-binding sites on the B chain of the toxin and so diminishes the capacity of the conjugate to bind non-specifically to cells. The conjugates were synthesised by reacting iodoacetylated ricin with thiolated immunoglobulin and the components of conjugate with reduced galactose-binding capacity were separated by affinity chromatography on Sepharose (a beta-galactosyl matrix) and asialofetuin-Sepharose. Fluorescence-activated cell sorter (FACS) analyses revealed that the fraction of a monoclonal anti-Thy1.1-ricin conjugate that passed through a Sepharose column had markedly diminished capacity to bind non-specifically to Thy1.2-expressing CBA thymocytes and EL4 lymphoma cells. The fraction of conjugate that passed through an asialofetuin-Sepharose column displayed no detectable non-specific binding. Both fractions of conjugate were potent cytotoxic agents for Thy1.1-expressing AKR-A lymphoma cells in tissue culture. They reduced the [3H]leucine incorporation of the cells by 50% at a concentration of 2-5 pM. Comparable inhibition of EL4 cells was only achieved with 3000-7500-fold greater concentrations of conjugate. By contrast, the fraction of anti-Thy1.1-ricin that retained Sepharose-binding capacity showed marked non-specific binding and toxicity to EL4 cells. A conjugate with diminished galactose-binding capacity was also prepared from the W3/25 monoclonal antibody which recognises an antigen upon helper T-lymphocytes in the rat. It elicited powerful and specific toxic effects upon W3/25 antigen-expressing rat T-leukaemia cells. This finding is of particular importance because isolated ricin A-chain disulphide-linked to W3/25 antibody is not cytotoxic. The property of the B-chain in intact ricin conjugates that facilitates delivery of the A-chain to the cytosol thus appears to be independent of galactose recognition. It is concluded that the 'blocked' ricin conjugates combine the advantages of high potency, which is often lacking in antibody-A-chain conjugates, with high specificity, which previously was lacking in intact ricin conjugates.  相似文献   

6.
The human B-cell line Namalwa expresses the common acute lymphoblastic leukemia antigen (CALLA). Frame-shift mutants in Namalwa cell cultures were generated with ICR-191, and mutants were then selected for resistance to ricin or resistance to a conjugate of ricin with the anti-CALLA antibody J5 in the presence of lactose. Three mutants were found that were resistant to ricin and were in addition shown to be resistant to diphtheria toxin, to a J5-ricin conjugate, and to a conjugate between ricin B-chain and gelonin. The mutants, however, were sensitive to a J5-gelonin conjugate. These mutants expressed high levels of CALLA and/or receptors for ricin, and their cell-free translation systems appeared to be as sensitive to the inhibitory action of ricin A-chain and of gelonin as the translation system of wild-type Namalwa cells. The behavior of these mutants was consistent with the hypothesis that these cells possess an alteration of their surface that impedes the passage of ricin and diphtheria toxin across the plasma membrane. A fourth mutant was found to bind reduced quantities of ricin and was resistant to ricin but was sensitive to J5-ricin. The properties of this cell line provide evidence that the binding of antibody-ricin conjugates to cells via the ricin moiety may be prevented without impeding the cytotoxicity of the conjugates.  相似文献   

7.
AIM: To evaluate the ability of anti-ricin A-chain antibodies, delivered intracellularly, to protect against ricin-induced cytotoxicity in RAW264.7 cells.METHODS: Anti-deglycosylated ricin A-chain antibody and RAC18 anti-ricin A-chain monoclonal antibody were delivered intracellularly by encapsulating in liposomes or via conjugation with the cell-penetrating MTS-transport peptide. RAW264.7 cells were incubated with these antibodies either before or after ricin exposure. The changes in cytotoxicity were estimated by MTT assay. Co-localization of internalized antibody and ricin was evaluated by fluorescence microscopy.RESULTS: Internalized antibodies significantly increased cell viability either before or after ricin exposure compared to the unconjugated antibodies. Fluorescence microscopy confirmed the co-localization of internalized antibodies and ricin inside the cells.CONCLUSION: Intracellular delivery of antibodies to neutralize the ricin toxin after cellular uptake supports the potential use of cell-permeable antibodies for post-exposure treatment of ricin intoxication.  相似文献   

