首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
In the immature rat uterus, high concentrations of androgens competed specifically with estradiol on the estrogen receptor (RE). This competition was stereospecific for C19 steroids bearing a 17β and/or 3 hydroxyl group. Very low affinity ligands, such as testosterone, could not compete with estradiol at equilibrium but decreased the association rate of estradiol on its receptor. High doses (> 0.4mg) of 5 α aihydrotestosterone provoked in vivo as in vitro the nuclear translocation of RE. The nuclear receptor thus formed displayed the same 5.2 S sedimentation constant as that induced by estradiol. We conclude that the weak affinity binding of androgens to the estrogen receptor is sufficient to induce its nuclear translocation in vivo provided androgen concentration is high enough in uterus to occupy the estradiol binding site. Conversely, progesterone which does not bind RE could not provoke its nuclear translocation.  相似文献   

2.
In the immature rat uterus, occupation of the androgen and estrogen receptor sites after injection of 5 α dihydrotestosterone (DHT = 17β-hydroxy-5α-androstan-3-one) were compared to the biological responses induced by the androgen on protein synthesis. Injection of 100 μg DHT induced a maximal occupation of androgen receptor sites (RA) but was totally ineffective in translocating the estrogen receptor sites and in increasing general protein synthesis. Conversely, high doses of androgen (? 3 mg) translocated the estrogen receptor (RE) and stimulated general protein synthesis. In addition, these high doses induced a specific uterine protein undistinguishable from that induced by estradiol treatment (IP). These results strongly suggest that the uterotrophic response of the uterus to androgen is correlated with the nuclear translocation of the estrogen receptor and not with that of the androgen receptor which is present in much smaller amounts.  相似文献   

3.
In order to satisfy government mandates, numerous studies have been performed categorizing potential endocrine disrupting chemicals as (anti)estrogens or (anti)androgens. We report here that dihydrotestosterone (DHT), a potent, non-aromatizable androgen receptor agonist, induces antiestrogenic responses through direct and/or indirect modulation of vitellogenin (Vg), steroid hormone and total cytochrome P450 levels. DHT and two weak, aromatizable androgens, DHEA and androstenedione (0.05-50 mg/kg per day), were fed to juvenile trout for 2 weeks. DHEA and androstenedione significantly increased blood plasma Vg by up to 30- and 45-fold, respectively (P<0.05, t-test). 17beta-Estradiol (E2) increases were also observed with both androgens, albeit with lower sensitivity. DHT markedly decreased Vg and E2 levels, suggesting that DHEA and androstenedione increased Vg and E2 via conversion to E2 and not by estrogen receptor agonism. DHEA and androstenedione had no effect on total cytochrome P450 content, while DHT significantly decreased P450 content in a dose dependent fashion. These results indicate that alterations in metabolism mediated by androgen receptor binding may be responsible for the Vg and E2 decreases by DHT. In an attempt to decipher between receptor and non-receptor androgenic mechanisms of the observed DHT effects, DHT (0, 50 or 100 mg/kg per day) and flutamide (0-1250 mg/kg per day), an androgen receptor antagonist, were fed to juvenile rainbow trout for 2 weeks. Flutamide alone was as effective as DHT in decreasing E2 and Vg levels in males but did not significantly reverse DHT induced Vg decreases in either sex (P>0.05, F-test). DHT decreases in total P450 content were partially attenuated in males by flutamide co-treatment, but not females, suggesting a partial androgenic mechanism to the P450 decreases as well as a fundamental sex difference responding to androgen receptor binding. Moreover, flutamide alone decreased P450 content by up to 30% in males and 40% in females. These effects may be mediated through direct androgen receptor binding irrespective of whether the binding is agonistic or antagonistic. This study indicates that androgen receptor agonists/antagonists can elicit significant antiestrogenic effects that may not necessarily be mediated through classic receptor binding mechanisms and signal transduction pathways.  相似文献   

