首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly enantioselective l-menthyl acetate esterase was purified to homogeneity from Burkholderia cepacia ATCC 25416, with a recovery of 4.8% and a fold purification of 22.7. The molecular weight of the esterase was found to be 37 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The N-terminal amino acid sequence was “MGARTDA”, and there was no homology in contrast to other Burkholderia sp. esterases. This enzyme preferentially hydrolyzed short-chain fatty acid esters of menthol with high stereospecificity and high hydrolytic activity, while long-chain l-menthyl esters were poor substrates. Considered its substrate specificity and N-terminal sequence, this esterase was concluded as a new enzyme belonging to the carboxylesterase group (EC 3.1.1.1) of esterase family. The optimum temperature and pH for enzyme activity using racemic menthyl acetate as substrate were 30 °C and 7.0, respectively. The esterase was more stable in the pH range of 7.0–9.0 and temperature range of 30–40 °C. Hydrolytic activity was enhanced by Ca2+, K+ and Mg2+, but completely inhibited by Hg2+, Cu2+, ionic detergents and phenylmethylsulfonyl fluoride (PMSF) at 0.01 M concentration.  相似文献   

2.
Pyridine nucleotide transhydrogenase from Pseudomonas aeruginosa was purified 150-fold by affinity chromatography on immobilized 2′-AMP. The binding of the enzyme is pH dependent. Elution was achieved with 2′-AMP, NADP+, or NADPH but not with 5′-AMP, NAD+, or NADH. The enzyme preparations appeared to be homogeneous in gel chromatography and ultracentrifugation, but only if these procedures were carried out in the presence of 2′-AMP or NADP+. With 2′-AMP a sedimentation coefficient of 34 S, a molecular weight of 1.6–1.7 million, and a Stokes' radius of 11.7 nm were determined. In the presence of NADP+ the sedimentation coefficient was 42 S and the molecular weight was 6.4 million. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed one kind of subunit with a molecular weight of 54,000. This was consistent with results from amino acid analyses and paper chromatography of peptides. Eight molar urea inactivated the enzyme but did not dissociate it into subunits. Full activity was restored after dialysis against urea-free buffer by mercaptoethanol and flavin-adenine dinucleotide.  相似文献   

3.
In this study, the extracellular thermostable alkaline protease out of A10 strain was purified 1.38-fold with 9.44% efficiency through the ammonium sulfate precipitation-dialysis and DE52 anion exchange chromatography methods. The molecular weight of the enzyme in question along with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was determined to be approximately 40.55?kDa, whereas the optimum pH and temperature ratings were identified as 9.0 and 70?°C, respectively. It was seen that the enzyme had remained stable between pH 7.5–10.5 range, protecting more than 90% of its activity in the wake of 1?h incubation at 60–70?°C. It was also observed that the enzyme enhanced its activity in the presence of Mg2+, Mn2+, K+, while Fe2+, Ni2+, Zn2+, Ag+?and Co2+? decreased the activity. Ca2+, however, did not cause any change in the activity. The enzyme was seen to have been totally inhibited by phenylmethylsulfonyl fluoride, therefore, proved to be a serine alkaline protease.  相似文献   

4.
Rat gastric mucosa was shown to contain a Mg2+-dependent ATPase which is stimulated by HCO3 at pH 8–9.Triton X-100 solubilizes this HCO3-stimulated, Mg2+-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3).The gastric mucosa was resolved into five subcellular fractions by differential centrifugation. A large granule fraction (Fraction M), 28 000 g · min, was characterized by cytochrome c oxidase (marker enzyme for mitochondria). A microsomal fraction (Fraction P), 2 760 000 g · min, was characterized by 5′-nucleotidase(5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) (plasma membrane).The Mg2+-dependent ATPase was demonstrated to have a bimodal mitochondrial membranous localization: 24% of its activity is associated with cytochrome c oxidase, and 75% with 5′-nucleotidase(5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) at pH 8.The HCO3 addition resulted in two opposite effects: (1) a strong stimulation (84%) in Fraction M; (2) a slight inhibition (12%) in Fraction P.Fraction M was subfractionated by equilibration on a sucrose gradient. It gave rise to a homogeneous mitochondrial (d, 1.17–1.21) Mg2+-dependent ATPase, closely associated with cytochrome c oxidase. This ATPase is strongly stimulated (×2) by HCO3. The subfractionation of Fraction P gave rise to two distinct ATPases: (1) the major one is associated with membranous (d, 1.10–1.15) material marked by 5′-nucleotidase and is slightly inhibited by HCO3; (2) the other is associated with denser (d, 1.17–1.21) material and is stimulated by HCO3.The bicarbonate-stimulated fraction of the Mg2+-dependent ATPase activity found in the gastric microsomal fraction is assumed to arise from mitochondrial cross-contamination. Further support comes from the optimal HCO3 concentration. In addition, SCN is shown to specifically inhibit the ATPase of Fraction M.From these results it appears that the implication of HCO3-stimulated ATPase in the gastric secretion of H+ is not as clear as had been suggested. However, in the view of an ATPase-supported model for H+ secretion, attention can be directed towards the Mg2+-dependent ATPase found to be associated with microsomes.  相似文献   

