首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Class I fructose-1,6-bis(phosphate) aldolase is a glycolytic enzyme that catalyzes the cleavage of fructose 1,6-bis(phosphate) through a covalent Schiff base intermediate. Although the atomic structure of this enzyme is known, assigning catalytic roles to the various enzymic active-site residues has been hampered by the lack of a structure for the enzyme-substrate complex. A mutant aldolase, K146A, is unable to cleave the C3-C4 bond of the hexose while retaining the ability to form the covalent intermediate, although at a greatly diminished rate. The structure of rabbit muscle K146A-aldolase A, in complex with its native substrate, fructose 1,6-bis(phosphate), is determined to 2.3 A resolution by molecular replacement. The density at the hexose binding site differs between subunits of the tetramer, in that two sites show greater occupancy relative to the other two. The hexose is bound in its linear, open conformation, but not covalently linked to the Schiff base-forming Lys-229. Therefore, this structure most likely represents the bound complex of hexose just after hemiketal hydrolysis and prior to Schiff base formation. The C1-phosphate binding site involves the three backbone nitrogens of Ser-271, Gly-272, and Gly-302, and the epsilon-amino group of Lys-229. This is the same binding site previously found for the analogous phosphate of the product DHAP. The C6-phosphate binding site involves three basic side chains, Arg-303, Arg-42, and Lys-41. The residues closest to Lys-229 were relatively unchanged in position when compared to the unbound wild-type structure. The major differences between the bound and unbound enzyme structures were observed in the positions of Lys-107, Arg-303, and Arg-42, with the greatest difference in the change in conformation of Arg-303. Site-directed mutagenesis was performed on those residues with different conformations in bound versus unbound enzyme. The kinetic constants of these mutant enzymes with the substrates fructose 1, 6-bis(phosphate) and fructose 1-phosphate are consistent with their ligand interactions as revealed by the structure reported here, including differing effects on k(cat) and K(m) between the two substrates depending on whether the mutations affect C6-phosphate binding. In the unbound state, Arg-303 forms a salt bridge with Glu-34, and in the liganded structure it interacts closely with the substrate C6-phosphate. The position of the sugar in the binding site would require a large movement prior to achieving the proper position for covalent catalysis with the Schiff base-forming Lys-229. The movement most likely involves a change in the location of the more loosely bound C6-phosphate. This result suggests that the substrate has one position in the Michaelis complex and another in the covalent complex. Such movement could trigger conformational changes in the carboxyl-terminal region, which has been implicated in substrate specificity.  相似文献   

2.
The affinity label N-bromoacetylethanolamine phosphate (BrAcNHEtOP) has been used previously at pH 6.5 to identify His-359 of rabbit muscle aldolase as an active site residue. We now find that the specificity of the reagent is pH-dependent. At pH 8.5, alkylation with 14C-labeled BrAcNHEtOP abolishes both fructose-1,6-P2 cleavage activity and transaldolase activity. The stoichiometry of incorporation, the kinetics of inactivation, and the protection against inactivation afforded by a competitive inhibitor or dihydroxyacetone phosphate are consistent with the involvement of an active site residue. A comparison of 14C profiles obtained from chromatography on the amino acid analyzer of acid hydrolysates of inactivated and protected samples reveals that inactivation results from the alkylation of lysyl residues. The major peptide in tryptic digests of the inactivated enzyme has been isolated. Based on its amino acid composition and the known sequence of aldolase, Lys-146 is the residue preferentially alkylated by the reagent. Aldolase modified at His-359 is still subject to alkylation of lysine; thus Lys-146 and His-359 are not mutually exclusive sites. However, aldolase modified at Lys-146 is not subject to alkylation of histidine. One explanation of these observations is that modification of Lys-146 abolishes the binding capacity of aldolase for substrates and substrate analogs (BrAcNHEtOP), whereas modification of his-359 does not. Consistent with this explanation is the ability of aldolase modified at His-359 to form a Schiff base with substrate and the inability of aldolase modified at Lys-146 to do so. Therefore, Lys-146 could be one of the cationic groups that functions in electrostatic binding of the substrate's phosphate groups.  相似文献   