4.
T S Ruh  S G Wassilak  M F Ruh 《Steroids》1975,25(2):257-273
The effect of androgens on the nuclear uptake of both tritiated estradiol (3H-E2) and the estrogen receptor was studied in immature rat uteri. It was demonstrated that in vitro preincubation of immature rat uteri with various androgens (1 muM to 50 muM) followed by incubation with 3H-E2 (20 nM) resulted in a greatly decreased specific nuclear uptake of 3H-E2. Non-androgenic steroids had no effect. It was also confirmed that 5alpha-dihydrotestosterone (DHT) causes the accumulation of the estrogen receptor in the nuclei of uterine tissue. In vitro incubations of rat uteri with DHT (1muM and 50muM) were found to cause maximal nuclear estrogen receptor accumulation to the same degree as caused by estradiol, i.e. the nuclear uptake of approximately 100% of the estrogen receptor. Antiandrogens, which block the binding of androgens to the testosterone receptor in various tissues, did not inhibit the DHT - induced decrease in the 3H-E2 uptake by the uterine nuclei or the DHT - caused accumulation of the estrogen receptor in nuclei. These results seem to indicate that the uterine testosterone receptor has no role in the androgen - induced nuclear uptake of the estrogen receptor. However, the non-steroidal antiestrogens inhibited the DHT - induced nuclear accumulation of the estrogen receptor. This would seem to indicate that the estrogen - and androgen - induced nuclear accumulation of the estrogen receptor share a common mechanism.  相似文献   

5.
The synthetic androgen methyltrienolone is superior to testosterone and androstenedione for the measurement of androgen receptor in tissues where the native ligands are metabolized into inactive derivatives. [3H]Methyltrienolone binds with a high affinity to androgen receptor in cytosol prepared from male rat livers, as the Scatchard analysis revealed that the Kd value was 3.3 · 10?8 M and the number of binding sites was 35.5 fmol/mg protein. Since methyltrienolone also binds glucocorticoid receptor which exists in rat liver, the apparent binding of androgen receptor is faulty when measured in the presence of glucocorticoid receptor. The binding of methyltrienolone to glucocorticoid receptor can be blocked by the presence of a 100-fold molar excess of unlabeled synthetic glucocorticoid, triamcinolone acetonide, without interfering in its binding to androgen receptor, because triamcinolone does not bind to androgen receptor. Triamcinolone-blocked cytosol exhibited that the Kd value was 2.5 · 10?8 M and the number of binding sites was 26.3 fmol/mg protein, indicating a reduction to 34 of that in the untreated cytosol. The profile of glycerol gradient centrifiguration indicated that [3H]methyltriemolone-bound receptor migrated in the 8–9 S region in both untreated and triamcinolone-blocked cytosols, but the 8–9 S peak in triamcinolone-blocked cytosol was reduced to about 34 of that of untreated cytosol.  相似文献   

6.
Testosterone (T) and 5α-dihydrotestosterone (17β-hydroxy-5α-androstan-3-one; DHT) are bound to specific cytoplasmic receptors (CR) in 105, 000 × g supernatant fractions of seminiferous tubules from hypophysectomized rats following the intravenous injection of [1, 2-3h]testosterone. CR is clearly different from the testicular androgen binding protein (ABP) by electrophoretic mobility, temperature stability and rate of dissociation of steroid-CR complex, but very similar to the cytoplasmic receptors of epididymis and ventral prostate. Under these labeling conditions, the nuclei of seminiferous tubules also contain radioactive T and DHT bound to protein. These androgen-protein complexes, which can be extracted with 0.4 M ? 1 M KC1, have a sedimentation coefficient of 3–4 S. Binding of radioactive T and DHT to both cytoplasmic and nuclear receptors in vivo is specific for androgen target tissues and abolished by simultaneous injection of unlabeled T, DHT and cyproterone acetate (1, 2-α-methylene-6-chloro-pregn-4, 6-diene-17α-o1–3, 20-diene-17-acetate), but not by cortisol. It is suggested that receptors for testosterone and DHT in the seminiferous tubules are involved in the mediation of the androgenic stimulus to the germ cells.  相似文献   