5.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

6.
A membrane-bound, monovalent cation-stimulated ATPase from Zea mays roots has been purified to a single band on sodium dodecyl sulfate gel electrophoresis. Microsomal preparations with K+ -stimulated ATPase activity were extracted with 1 m NaClO4, and the solubilized enzyme was purified by chromatography on columns of n-hexyl-Sepharose, DEAE-cellulose, and Sephadex G-100 Superfine. A 500-fold purification over the activity present in the microsomes was obtained. The K+ -stimulated activity shows positive cooperativity with increasing KCl concentrations. The purified enzyme shows K+ -stimulated activity with ATP, GTP, UTP, CTP, ADP, α + β-glycerophosphate, p-nitrophenyl phosphate, and pyrophosphate as substrates. Under most conditions ATP is the best substrate. Although dicyclohexyl carbodiimide and Ca2+ inhibit and alkylguanidines stimulate the K+ -ATPase while bound to microsomes, they have no effect on the purified enzyme.  相似文献   

7.
Asparaginase was found in the soluble fraction of cells of Azotobacter vinelandii, and its activity remained the same during growth of the organism in a nitrogen-free medium. The specific activity and the yield of A. vinelandii increased twofold in the presence of ammonium sulfate. Within limits, the temperature (30 to 37°C) and pH (6.5 to 8.0) of the medium showed little effect on the levels of enzyme activity. The enzyme was purified to near homogeneity by standard methods of enzyme purification, including affinity chromatography, and had optimum activity at pH 8.6 and 48°C. The approximate molecular weight was 84,000. The apparent Km value for the substrate was 1.1 × 10-4 M. Metal ions or sulfhydryl reagents were not required for enzyme activity. Cu2+, Zn2+, and Hg2+ showed concentration-dependent inhibition, whereas amino and keto acids had no effect on the enzyme activity. Asparaginase was stable when incubated with rat serum and ascites fluid. The enzyme had no effect on the membrane of sheep erythrocytes and did not inhibit the incorporation of radioactive precursors into deoxyribonucleic acid, ribonucleic acid, and protein in Yoshida ascites sarcoma cells. Asparaginase activity was not detected in the tumor cells.  相似文献   

8.
In this work, the carbonic anhydrase (CA) enzyme was purified from Kangal Akkaraman sheep in Sivas, Turkey with specific activity value of 6681.57 EU/mg and yield of 14.90% with using affinity column chromatography. For designating the subunit molecular mass and enzyme purity, sodium dodecyl sulfate polyacrylamide gel electrophoresis method was used and single band for this procedure was obtained. The molecular mass of CA enzyme was found as 28.89 kDa. In this study, the optimum temperature and optimum pH were obtained from 30 and 7.5. Vmax and Km values for p‐nitrophenylacetate substrate of the CA were determined from Lineweaver–Burk graphs. Additionally, the inhibitory results of diverse heavy metal ions (Hg+, Fe2+, Pb2+, Co2+, Ag+, and Cu2+) on sheep were studied. Indeed, CA enzyme activities of Kangal sheep were investigated with using esterase procedure under in vitro conditions. The heavy metal concentrations inhibiting 50% of enzyme activity (IC50) and Ki values were obtained.  相似文献   

9.
A microorganism, which produced a potently bacteriolytic endopeptidase, was isolated from soil and classified taxonomically as Cytophaga sp. B-30. This enzyme was purified 740-fold from the culture broth by fractionations with ammonium sulfate and acetone, column chromatographies on CM-cellulose and hydroxyapatite twice, and gel filtration on Sephadex G-75. It was found to be homogeneous on PAGE and SDS-PAGE. The molecular weight and isoelectric point of this enzyme were estimated to be 9,000 daltons and pH 9.5, respectively, and the optimal pH for its activity was 9.5. The enzyme acivity was completely inhibited by Mn+ +, Zn+ +, Cu+ +, Hg+ +, 2-mercaptoethanol and 2,3-dimercapto-l-propanol but markedly stimulated by EDTA, potassium oxalete and sodium pyrophosphate at the concentration of 1 mM. This enzyme catalyzed both cell wall lysis and proteolysis. A polysaccharide peptide of long chain length was isolated from a digest of Staphylococcus epidermidis peptidoglycan with this enzyme.  相似文献   