8.
To analyze the influence of ricin B-chain on the toxicity of hybrid-protein conjugates, the rate of cellular uptake of conjugates, and the rate at which ricin A-chain (RTA) is delivered to the cytoplasm, we have constructed toxic hybrid proteins consisting of epidermal growth factor (EGF) coupled in disulfide linkage either to ricin or to RTA. EGF-ricin is no more toxic on A431 cells than EGF-RTA. The two conjugates demonstrate similar kinetics of cellular uptake (defined as antibody irreversible toxicity). EGF-RTA and EGF-ricin, like ricin, required a 2-2 1/2 hour period at 37 degrees before the onset of protein synthesis inhibition occurred. Our results suggest that RTA determines the processes which carry it, either in conjugate or toxin, from the plasma membrane binding site to the cytoplasm following endocytosis, and the ricin B chain is not required for these processes.  相似文献   

9.
Ricin A-chain, which exhibits excellent cytotoxicity to tumor cells, has been widely used as an immunotoxin source. However, it has the fatal shortcoming of poor pharmacokinetics due to the tremendous liver uptake via carbohydrate-mediated recognition. Modification of proteins with polyethylene glycol, PEGylation, has the advantages of shielding the specific sites and prolonging the biological half-life. In this study, the carbohydrate-specific PEGylation of ricin A-chain was considered to be a novel approach to overcome this limitation. The carbohydrate group of ricin A-chain was oxidized by sodium m-periodate and further specifically conjugated with hydrazide-derivatized PEG. For a comparative study, the PEGylated ricin A-chain at amino groups was prepared using the hydroxysuccinimide ester-derivatized PEG. The carbohydrate-specifically PEGylated ricin A-chain showed a markedly lower liver uptake and systemic clearance compared with the amine-directly PEGylated ricin A-chain as well as the unmodified ricin A-chain. Furthermore, carbohydrate-specifically PEGylated ricin A-chain showed a significantly higher in vitro ribosome-inactivating activity than the amine-directly PEGylated ricin A-chain. These findings clearly demonstrate that the carbohydrate-specificity as well as PEGylation plays an important role in improving the in vivo pharmacokinetic properties and in vitro bioactivity. Therefore, these results suggest that the therapeutic use of immunotoxins constructed using this carbohydrate-specifically PEGylated ricin A-chain has potential as a cancer therapy.  相似文献   

10.
Ribosome-mediated folding of partially unfolded ricin A-chain   总被引:6,自引:0,他引:6  
After endocytic uptake by mammalian cells, the cytotoxic protein ricin is transported to the endoplasmic reticulum, whereupon the A-chain must cross the lumenal membrane to reach its ribosomal substrates. It is assumed that membrane traversal is preceded by unfolding of ricin A-chain, followed by refolding in the cytosol to generate the native, biologically active toxin. Here we describe biochemical and biophysical analyses of the unfolding of ricin A-chain and its refolding in vitro. We show that native ricin A-chain is surprisingly unstable at pH 7.0, unfolding non-cooperatively above 37 degrees C to generate a partially unfolded state. This species has conformational properties typical of a molten globule, and cannot be refolded to the native state by manipulation of the buffer conditions or by the addition of a stem-loop dodecaribonucleotide or deproteinized Escherichia coli ribosomal RNA, both of which are substrates for ricin A-chain. By contrast, in the presence of salt-washed ribosomes, partially unfolded ricin A-chain regains full catalytic activity. The data suggest that the conformational stability of ricin A-chain is ideally poised for translocation from the endoplasmic reticulum. Within the cytosol, ricin A-chain molecules may then refold in the presence of ribosomes, resulting in ribosome depurination and cell death.  相似文献   