7.
Androgen receptors in rat testis   总被引:1,自引:0,他引:1  
Testosterone (T) and 5α-dihydrotestosterone (17β-hydroxy-5α-androstan-3-one; DHT) are bound to specific cytoplasmic receptors (CR) in 105,000 × g supernatant fractions of seminiferous tubules from hypophysectomized rats following the intravenous injection of [1,2-3H]testosterone. CR is clearly different from the testicular androgen binding protein (ABP) by electrophoretic mobility, temperature stability and rate of dissociation of steroid-CR complex, but very similar to the cytoplasmic receptors of epididymis and ventral prostate. Under these labeling conditions, the nuclei of seminiferous tubules also contain radioactive T and DHT bound to protein. These androgen-protein complexes, which can be extracted with 0.4 M — 1 M KC1, have a sedimentation coefficient of 3–4 S. Binding of radioactive T and DHT to both cytoplasmic and nuclear receptors in vivo is specific for androgen target tissues and abolished by simultaneous injection of unlabeled T, DHT and cyproterone acetate (1,2-α-methylene-6-chloro-pregn-4, 6-diene-17α-ol-3,20-diene-17-acetate), but not by cortisol. It is suggested that receptors for testosterone and DHT in the seminiferous tubules are involved in the mediation of the androgenic stimulus to the germ cells.  相似文献   

8.
G Verhoeven  W Heyns  P De Moor 《Steroids》1975,26(2):149-167
Ammonium sulfate precipitation has been used for the separation of bound and free steroids in rat prostate and mouse kidney cytosol equilibrated with tritiated androgens. A high affinity, low capacity binding protein has been identified in the 35% saturation precipitate. Biochemical and physiological data indicate that this protein is identical with the previously described 8-10 S androgen receptor. It has been demonstrated that this receptor protein binds 17 beta - hydroxy-5alpha-androstan-3-one (DHT) and testosterone in both tissues. The apparent dissociation constant (Kd) of the prostatic receptor for DHT and of the renal receptor for testosterone is 1-2 nM. The number of binding sites equals 57 and 23 fmoles/mg protein in prostate and kidney respectively. Dterminations of apparent inhibition constants (Ki) for 26 steroidal and non-steroidal compounds suggest that the binding sites in these tissues is similar or identical.  相似文献   

9.
Androgens have been shown, under in vitro conditions, to be capable of impeding the rate of formation of estrogen-receptor complexes in target tissues of the rat. The present study was designed to investigate effects of abnormal androgen levels in vivo on various estrogen receptor systems. Serum levels of testosterone (T) and 5α-DHT were measured in adult neonatally-androgenized rats. The T/DHT ratio in the androgenized animal was 0.70, compared to 4.37 in the normal adult rat, and this was unaccompanied by any change in the sum of the 2 androgens. Estradiol levels were equivalent to those of normal rats in estrus. In addition to this animal model, castrate rats of both sexes which had been administered chronic high dosages of various androgens were examined. Equilibrium binding studies of cytosol from uterus, anterior putuitary and hypothalamus showed that estrogen receptors were not modified in either of these animal models, with specific reference to affinity of estradiol binding or concentration of binding sites. The association rate kinetics for estradiol-receptor complex formation in uterus and pituitary were unaffected by androgen administration to ovariectomized animals; however, in the corresponding male castrate model, interaction between estradiol and its pituitary cytosol receptor was accelerated by in vivo exposure to androgens, and the effect was dependent on the nature and level of the androgen used. Neonatally-androgenized rats also manifested an initial rate of estradiol-receptor interaction which was appreciably higher than control values. The reversibility of the androgen effect on the estrogen receptor was demonstrated in an in vitro protocol. The results indicate that the in vivo effects of androgens on estrogen receptor kinetics are sex-dependent and, where observed, any influence was of a stimulatory nature. Moreover, it appears that the nature of the androgen present in vivo is at least as important a determinant as the total androgen concentration, and that androgens do not engender permanent changes in the ability of the estrogen receptor to interact with estradiol.  相似文献   

10.
We have compared the binding to the estrogen receptor (R) of different androgens and antiestrogens with their antiestrogenic activities on uterine growth. We found that estradiol (E2)1 and hydroxytamoxifen, a potent antiestrogen, displayed the same affinity for R. Conversely, androgens which have a much lower affinity for R and a much higher dissociation rate than E2, behave at high doses as full estrogens, with no significant antiestrogenic activity. We conclude that there is no correlation between the dissociation rate from R and the antiestrogenic activity of R ligands and that one cannot discriminate between estrogen and antiestrogen ligands by simply evaluating their in vitro binding to the cytosol R.  相似文献   