10.
An ionically unbound and thermostable polyphenol oxidase (PPO) was extracted from the leaf of Musa paradisiaca. The enzyme was purified 2.54-fold with a total yield of 9.5% by ammonium sulfate precipitation followed by Sephadex G-100 gel filtration chromatography. The purified enzyme exhibited a clear single band on native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) PAGE. It was found to be monomeric protein with molecular mass of about 40 kD. The zymographic study using crude extract as enzyme source showed a very clear band around 40 kD and a faint band at around 15 kD, which might be isozymes. The enzyme was optimally active at pH 7.0 and 50°C temperature. The enzyme was active in wide range of pH (4.0–9.0) and temperature (30–90°C). From the thermal inactivation studies in the range 60–75°C, the half-life (t1/2) values of the enzyme ranged from 17 to 77 min. The inactivation energy (Ea) value of PPO was estimated to be 91.3 kJ mol?1. It showed higher specificity with catechol (Km = 8 mM) as compared to 4-methylcatechol (Km = 10 mM). Among metal ions and reagents tested, Cu2+, Fe2+, Hg2+, Mn2+, Ni2+, protocatechuic acid, and ferrulic acid enhanced the enzyme activity, while K+, Na+, Co2+, kojic acid, ascorbic acid, ethylenediamine tetraacetic acid (EDTA), sodium azide, β-mercaptoethanol, and L-cysteine inhibited the activity of the enzyme.  相似文献   

11.
Thermophilic fungus Thermomyces lanuginosus CBS 395.62/b strain is able to grow and synthesise extracellular α-galactosidase in media containing galactomannan such as locust bean gum (LBG) or guar gum (GG). Production of extracellular α-galactosidase was enhanced from 1.2 U/mL to 4–6 U/mL meaning about 3–5 times increase by optimisation of medium composition. This enzyme was purified to homogeneity by partial precipitation with 2-propanol and different liquid chromatographical steps. The developed purification protocol yielded 22% of enzyme activity with 900 purified fold. Molecular mass of the purified α-galactosidase enzyme was estimated to be 53 kDa. Maximal catalytic activity of the enzyme was obtained in the acidic pH range between pH 4.6 and 4.8 and in the temperature range 60–66 °C. More than 95% of enzyme activity was remaining after 1-day incubation at 70 °C and on pH in the range from 4.0 to 7.0. The enzyme activity was significantly stimulated by Mg2+, Mn2+ and K+ ions, while considerably inhibited by the presence of Ca2+, Ag+ and Hg2+.  相似文献   

12.
α-Amylase produced by Bacillus licheniformis CUMC305 was purified 212-fold with a 42% yield through a series of four steps. The purified enzyme was homogeneous as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme showed maximal activity at 90°C and pH 9.0, and 91% of this activity remained at 100°C. The enzyme retained 91, 79, and 71% maximal activity after 3 h of treatment at 60°C, 3 h at 70°C, and 90 min at 80°C, respectively, in the absence of substrate. On the contrary, in the presence of substrate (soluble starch), the α-amylase enzyme was fully stable after a 4-h incubation at 100°C. The enzyme showed 100% stability in the pH range 7 to 9; 95% stability at pH 10; and 84, 74, 68, and 50% stability at pH values of 6, 5, 4, and 3, respectively, after 18 h of treatment. The activation energy for this enzyme was calculated as 5.1 × 105 J/mol. The molecular weight was estimated to be 28,000 by sodium dodecyl sulfate-gel electrophoresis. The relative rates of hydrolysis of soluble starch, amylose, amylopectin, and glycogen were 1.27, 1.8, 1.94, and 2.28 mg/ml, respectively. Vmax values for hydrolysis of these substrates were calculated as 0.738, 1.08, 0.8, and 0.5 mg of maltose/ml per min, respectively. Of the cations, Na+, Ca2+, and Mg2+, showed stimulatory effect, whereas Hg2+, Cu2+, Ni2+, Zn2+, Ag+, Fe2+, Co2+, Cd2+, Al3+, and Mn2+ were inhibitory. Of the anions, azide, F, SO32−, SO43−, S2O32−, MoO42−, and Wo42− showed an excitant effect. p-Chloromercuribenzoic acid and sodium iodoacetate were inhibitory, whereas cysteine, reduced glutathione, thiourea, β-mercaptoethanol, and sodium glycerophosphate afforded protection to enzyme activity. α-Amylase was fairly resistant to EDTA treatment at 30°C, but heating at 90°C in presence of EDTA resulted in the complete loss of enzyme activity, which could be recovered partially by the addition of Cu2+ and Fe2+ but not by the addition of Ca2+ or any other divalent ions.  相似文献   