11.
Summary In studies of antitumor antibody-cytotoxic agent conjugates as potential antitumor agents with improved tumor specificity, the toxic subunit A-chain of ricin was conjugated with a monoclonal antibody to a tumor-associated antigen expressed weakly on murine leukemia L1210 cells and strongly on L1210/GZL cells, a guanazole-resistant subline of L1210, employing N-succinimidyl 3-(2-pyridyldithio)propionate as cross-linking agent. The conjugate (anti-L1210 conjugate) exhibited a potent concentration-dependent cytotoxicity against cultured L1210/GZL cells, and inhibited cell growth at concentrations over 0.8 g/ml. The conjugate killed all L1210/GZL cells at a concentration of 100 g/ml. Neither nonimmune conjugate similarly prepared from mouse nonimmune IgG nor unconjugated anti-L1210 IgG alone showed cytotoxicity against L1210/GZL cells. When (BALB/c×DBA/2)F1 mice inoculated with 1 × 105 L1210/GZL cells were treated with IP injections of 27 g anti-L1210 conjugate 1 h and 5 days after tumor cell inoculation, a life-prolonging effect was observed. [Lifespan in treated animals as percentage of that in controls (T/C)=146%]. However, when the dose per injection was increased to 50 g per mouse, survival was the same as in the control group. Postmortem examination of mice that had been treated with 50 g anti-L1210 conjugate revealed lesions with necrosis and hemorrhage in the liver parenchyma and the intestinal epithelium, respectively. A similar toxic effect on the host mice was also observed with nonimmune conjugate.  相似文献   

12.
We have analyzed the intracellular transport of endocytosed ricin in the human breast carcinoma cell line T47D. Cells were incubated with ricin (10 micrograms/ml) for 1 h at 37 degrees C. Marked reduction in the protein synthesis did not take place until the end of this period. To detect ricin immunocytochemically, a rabbit anti-ricin serum was used. Gel electrophoresis followed by immunoblotting revealed that the antiserum reacted specifically with ricin and detected both the ricin A-chain and the ricin B-chain. Immunofluorescence experiments showed endocytosed ricin in endosomal and lysosomal vacuoles throughout the cytoplasm, as well as in a typical perinuclear position corresponding to the Golgi region. Using the monoclonal mouse antibody 115D8 directed toward the high-molecular-weight membrane glycoprotein MAM-6 of human breast epithelial cells, we similarly obtained a swarms of small vesicles throughout the cytoplasm. To further analyze the apparent colocalization of ricin and MAM-6 in the perinuclear Golgi region, immunogold cytochemistry on ultracryosections was performed. MAM-6 was detected mainly in Golgi stacks and associated trans-Golgi network (TGN) profiles, in 0.1 to 0.2-micron secretory vesicles, and on the cell surface. Ricin was detected on the cell surface, in endosomes and lysosomes, and also in the TGN. Furthermore, by using immunogold double labeling, internalized ricin was found to colocalize with MAM-6 in the TGN.  相似文献   

13.
Hybridoma cells which synthesize monoclonal antibodies (mAb) that block ricin toxicity were 50-300-fold resistant to ricin compared with other hybridomas. Two of the mAb blocked two isozymes of ricin, D and E, to different and opposite extents, and the hybridoma cell resistance to the two forms of ricin closely corresponded with the mAb reactivity. The hybridoma cell resistance to ricin was therefore due to the binding activity of the mAb produced by the cells. Neither rabbit polyclonal antibodies, which neutralized extracellular anti-ricin mAb, nor quantitative removal of hybridoma cell surface IgG with papain affected the cellular resistance to ricin. Therefore, neither extracellular or cell surface antibodies contributed to the resistance of the hybridoma cells. In contrast, inhibition of protein synthesis by cycloheximide or puromycin, which selectively decreased levels of intracellular secretory IgG, decreased the hybridoma cell resistance to ricin. We conclude that intracellular mAb, synthesized de novo for subsequent secretion, block ricin toxicity. Ricin therefore must meet intracellular secretory antibodies before reaching the cytosol. The monoclonal antibodies can also be used to study toxin function within intracellular compartments. An antibody specific for the galactose-binding site of ricin blocks ricin intracellularly, showing that the ricin galactose-binding activity is required in an intracellular compartment for transport of ricin A chain to the cytosol.  相似文献   