11.
In order to study the regulation of aromatase activity by androgens in cultured fibroblasts derived from genital skin of normal prepubertal boys, aromatase activity was evaluated in the presence of various concentrations of non-aromatizable androgen DHT(5 alpha-dihydrotestosterone). The estrogen formation was assayed by an enzymatic method, after 24 h incubation of the cells with 10(-6) M androstenedione. Aromatase activity was stimulated 3- to 20-fold by DHT at concentrations 10(-10) and 10(-9) M. It was necessary to preincubate the cells with DHT for 48 h in order to bring about this stimulation. The stimulatory effect was not significant after preincubation for only 24 h. The basal value of aromatase activity was in the range of 8 +/- 1.2 pmol/mg protein/day (mean +/- SEM), while the maximal stimulation 1043 +/- 46 pmol/mg protein/day was obtained at the concentration of 10(-8) M DHT. This stimulation was partially blocked with cyproterone acetate at level of 20 +/- 4 pmol/mg protein/day; stimulation of aromatase activity by DHT could thus be mediated by the androgen receptor. This stimulatory effect was prevented by incubation of the cells with cycloheximide or actinomycin D, suggesting that DHT acts to increase aromatase activity in cultured fibroblasts by inducing the synthesis of new proteinaceous material. In vitro regulation of aromatase activity by androgens could contribute to a new approach to the extraglandular formation of estrogen.  相似文献   

12.
The equilibrium affinity constant for rat prostate androgen receptor and epididymal androgen binding protein (ABP) has been determined for thirty-four potential progestogens. Three A-nor-, four A,19-dinor-, and one A-homo-5α-androstane derivative bind to the androgen receptor (KD<0.5 μM). Five of these compounds also bind to ABP with an affinity of the same order of magnitude. “Anordrin” (compound 24) and “Dinordrins” (compounds 10, 14, 15, 16, 17), which are potential female contraceptives, do not bind with high affinity to the androgen receptor or to ABP. The following modifications in A-nor derivatives favour binding to the receptor as compared to ABP: 19-nor substitution (compound 1), C-18 methyl homologation (compound 5), 2α-ethinylation (compound 22). One 2α-allenyl A-nor derivative (compound 25) and one A-homo derivative (compound 34) bind almost exclusively to ABP. The interaction with either binding protein is decreased by oxidation or esterification of the hydroxyl group at C-17, and by addition of a 17 α-ethinyl group. The latter modifications are likely to increase the specificity of androstane derivatives for receptors other than androgen binding proteins, such as the progesterone receptor.  相似文献   

13.
Epididymal cytosol fractions of adult short-time castrated rats contained at least two different androgen protein complexes by experiments in vivo (Complex I and II).Complex I is probably located intracellularly in the epididymal cells. It was specific for 5α-dihydrotestosterone (DHT) and appeared to be very similar to the cytoplasmic DHT-receptor complexes in rat ventral prostate. By ultracentrifugation on sucrose gradients, it sedimented as heavy aggregates 8–10 S complexes and 3–4 S complexes, which dissociated into 3–4 S complexes at high ionic strength. Complex I was eluted in the void volume from columns of Sephadex G-200.Complex II was also specific for DHT and showed physical properties similar to those of the androgen binding protein (ABP) in the testicular fluid. It was eluted between immunoglobulin G (IgG) (53 Å) and albumin (36 Å) by gel filtration on Sephadex G-200. The sedimentation coefficient was 4.5–5 S (mean 4.6 SW, 20) at both high and low ionic strength.Complex I and the cytosol receptors for DHT in the rat ventral prostate were both destroyed by heating at 50° C for 30 min, addition of 1 mM p-chloro-mercuri-phenyl-sulphonate (PCMPS) and charcoal absorption (1 mg/mg protein) overnight, whereas complex II was not influenced by similar treatment.Hemi-castration for 4 weeks caused complex II to disappear completely from the castrated side, confirming the intraluminal localization of this complex. Complex I was not influenced by such treatment, indicating that this protein is located within the epididymal cells. The similarity between complex I and the cytoplasmic DHT-receptor complexes in the ventral prostate also suggests that complex I represents the cytoplasmic receptors for DHT in the epididymis.  相似文献   