3.
The aldolase catalytic cycle consists of a number of proton transfers that interconvert covalent enzyme intermediates. Glu-187 is a conserved amino acid that is located in the mammalian fructose-1,6-bisphosphate aldolase active site. Its central location, within hydrogen bonding distance of three other conserved active site residues: Lys-146, Glu-189, and Schiff base-forming Lys-229, makes it an ideal candidate for mediating proton transfers. Point mutations, Glu-187--> Gln, Ala, which would inhibit proton transfers significantly, compromise activity. Trapping of enzymatic intermediates in Glu-187 mutants defines a proton transfer role for Glu-187 in substrate cleavage and Schiff base formation. Structural data show that loss of Glu-187 negative charge results in hydrogen bond formation between Lys-146 and Lys-229 consistent with a basic pK(a) for Lys-229 in native enzyme and supporting nucleophilic activation of Lys-229 by Glu-187 during Schiff base formation. The crystal structures also substantiate Glu-187 and Glu-189 as present in ionized form in native enzyme, compatible with their role of catalyzing proton exchange with solvent as indicated from solvent isotope effects. The proton exchange mechanism ensures Glu-187 basicity throughout the catalytic cycle requisite for mediating proton transfer and electrostatic stabilization of ketamine intermediates. Glutamate general base catalysis is a recurrent evolutionary feature of Schiff base0forming aldolases.  相似文献   

4.
Crystal structures were determined to 1.8 A resolution of the glycolytic enzyme fructose-1,6-bis(phosphate) aldolase trapped in complex with its substrate and a competitive inhibitor, mannitol-1,6-bis(phosphate). The enzyme substrate complex corresponded to the postulated Schiff base intermediate and has reaction geometry consistent with incipient C3-C4 bond cleavage catalyzed Glu-187, which is adjacent by to the Schiff base forming Lys-229. Atom arrangement about the cleaved bond in the reaction intermediate mimics a pericyclic transition state occurring in nonenzymatic aldol condensations. Lys-146 hydrogen-bonds the substrate C4 hydroxyl and assists substrate cleavage by stabilizing the developing negative charge on the C4 hydroxyl during proton abstraction. Mannitol-1,6-bis(phosphate) forms a noncovalent complex in the active site whose binding geometry mimics the covalent carbinolamine precursor. Glu-187 hydrogen-bonds the C2 hydroxyl of the inhibitor in the enzyme complex, substantiating a proton transfer role by Glu-187 in catalyzing the conversion of the carbinolamine intermediate to Schiff base. Modeling of the acyclic substrate configuration into the active site shows Glu-187, in acid form, hydrogen-bonding both substrate C2 carbonyl and C4 hydroxyl, thereby aligning the substrate ketose for nucleophilic attack by Lys-229. The multifunctional role of Glu-187 epitomizes a canonical mechanistic feature conserved in Schiff base-forming aldolases catalyzing carbohydrate metabolism. Trapping of tagatose-1,6-bis(phosphate), a diastereoisomer of fructose 1,6-bis(phosphate), displayed stereospecific discrimination and reduced ketohexose binding specificity. Each ligand induces homologous conformational changes in two adjacent alpha-helical regions that promote phosphate binding in the active site.  相似文献   

5.
Alkanediol monoglycolate bisphosphoric esters (P-O-CH2-CO-O-(CH2)n-O-P), which are analogues of the aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13) substrate fructose 1,6-bisphosphate, were synthesized and used for probing its active site. The Ki value was lowest when the maximum distance between the phosphorus atoms of the bisphosphate was brought close to that of fructose 1,6-bisphosphate. The binding constants estimated from difference spectra correlate well with Ki values for the substrate analogues. Propanediol monoglycolate bisphosphoric ester protected aldolase from inactivation by 1,2-cyclohexanedione, which preferentially attacks arginine-55. However, propanol phosphate had little protective effect. The synthesized phosphate compounds protected the enzyme against inactivation by trypsin, and also against spontaneous denaturation. These results suggest that the synthesized phosphate compounds bind to aldolase at the active site, which tends to keep the distance constant between the two phosphate-binding sites for the open-chain form of fructose 1,6-bisphosphate, and stabilize the natural conformation of the enzyme. Both arginine-55 and lysine-146 are shown to participate in the phosphate-binding site for the C-1-phosphate of fructose 1,6-bisphosphate.  相似文献   