13.
A screening for the enzyme L-myo-inositol-1-phosphate synthase [EC 5.5.1.4] has been made first time in both vegetative and reproductive parts of the representative members of pteridophytes: Lycopodium, Selaginella, Equisetum, Polypodium, Dryopteris, and Gleichenia. The enzyme has been partially purified following low-speed centrifugation, streptomycin sulphate precipitation, ammonium sulphate fractionation, chromatography on DEAE-cellulose and gel-filtration through Sephadex G-200, and characterised from the reproductive pinnules of Gleichenia glauca Smith. The enzyme has a pH optimum at 7.5. The Km for glucose-6-P and NAD+ were 0.922 × 10–3 M and 0.9 × 10–4 M, respectively. A basal activity of the enzyme has been recorded in absence of exogenous NAD+. The enzyme activity was augmented with NH4Cl, but heavy metals like Hg2+, Cu2+ and Zn2+ inactivated it.  相似文献   

14.
A chitinase (EC 3.2.1.14) was purified from the culture filtrate of Streptomyces cinereoruber, selected as a microorganism which produces enzymes lysing Aspergillus niger cell wall, by fractional precipitation with ammonium sulfate and column chromatographies on DEAE-cellulose, Sephadex G-100 and CM-Sephadex C-50. The final preparation was homogenous in polyacrylamide gel disc electrophoresis. The molecular weight of the enzyme was about 19,000 daltons and its isoelectric point was pH 8.6. The optimum pH and temperature for chitinase activity were 4.5 and at 50°C, respectively. The enzyme was stable in the pH range from 4.0 to 10.0. The activity was inhibited by Ag+, Hg+, Hg2+ and p-chloromercuribenzoate. Paper chromatographic analysis demonstrated that the hydrolytic products of colloidal chitin and chitotriose with the enzyme were N-acetylglucosamine and chitobiose. The lysis of A. niger cell wall with the enzyme is discussed.  相似文献   

15.
Fructokinase (Fraction III) of Pea Seeds   总被引:5,自引:4,他引:1       下载免费PDF全文
A second fructokinase (EC 2.7.1.4) was obtained from pea seed (Pisum sativum L. var. Progress No. 9) extracts. The enzyme, termed fructokinase (fraction III), was specific for fructose and had little activity with glucose. With fructose concentrations above 0.25 millimolar, there was strong substrate inhibition at the optimum pH (8.0) and also at pH 6.6. The apparent Km values at pH 8.0 for fructose and glucose were 0.06 millimolar and 0.14 millimolar, respectively. The apparent Km for Mg adenosine 5′-triphosphate (MgATP) was 0.06 millimolar and excess MgATP was inhibitory. Mg2+ was essential for activity but the enzyme was inhibited by excess Mg2+ or ATP. Mg adenosine 5′-pyrophosphate was also inhibitory. Activity was stimulated by the addition of monovalent cations: of those tested K+, Rb+, and NH4+ were the most effective. The possible role of fructokinase (fraction III) is discussed.  相似文献   

16.
A novel xylanase-producing thermophilic strain MT-1 was isolated from a deep-sea hydrothermal field in east Pacific. A xylanase gene encoding 331 amino-acid peptide from this isolate was cloned and expressed in Escherichia coli. The recombinant xylanase exhibited maximum activity at 70°C and had an optimum pH of 7.0. It was active up to 90°C and showed activity over a wide pH ranging from 5.5 to 10.0. The crude xylanase presented similar properties in temperature and pH to those of the recombinant xylanase. The recombinant xylanase was stable in 1 mM of enzyme inhibitors (PMSF, EDTA, 2-ME or DTT) and in 0.1% detergents (Tween 20, Chaps or Triton X-100), whereas, it was strongly inhibited by sodium dodecyl sulfate (SDS) (1 mM). In addition, its catalytic function was stable in the presence of Li+, Na+ or K+. However, it was strongly inhibited by Ni2+, Mn2+, Co2+, Cu2+, Zn2+, Cd2+, Hg2+ and Al3+ (1 or 0.1 mM). The K m and V max of the recombinant xylanase for oat spelt xylan were calculated to be 1.579 mg/ml and 289 μmol/(min • mg), respectively. Our study, therefore, presented a rapid overexpression and purification of xylanase from deep-sea thermophile aimed at improving the enzyme yield for industrial applications and scientific research.  相似文献   