14.
Ricin acts by translocating to the cytosol the enzymatically active toxin A-chain, which inactivates ribosomes. Retrograde intracellular transport and translocation of ricin was studied under conditions that alter the sensitivity of cells to the toxin. For this purpose tyrosine sulfation of mutant A-chain in the Golgi apparatus, glycosylation in the endoplasmic reticulum (ER) and appearance of A-chain in the cytosolic fraction was monitored. Introduction of an ER retrieval signal, a C-terminal KDEL sequence, into the A-chain increased the toxicity and resulted in more efficient glycosylation, indicating enhanced transport from Golgi to ER. Calcium depletion inhibited neither sulfation nor glycosylation but inhibited translocation and toxicity, suggesting that the toxin is translocated to the cytosol by the pathway used by misfolded proteins that are targeted to the proteasomes for degradation. Slightly acidified medium had a similar effect. The proteasome inhibitor, lactacystin, sensitized cells to ricin and increased the amount of ricin A-chain in the cytosol. Anti-Sec61alpha precipitated sulfated and glycosylated ricin A-chain, suggesting that retrograde toxin translocation involves Sec61p. The data indicate that retrograde translocation across the ER membrane is required for intoxication.  相似文献   

15.
Ricin A-chain catalyzes the hydrolysis of the N-glycosidic bond of a conserved adenosine residue at position 4324 in the sarcin/ricin domain of 28S RNA of rat ribosome. The GAGA tetraloop closed by C-G pairs is required for recognition of the cleavage site on 28S ribosomal RNA by ricin A-chain. In this study, ricin A-chain (reduced ricin) exhibits specific depurination on a synthetic oligoribonucleotide (named SRD RNA) mimic of the sarcin/ricin domain of rat 28S ribosomal RNA under neutral and weak acidic conditions. Furthermore, the activity of intact ricin is also similar to that of ricin A-chain. However, under more acidic conditions, both enzymes lose their site specificity. The alteration in specificity of depurination is not dependent on the GAGA tetraloop of SRD RNA. A higher concentration of KCl inhibits the non-specific N-glycosidase activity much more than the specific activity of ricin A-chain. In addition, characterization of depurination sites by RNA sequencing reveals that under acidic conditions ricin A-chain can release not only adenines, but also guanines from SRD RNA or 5S ribosomal RNA. This is the first report of the non-specific deadenylation and deguanylation activity of ricin A-chain to the naked RNA under acidic conditions.  相似文献   

16.
The cytotoxicity of intact cinnamomin (a type II ribosome-inactivating protein, RIP) and the RNA N-glycosidase activity of cinnamomin A-chain have been studied and compared with those of ricin. Cinnamomin A-chain exhibits a similar RNA N-glycosidase activity in inhibiting in vitro protein synthesis compared with that of ricin, whereas the cytotoxicity to BA/F3beta cells of intact cinnamomin is markedly lower than intact ricin. In order to demonstrate that it is the B-chains of the two RIPs that bear the difference in cytotoxicity, two hybrid RIPs are prepared from the purified A-/B-chains of cinnamomin and ricin by the disulfide exchange reaction. It has been found that hybrid RIP constructed from cinnamomin A-chain and ricin B-chain is more toxic to BA/F3beta cells than the native cinnamomin, and equivalent to the native ricin. However, the cytotoxicity to BA/F3beta cells of the hybrid RIP constructed from the ricin A-chain and cinnamomin B-chain is lower than ricin, equivalent to the native cinnamomin. Furthermore, the bound amounts of two B-chains on the cell surface are determined by the method of direct cellular ELISA and Scatchard analysis of the binding of the two B-chains indicates that cinnamomin and ricin share similar binding sites with different affinity.  相似文献   

17.
The A-chain of a plant toxin ricin has been coupled to poly- and monoclonal antibodies specific to the L-chains of human IgG. The inhibitory effect of the conjugates has been compared with the ability of the antibodies to bind to target cells. Cytotoxicity of the conjugates has been monitored following incorporation of 14C-leucine radioactivity into Burkitt lymphoma cells with surface Ig. The 50% inhibition of protein synthesis is observed 18 h after treatment of cells with immunotoxins, when the concentration of the conjugates with poly- and monoclonal antibodies is 1.2.10(-9) M and 0.7.10(-9) M, respectively. The data take into account that only part of the polyclonal antibodies molecules is able to react with target cells. The control conjugates containing either monoclonal antibodies that do not react with the lymphoma cells surface L-chains or nonimmune serum IgG proved to have no effect on target cells even at the level of 10(-7) M. The immunotoxins with poly- and monoclonal antibodies produce almost the same kinetics of protein synthesis inhibition, when incubated with lymphoma cells for 60 min. However, a 30 min treatment reveals a considerably higher cytotoxicity of the conjugate with monoclonal antibodies.  相似文献   