6.
The enzymatic reaction carried out by class I fructose-1,6-bisphosphate aldolase is known in great detail in terms of reaction intermediates, but the precise role of individual amino acids in the active site is poorly understood. Therefore, on the basis of the crystallographic structure of the complex between aldolase and dihydroxyacetone phosphate a molecular modelling study was undertaken to predict the Michaelis complex with fructose-1,6-bisphosphate and several covalent enzymatic reaction intermediates. This model reveals the unknown 6-phosphate binding site and assigns distinct roles to crucial residues. Asp33 is responsible for aligning the 2-keto function of the substrate correctly for nucleophilic attack by Lys229, and plays a role in carbinolamine formation. Lys146 assists in carbinolamine dehydration and is essential for stabilising the developing negative charge on O4 of fructose-1,6-bisphosphate during hydroxyl proton abstraction by Glu187. Subsequently, Glu187 is also responsible for protonating C1 of the dihydroxyacetone phosphate enamine. In addition, the absolute configuration of the fructose-1,6-bisphosphate carbinol intermediate is shown to be (2S), in agreement with the crystal structure, but opposite from the interpretation in the literature of the stereospecific reduction of the aldolase fructose-1,6-bisphosphate complex with sodium borohydride. It is demonstrated that the outcome of the latter type of experiment critically depends on conformational changes triggered by Schiff base formation. Electronic Supplementary Material available.  相似文献   

7.
2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase is a key enzyme in the Entner-Doudoroff pathway of bacteria. It catalyzes the reversible production of KDPG from pyruvate and D-glyceraldehyde 3-phosphate through a class I Schiff base mechanism. On the basis of aldolase mechanistic pathway, various pyruvate analogues bearing beta-diketo structures were designed and synthesized as potential inhibitors. Their capacity to inhibit aldolase catalyzed reaction by forming stabilized iminium ion or conjugated enamine were investigated by enzymatic kinetics and UV-vis difference spectroscopy. Depending of the substituent R (methyl or aromatic ring), a competitive or a slow-binding inhibition takes place. These results were examined on the basis of the three-dimensional structure of the enzyme.  相似文献   

8.
The sequence of 164 amino acid residues in the NH2-terminal BrCN peptide of rabbit muscle aldolase has been determined. The information has permitted location of the following amino acid residues involved in the catalytic activity or in maintaining the structural integrity of the enzyme: Cys-72, forms a disulfide bridge with Cys-336 in the COOH-terminal segment on inactivation of the enzyme by oxidation; Lys-107, forms a Schiff base with pyridoxal phosphate upon inactivation of aldolase by this reagent; Cys-134 and Cys-177, buried, do not react with SH-reagents in the native enzyme.  相似文献   

9.
Kinetics of fructose-1,6-disphosphate aldolase (EC 4.1.2.13) catalyzed conversion of fructose phosphates was analyzed by coupling the aldolase reactions to the metabolically sequential enzyme, glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), which interacts with aldolase. At low enzyme concentration poly(ethylene glycol) was added to promote complex formation of aldolase and glycerol-phosphate dehydrogenase resulting in a 3-fold increase in KM of fructose-1,6-bisphosphate and no change in Vmax. Kinetic parameters for fructose-1-phosphate conversion changed inversely upon complex formation: Vmax increased while KM remained unchanged. Gel penetration and ion-exchange chromatographic experiments showed positive modulation of the interaction of aldolase and dehydrogenase by fructose-1,6-bisphosphate. The dissociation constant of the heterologous enzyme complex decreased 10-fold in the presence of this substrate. Fructose-1-phosphate or dihydroxyacetone phosphate had no effect on the dissociation constant of the aldolase-dehydrogenase complex. In addition, titration of fluorescein-labelled glycerol-phosphate dehydrogenase with aldolase indicated that both fructose-1,6-bisphosphate and fructose-2,6-biphosphate enhanced the affinity of aldolase to glycerol-phosphate dehydrogenase. The results of the kinetic and binding experiments suggest that binding of the C-6 phosphate group of fructose-1,6-bisphosphate to aldolase complexed with dehydrogenase is sterically impeded while saturation of the C-6 phosphate group site increases the affinity of aldolase for dehydrogenase. The possible molecular mechanism of the fructose-1,6-bisphosphate modulated interaction is discussed.  相似文献   