17.
A novel lipase, SCNL, was isolated from Staphylococcus caprae NCU S6 strain in the study. The lipase was purified to homogeneity with a yield of 6.13% and specific activity of 502.76 U/mg, and its molecular weight was determined to be approximately 87 kDa. SCNL maintained above 80% of its initial activity at a wide range of temperatures (20–50 °C) and pH values (6–11), with an optimal temperature at 40 °C and optimal pH at 9.0 with p-nitrophenyl palmitate as a substrate. SCNL exhibited a higher residual activity than the other staphylococcal lipases in the presence of common enzyme inhibitors and commercial detergents. The lipase activity was enhanced by organic solvents (isooctane, glycerol, DMSO and methanol) and metal ions (Na+, Ba2+, Ca2+, and Mn2+). The Km and Vmax values of SCNL were 0.695 mM and 262.66 s−1 mM−1, respectively. The enzyme showed a preference for p-NP stearate, tributyrin and canola oil. These biochemical features of SCNL suggested that it may be an excellent novel lipase candidate for industrial and biotechnological applications.  相似文献   

18.
The linear isomalto-oligosaccharides (IMO) with DP2–DP10 were produced by one-step process using engineered fusion enzyme (DXSR) of endo-dextranase and only α-(1–6) glucan synthesizing dextransucrase. The fusion enzyme was successfully expressed in Escherichia coli and characterized. Compared to individual enzymes, DXSR had 150% increased endo-dextranase activity and 98% decreased dextransucrase activity. The partially purified DXSR displayed molecular mass of 240 kDa as analyzed by SDS–PAGE. It showed both enzyme activities on analysis by zymogram. The thermal- and pH-stability of DXSR was around 28 °C and pH at 5.0–6.4, respectively. IMOs production by DXSR was increased by the addition of metal ions such as Fe2+, Li+, K+ and Ni2+, but the enzyme was strongly inhibited by Hg2+ and Ag+. DXSR produced linear IMO with DP2–DP10 using sucrose as a sole substrate. The molecular weight and amount of IMO could be controlled by the sucrose concentration. DXSR gave 30-fold higher production of IMO than that of an equal activity mixture of the two enzymes such as dextranase and dextransucrase.  相似文献   

19.
Summary Production of extracellular hydrogen peroxide by fungal oxidases is been investigated as a requirement for lignin degradation. Aryl-alcohol oxidase activity is described in extracellular liquid and mycelium ofPleurotus eryngii and studied under non-limiting nitrogen conditions. This aryl-alcohol oxidase catalyses conversion of primary aromatic alcohols to the corresponding aldehydes and H2O2, showing no activity with aliphatic and secondary aromatic alcohols. The enzyme is stable at pH 4.0–9.0, has maximal activity at 45°–50°C and pH 6.0–6.5, is inhibited by Ag+, Pb2+ and NaN3, and has aK m of 1.2 mM using veratryl alcohol as substrate. A single protein band with aryl-alcohol oxidase activity was found in zymograms of extracellular and intracellular crude enzyme preparations fromP. eryngii.  相似文献   

20.
Two anodic isoenzymes of glucose-6-phosphate dehydrogenase (G6PDH) were isolated from tobacco suspension culture WR-132, utilizing fractional ammonium sulfate precipitation and DEAE-cellulose chromatography. The pH optimum was 9.0 for isoenzyme G6PDH I and 8.0–8.3 for G6PDH IV. Isoenzyme G6PDH I exhibited Michaelis-Menten kinetics for both substrates, G6P and NADP+, with Km's of 0.22 mM and 0.06 mM, respectively. G6PDH IV exhibited Michaelis-Menten kinetics for G6P with a Km of 0.31 mM. The NADP+ double reciprocal plot showed an abrupt transition between two linear sections. This transition corresponds to an abrupt increase in the apparent Km and Vmax values with increasing NADP+, denoting negative cooperativity. The two Km's for high and low NADP+ concentrations were 0.06 mM and 0.015 mM, respectively. MWs of the isoenzymes as determined by SDS disc gel electrophoresis were 85 000–91 000 for G6PDH I and 54 000–59 000 for G6PDH IV. Gel filtration chromatography on Sephadex G-150 showed MW's of 91 000 for G6PDH I and 115 000 for G6PDH IV. A probable dimeric structure for IV is suggested, with two NADP+ binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号