14.
Steroidal regulation of gene expression in follicular cells is not completely defined. Granulosa cells from 5 mm bovine follicles were cultured and treated and steady-state mRNA levels determined for FSHR (follicle-stimulating hormone receptor) and CYP19A1 (aromatase). Cells were treated for 5 days with (0.1-300 ng/ml) 17beta-estradiol (E2), testosterone (T), or 5alpha-dihydrotestosterone (DHT). FSHR mRNA was increased by T and DHT but not E2. In contrast, CYP19A1 mRNA was induced by all doses of E2 but only high doses of T and DHT. Similarly, varying treatment duration (1-5 days) showed that FSHR was increased by T and DHT and CYP19A1 mRNA increased by E2 and T at all times. Synergism between steroid hormones and FSH or forskolin was also evaluated. FSH or E2 did not alter FSHR mRNA and did not enhance DHT stimulation of FSHR mRNA. In contrast, DHT alone had no effect on CYP19A1 mRNA but synergized with FSH plus E2 to increase CYP19A1 mRNA, probably due to induction of FSHR by DHT. Effects of E2 and T on CYP19A1 were blocked by ICI 182,780, indicating mediation by estrogen receptors. However, the specific androgen receptor antagonist bicalutamide did not block E2 or T effects on CYP19A1 but did block T and DHT stimulation of FSHR. Thus, FSHR is specifically regulated through androgen receptor, whereas CYP19A1 is regulated by multiple pathways, including estrogen receptors and cAMP/protein kinase A induced by FSHR activation in granulosa cells. These inter- and intracellular regulatory mechanisms may be critical for normal follicle growth and dominant follicle selection.  相似文献   

15.
The pesticide o,p'-DDT stimulates the production of a specific uterine protein, the so-called induced protein or IP, normally associated with an estrogenic response of the uterus. Invivo stimulation of IP production is observed 1 hour after the administration of 250 mg/kg of o,p'-DDT to immature rats. Invitro stimulation of IP production is observed after a 1 hour incubation of uteri with 100 μM o,p'-DDT. This invitro response is blocked by Actinomycin D. In contrast to o,p'-DDT, which binds to the cytoplasmic estrogen receptor and stimulates IP production, p,p'-DDT which does not bind well to the estrogen receptor does not stimulate IP production invitro. These findings represent the first report of an estrogenic effect of o,p'-DDT in a completely invitro system.  相似文献   