10.
Aldolase contains one tight binding site and one weak binding site per subunit for ATP [Kasprzak, A. and Kochman, M. (1980) Eur. J. Biochem. 104, 443-450]. The reaction of the ATP analog 5'-[p-(fluorosulfonyl)benzoyl]-1,N6-ethenoadenosine with rabbit aldolase A results in linear inactivation of enzyme with respect to covalent linkage of fluorescent label. The enzyme is completely protected against modification in the presence of saturating covalent binding (k2 = 0.033 min-1) is preceded by a fast reversible binding step (Ki = 6.8 mM). Chemical modification of aldolase leads to formation of stable N epsilon (4-carboxybenzenesulfonyl-lysine (Cbs-Lys) and O-(4-carboxybenzenesulfonyl-tyrosine (Cbs-Tyr) derivatives. Almost all Cbs-Lys was found in the N-terminal CNBr peptide (CN-1), whereas Cbs-Tyr was present both in the N-terminal (CN-1) and C-terminal (CN-2) peptide. From carboxypeptidase digestion and tryptic peptide analysis, Cbs-Lys was localized in position 107, a small part of Cbs-Tyr was detected in position 84, and the majority of Cbs-Tyr was found in the C-terminal position Tyr-363. We conclude that the covalent binding of the ATP analog occurs at the mononucleotide tight-binding site of aldolase and is associated with modification of Lys-107 and Tyr-363. This conclusion is based on the measurements of enzymatic activity loss as a function of ATP analog incorporation as well as on previous data. It is postulated that Lys-107, which is the C-6 phosphate binding site for fructose-1,6-P2, is in close proximity to the functionally important Tyr-363. The rather small extent of modification of Tyr-84 (0.15 mol/subunit), is due either to nonspecific protein modification or labeling of the weak mononucleotide binding site.  相似文献   

11.
Ribonuclease A has been used as a model protein for studying the specificity of glycation of amino groups in protein under physiological conditions (phosphate buffer, pH 7.4, 37 degrees C). Incubation of RNase with glucose led to an enhanced rate of inactivation of the enzyme relative to the rate of modification of lysine residues, suggesting preferential modification of active site lysine residues. Sites of glycation of RNase were identified by amino acid analysis of tryptic peptides isolated by reverse-phase high pressure liquid chromatography and phenylboronate affinity chromatography. Schiff base adducts were trapped with Na-BH3CN and the alpha-amino group of Lys-1 was identified as the primary site (80-90%) of initial Schiff base formation on RNase. In contrast, Lys-41 and Lys-7 in the active site accounted for about 38 and 29%, respectively, of ketoamine adducts formed via the Amadori rearrangement. Other sites reactive in ketoamine formation included N alpha-Lys-1 (15%), N epsilon-Lys-1 (9%), and Lys-37 (9%) which are adjacent to acidic amino acids. The remaining six lysine residues in RNase, which are located on the surface of the protein, were relatively inactive in forming either the Schiff base or Amadori adduct. Both the equilibrium Schiff base concentration and the rate of the Amadori rearrangement at each site were found to be important in determining the specificity of glycation of RNase.  相似文献   

12.
K H Choi  J Shi  C E Hopkins  D R Tolan  K N Allen 《Biochemistry》2001,40(46):13868-13875
Fructose-1,6-bis(phosphate) aldolase is an essential glycolytic enzyme found in all vertebrates and higher plants that catalyzes the cleavage of fructose 1,6-bis(phosphate) (Fru-1,6-P(2)) to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). Mutations in the aldolase genes in humans cause hemolytic anemia and hereditary fructose intolerance. The structure of the aldolase-DHAP Schiff base has been determined by X-ray crystallography to 2.6 A resolution (R(cryst) = 0.213, R(free) = 0.249) by trapping the catalytic intermediate with NaBH(4) in the presence of Fru-1,6-P(2). This is the first structure of a trapped covalent intermediate for this essential glycolytic enzyme. The structure allows the elucidation of a comprehensive catalytic mechanism and identification of a conserved chemical motif in Schiff-base aldolases. The position of the bound DHAP relative to Asp33 is consistent with a role for Asp33 in deprotonation of the C4-hydroxyl leading to C-C bond cleavage. The methyl side chain of Ala31 is positioned directly opposite the C3-hydroxyl, sterically favoring the S-configuration of the substrate at this carbon. The "trigger" residue Arg303, which binds the substrate C6-phosphate group, is a ligand to the phosphate group of DHAP. The observed movement of the ligand between substrate and product phosphates may provide a structural link between the substrate cleavage and the conformational change in the C-terminus associated with product release. The position of Glu187 in relation to the DHAP Schiff base is consistent with a role for the residue in protonation of the hydroxyl group of the carbinolamine in the dehydration step, catalyzing Schiff-base formation. The overlay of the aldolase-DHAP structure with that of the covalent enzyme-dihydroxyacetone structure of the mechanistically similar transaldolase and KDPG aldolase allows the identification of a conserved Lys-Glu dyad involved in Schiff-base formation and breakdown. The overlay highlights the fact that Lys146 in aldolase is replaced in transaldolase with Asn35. The substitution in transaldolase stabilizes the enamine intermediate required for the attack of the second aldose substrate, changing the chemistry from aldolase to transaldolase.  相似文献   