18.
The in vitro killing of the human CEM cell line was studied by using ricin A-chain immunotoxins constructed with either the whole IgG or the Fab and F(ab')2 fragments of the same T101 (anti-CD5) antibody. In the presence of ammonium chloride as an activator, the "whole" immunotoxin as well as the "fragment" immunotoxins did not show any significant difference in the cell killing efficacy. In contrast, without the activator, the efficacy of the T101 immunotoxin was greatly improved when fragments were used. Indeed, at a saturating dose, a cytoreduction of three orders of magnitude was obtained with the fragment immunotoxins vs less than one order of magnitude for the whole immunotoxin, as assessed in a clonogenic assay. This enhancing effect was related to better cell killing kinetics, because with a similar amount of A-chain molecules bound per cell, T101 fragment immunotoxins achieved a twofold faster protein synthesis inactivation rate than the corresponding whole IgG immunotoxin. No significant difference in activity was shown between monovalent (Fab) and divalent (F(ab')2) forms of fragment immunotoxins. The observation that T101 fragment immunotoxins were more potent than intact immunotoxins was extended to another fragment immunotoxin constructed with an antibody (F111.98) directed against a different epitope of the CD5 Ag. In another model (anti-CD22 1G11 antibody on Raji cells), the fragment immunotoxin did not show any superiority over the IgG immunotoxin which was by itself very potent, strongly suggesting an Ag-dependent phenomenon.  相似文献   

19.
We have analyzed the intracellular transport of endocytosed ricin in the human breast carcinoma cell line T47D. Cells were incubated with ricin (10 μg/ml) for 1 h at 37 °C. Marked reduction in the protein synthesis did not take place until the end of this period. To detect ricin immunocytochemically, a rabbit anti-ricin serum was used. Gel electrophoresis followed by immunoblotting revealed that the antiserum reacted specifically with ricin and detected both the ricin A-chain and the ricin B-chain. Immunofluorescence experiments showed endocytosed ricin in endosomal and lysosomal vacuoles throughout the cytoplasm, as well as in a typical perinuclear position corresponding to the Golgi region. Using the monoclonal mouse antibody 115D8 directed toward the high-molecular-weight membrane glycoprotein MAM-6 of human breast epithelial cells, we similarly obtained a marked perinuclear fluorescence. In addition, MAM-6 fluorescence was observed in swarms of small vesicles throughout the cytoplasm. To further analyze the apparent colocalization of ricin and MAM-6 in the perinuclear Golgi region, immunogold cytochemistry on ultracryosections was performed. MAM-6 was detected mainly in Golgi stacks and associated trans-Golgi network (TGN) profiles, in 0.1 to 0.2-μm secretory vesicles, and on the cell surface. Ricin was detected on the cell surface, in endosomes and lysosomes, and also in the TGN. Furthermore, by using immunogold double labeling, internalized ricin was found to colocalize with MAM-6 in the TGN.  相似文献   

20.
The RNA N-glycosidase activity of ricin A-chain has been characterized. When rat liver ribosomes were used as substrates, the A-chain cleaved the N-glycosidic bond at A-4324 in 28S rRNA. An apparent Michaelis constant (Km) for the reaction was determined to be 2.6 microM and the turnover number (Kcat) was 1777 min-1. When naked rRNA was the substrate, the A-chain cleaved the same bond in 28S rRNA but at a greatly reduced rate. The Km value was 5.8 microM. The results suggest that the A-chain has a similar affinity for 28S rRNA in both ribosomes and the naked states. When the deproteinized Escherichia coli rRNA was the substrates, ricin A-chain cleaved a N-glycosidic bond at A-2600 in 23S rRNA which corresponds to the ricin-site in 28S rRNA of rat liver ribosomes, while the A-chain has little activity on 23S rRNA in the ribosomes. The results suggest that ricin A-chain acts directly on RNA by recognizing a certain structure in the molecules. Using the secondary structure models for each species of rRNA, we have deduced a loop and stem structure having GAGA in the loop to be a minimum requirement for the substrate of ricin A-chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号