13.
Pyrophosphate-dependent 6-phosphofructo-1-kinase (PPi-PFK) from Propionibacterium freudenreichii was inactivated by low concentrations of the lysine-specific reagent pyridoxal phosphate (PLP) after sodium borohydride reduction. The substrates fructose 6-phosphate and fructose 1,6-bisphosphate protected against inactivation whereas inorganic pyrophosphate had little effect. An HPLC profile of a tryptic digest of PPi-PFK modified at low concentrations of PLP showed a single major peak with only a small number of minor peaks. The major peak peptide was isolated and sequenced to obtain IGAGXTMVQK, where X represents a modified lysine residue, corresponding to Lys-315. Lys-315 was protected from reaction with PLP by fructose 1,6-bisphosphate. As indicated by HPLC maps of PPi-PFK modified with varying concentrations of PLP, a direct correlation was observed between activity loss and the modification of Lys-315. Two of the minor peptide peaks were shown to contain Lys-80 and Lys-85, which were modified in a mutually exclusive manner. Partial protection against modification of these two residues was provided by MgPPi. The data were used to adjust the sequence alignment of the Propionibacterium enzyme with that of ATP-dependent PFK of Escherichia coli to identify homologous residues in the substrate binding site. It is suggested that Lys-315 interacts with the 6-phosphate of fructose 6-phosphate and that Lys-80 and -85 may be located near the pyrophosphate binding site.  相似文献   

14.
Lorentzen E  Siebers B  Hensel R  Pohl E 《Biochemistry》2005,44(11):4222-4229
The glycolytic enzyme fructose-1,6-bisphosphate aldolase (FBPA) catalyzes the reversible cleavage of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Catalysis of Schiff base forming class I FBPA relies on a number of intermediates covalently bound to the catalytic lysine. Using active site mutants of FBPA I from Thermoproteus tenax, we have solved the crystal structures of the enzyme covalently bound to the carbinolamine of the substrate fructose 1,6-bisphosphate and noncovalently bound to the cyclic form of the substrate. The structures, determined at a resolution of 1.9 A and refined to crystallographic R factors of 0.148 and 0.149, respectively, represent the first view of any FBPA I in these two stages of the reaction pathway and allow detailed analysis of the roles of active site residues in catalysis. The active site geometry of the Tyr146Phe FBPA variant with the carbinolamine intermediate supports the notion that in the archaeal FBPA I Tyr146 is the proton donor catalyzing the conversion between the carbinolamine and Schiff base. Our structural analysis furthermore indicates that Glu187 is the proton donor in the eukaryotic FBPA I, whereas an aspartic acid, conserved in all FBPA I enzymes, is in a perfect position to be the general base facilitating carbon-carbon cleavage. The crystal structure of the Trp144Glu, Tyr146Phe double-mutant substrate complex represents the first example where the cyclic form of beta-fructose 1,6-bisphosphate is noncovalently bound to FBPA I. The structure thus allows for the first time the catalytic mechanism of ring opening to be unraveled.  相似文献   

15.
Fructose-1,6-(bis)phosphate aldolase is a ubiquitous enzyme that catalyzes the reversible aldol cleavage of fructose-1,6-(bis)phosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceral-dehyde-3-phosphate or glyceraldehyde, respectively. Vertebrate aldolases exist as three isozymes with different tissue distributions and kinetics: aldolase A (muscle and red blood cell), aldolase B (liver, kidney, and small intestine), and aldolase C (brain and neuronal tissue). The structures of human aldolases A and B are known and herein we report the first structure of the human aldolase C, solved by X-ray crystallography at 3.0 A resolution. Structural differences between the isozymes were expected to account for isozyme-specific activity. However, the structures of isozymes A, B, and C are the same in their overall fold and active site structure. The subtle changes observed in active site residues Arg42, Lys146, and Arg303 are insufficient to completely account for the tissue-specific isozymic differences. Consequently, the structural analysis has been extended to the isozyme-specific residues (ISRs), those residues conserved among paralogs. A complete analysis of the ISRs in the context of this structure demonstrates that in several cases an amino acid residue that is conserved among aldolase C orthologs prevents an interaction that occurs in paralogs. In addition, the structure confirms the clustering of ISRs into discrete patches on the surface and reveals the existence in aldolase C of a patch of electronegative residues localized near the C terminus. Together, these structural changes highlight the differences required for the tissue and kinetic specificity among aldolase isozymes.  相似文献   

16.
Alkyl glycolamido phosphoric esters (P-O-CH2-CO-NH-(CH2)n-CH3) and alkyl monoglycolate phosphoric esters (P-O-CH2-CO-O-(CH2)n-CH3), which are analogs of the aldolase substrate fructose-1-phosphate, were synthesized and use for probing the active site of rabbit muscle aldolase. The inhibition constants (Ki) were affected by the length of the alkyl groups of these compounds and a maximum value of Ki was observed between the number of methylene groups 2 and 4, depending on the type of compound. In the previous investigation, N-(omega-hydroxyalkyl)-glycolamido bisphosphoric esters (P-O-CH2-CO-NH-(CH2)n-O-P) and alkanediol monoglyclolate bisphosphoric esters (P-O-CH2-CO-O-(CH2)n-O-P) have a minimum Ki value between the number of methylene groups 1 and 4. The difference spectra of aldolase caused by binding of alkyl glycoamido phosphoric esters or alkyl monophosphates resembled that of their analogous bisphosphoric esters, but the intensity of absorbance was smaller than that of the bisphosphoric ester analogs. These results suggest that rabbit muscle aldolase has two binding sites for the phosphate groups on the entrance end of the active site cavity, the singly wound beta-barrel of the parallel alpha/beta class structure. The distance between the phosphate binding site Lys-107 in the beta-sheet structure (c) and Arg-148 in the beta-sheet structure (d) may possibly be expanded or contracted by the forms of the bending structure of the biphosphate compounds. Also, the change of distance between the beta-sheet structure (c) and (d) containing Trp-147, may have an effect on the environment of the tryptophan and cause a change of the absorbance of aldolase especially at 295-299 nm. On the other hand, the synthetic monophosphate compounds bind at only one of the two phosphate binding sites and have very little effect on the absorbance of Trp-147, in a similar manner as orthophosphate. The alkyl groups of monophosphate may be repelled by the ionic amino acid side chains, Asp-33, Lys-146, Glu-187 and/or Lys-229 in the middle of the active site cavity. However, the end of the long alkyl group of some monophosphates may possibly contact the hydrophobic bottom of the active site cavity without effect on the environment of Trp-147.  相似文献   

17.
Site-directed mutagenesis was used to explore the role of Lys-195 in ADP-glucose pyrophosphorylase from Escherichia coli. This residue, which is conserved in every bacterial and plant source sequenced to date, was originally identified as a potential catalytic site residue by covalent modification studies. Mutation of Lys-195 to glutamine produces an enzyme whose Km for glucose 1-phosphate is 600-fold greater than that measured for the wild-type enzyme. The effect on glucose 1-phosphate is very specific since kinetic constants measured for ATP, Mg2+, and the allosteric activator, fructose 1,6-bisphosphate, are unchanged relative to those measured for the wild-type enzyme. Furthermore, the catalytic rate constant, Kcat, for the glutamine mutant is similar to that of the wild-type enzyme. Taken together, the results suggest a role for Lys-195 in binding of glucose 1-phosphate and exclude its role as a participant in the rate-determining step(s) in the catalytic reaction mechanism. To further study the effect of charge, shape, size, and hydrophobicity of the amino acid residue at position 195, a series of mutants were prepared including arginine, histidine, isoleucine, and glutamic acid. In every case, the kinetic constants measured for ATP, Mg2+, and fructose 1,6-bisphosphate were similar to wild-type constants, reinforcing the notion that this residue is responsible for a highly localized effect at the glucose 1-phosphate-binding site and also suggesting that the protein can accommodate a wide range of substitutions at this position without losing its global folding properties. Thermal stability measurements corroborate this finding. The mutations did, however, produce a range of glucose 1-phosphate Km values from 100- to 10,000-fold greater than wild-type, which indicate that both size and charge properties of lysine are essential for proper binding of glucose 1-phosphate at the catalytic site. AMP binding was also affected by the nature of the mutation at position 195. A model for glucose 1-phosphate, ATP, and AMP binding is presented.  相似文献   

18.
We have cloned an open reading frame from the Escherichia coli K-12 chromosome that had been assumed earlier to be a transaldolase or a transaldolase-related protein, termed MipB. Here we show that instead a novel enzyme activity, fructose-6-phosphate aldolase, is encoded by this open reading frame, which is the first report of an enzyme that catalyzes an aldol cleavage of fructose 6-phosphate from any organism. We propose the name FSA (for fructose-six phosphate aldolase; gene name fsa). The recombinant protein was purified to apparent homogeneity by anion exchange and gel permeation chromatography with a yield of 40 mg of protein from 1 liter of culture. By using electrospray tandem mass spectroscopy, a molecular weight of 22,998 per subunit was determined. From gel filtration a size of 257,000 (+/- 20,000) was calculated. The enzyme most likely forms either a decamer or dodecamer of identical subunits. The purified enzyme displayed a V(max) of 7 units mg(-)1 of protein for fructose 6-phosphate cleavage (at 30 degrees C, pH 8.5 in 50 mm glycylglycine buffer). For the aldolization reaction a V(max) of 45 units mg(-)1 of protein was found; K(m) values for the substrates were 9 mm for fructose 6-phosphate, 35 mm for dihydroxyacetone, and 0.8 mm for glyceraldehyde 3-phosphate. FSA did not utilize fructose, fructose 1-phosphate, fructose 1,6-bisphosphate, or dihydroxyacetone phosphate. FSA is not inhibited by EDTA which points to a metal-independent mode of action. The lysine 85 residue is essential for its action as its exchange to arginine (K85R) resulted in complete loss of activity in line with the assumption that the reaction mechanism involves a Schiff base formation through this lysine residue (class I aldolase). Another fsa-related gene, talC of Escherichia coli, was shown to also encode fructose-6-phosphate aldolase activity and not a transaldolase as proposed earlier.  相似文献   

19.
The pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii is rapidly inactivated by low concentrations of pyridoxal 5'-phosphate (PLP). The inactivation is first order with respect to PLP and the rate increases linearly with PLP concentrations suggesting that over the concentration range used no significant E-PLP complex accumulates during inactivation. The rate of inactivation decreases at high and low pH and this is discussed in terms of the mechanism of Schiff base formation. The presence of any reactants decreases the rate of inactivation to 0 at infinite concentration. This protection against inactivation has been used to obtain the pH dependence of the dissociation constants of all enzyme-reactant binary complexes. Reduction of the PLP-inactivated enzyme with NaB[3H]4 indicates that about 7 lysines are modified in free enzyme and fructose 6-phosphate protects 2 of these from modification. The pH dependence of the enzyme-reactant dissociation constants suggests that the phosphates of fructose 6-phosphate, fructose 1,6-bisphosphate, inorganic phosphate, and Mg-pyrophosphate must be completely ionized and that lysines are present in the vicinity of the 1- and 6-phosphates of the sugar phosphate and bisphosphate probably directly coordinated to these phosphates.  相似文献   

20.
Spatial relationships between Lys-107, which binds the C-6 phosphate group of the substrate, and fast-reacting Cys-239, located outside the active site of rabbit muscle aldolase, were studied by means of resonance energy transfer. The Lys-107 residue was covalently linked to pyridoxal phosphate (fluorescence donor) and the Cys-239 residue was modified by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (fluorescence acceptor). The energy transfer between donor and acceptor has been demonstrated. The steady-state and the lifetime measurements indicate that in solution the distance between Lys-107 and Cys-239 in the aldolase molecule is 12.4 A assuming chi 2 = 2/3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号