16.
Previous work from our laboratory has demonstrated that progesterone can inhibit estrogen-induced prolactin release in female rats. Since androgens have been reported to mimic progesterone actions in certain systems, and to antagonize estrogen action in rat uteri, the purpose of this study was to determine whether androgens, like progestins, can inhibit estrogen-induced prolactin release. The ovariectomized (26 days of age) immature rat was used as the model for analysis of this question. Dihydrotestosterone (DHT) was chosen to be used throughout the study since it does not undergo aromatization to estrogens. In response to estradiol exposure (2 micrograms/rat), prolactin release reached peak values at 12 h and returned to control levels by 24 h. A second injection of estradiol 13 h after its initial injection stimulated a second increase in serum prolactin at 25 h. A single injection of DHT (0.8 mg/kg BW) 1 h before the second estradiol injection blocked the increase in serum prolactin. DHT had no effect on basal serum prolactin levels. The DHT inhibition of estrogen-induced prolactin release required estrogen priming. A dose dependency for the DHT effect was demonstrated, with low doses effective and high doses ineffective, in inhibiting estrogen action. This effect of DHT seemed to be androgen receptor-mediated, since flutamide blocked the effect. However, the possibility of progestin receptor mediation could not be ruled out since RU486 also blocked DHT's effect. Flutamide was also effective in blocking progesterone's inhibition of estrogen-induced action. This is perhaps consistent with an overlap of activities in androgens and progestins reported by several investigators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Objective : To determine the role of androgen receptor (AR) activation for adipose tissue metabolism. Sex steroids are important regulators of adipose tissue metabolism in men. Androgens may regulate the adipose tissue metabolism in men either directly by stimulation of the AR or indirectly by aromatization of androgens into estrogens and, thereafter, by stimulation of the estrogen receptors. Previous studies have shown that estrogen receptor α stimulation results in reduced fat mass in men. Research Methods and Procedures : Orchidectomized mice were treated with the non‐aromatizable androgen 5α‐dihydrotestosterone (DHT), 17β‐estradiol, or vehicle. VO2, VCO2, resting metabolic rate, locomotor activity, and food consumption were measured. Furthermore, changes in hepatic gene expression were analyzed. Results : DHT treatment resulted in obesity, associated with reduced energy expenditure and fat oxidation. In contrast, DHT did not affect food consumption or locomotor activity. Furthermore, DHT treatment resulted in increased high‐density lipoprotein‐cholesterol and triglyceride levels associated with markedly decreased 7α‐hydroxylase gene expression, indicating decreased bile acid production. Discussion : We showed that AR activation results in obesity and altered lipid metabolism in orchidectomized mice. One may speculate that AR antagonists might be useful in the treatment of obesity in men.  相似文献   

18.
The influence of androgens on the FSH modulation of progestin biosynthetic enzymes was studied in vitro. Granulosa cells obtained from immature, hypophysectomized, estrogen-treated rats were cultured for 3 days in a serum-free medium containing FSH (20 ng/ml) with or without increasing concentrations (10?9?10?6 M) of 17β-hydroxy-5α-androstan-3-one (dihydrotestosterone; DHT), 5α-androstane-3α, 17β-diol (3α-diol), or the synthetic androgen 17β-hydroxy-17-methyl-4,9,11-estratrien-3-one (methyltrienolone; R1881). FSH treatment increased progesterone and 20α-hydroxy-4-pregnen-3-one(20α-OH-P) production by 10.2- and 11-fold, respectively. Concurrent androgen treatment augmented FSH-stimulated progesterone and 20α-OH-P production in a dose-related manner (R1881 > 3α-diol > DHT). In the presence of an inhibitor of 3β-hydroxysteroid dehydrogenase (3β-HSD), the FSH-stimulated pregnenolone (3β-hydroxy-5-pregnen-20-one) production (a 20-fold increase) was further enhanced by co-treatment with R1881, 3α-diol or DHT. Furthermore, FSH treatment increased 4.4-fold the activity of 3β-HSD, which converts pregnenolone to progesterone. This stimulatory action of FSH was further augmented by concurrent androgen treatment. In contrast, androgen treatment did not affect FSH-stimulated activity of a progesterone breakdown enzyme, 20α-hydroxysteroid dehydrogenase(20α-HSD). These results demonstrate that the augmenting effect of androgens upon FSH-stimulated progesterone biosynthesis is not due to changes in the conversion of progesterone to 20α-OH-P, but involves an enhancing action upon 3β-HSDΔ5, Δ4-isomerase complexes and additional enzymes prior to pregnenolone biosynthesis.  相似文献   

19.
20.
The Transplantable B-16 melanotic melanoma carried in syngeneic C57B1/6J female mice and the Syrian hamster melanoma cell line, RPMI 3460, were utilized to determine whether steroid-hormone receptors are present in animal melanomas. In the B-16 melanoma, a cytoplasmic-estrogen receptor is detectable, but there is no evidence for androgen or progestin receptors. Some tumors contain a glucocorticoid-binding macromolecule. Sucrosedensity gradient centrifugation of cytosol after incubation with [3H]-estradiol revealed an 8S peak that was suppressed by excess radioinert diethylstilbesterol. Binding varied from 5–35 fmoles per mg cytosol protein. Scatchard analysis of [3H]-estradiol binding in cytosol yielded a single class of high-affinity binding sites; the dissociation constant is 6 × 10?10 M. The receptor molecule is shown to be estrogen-specific by ligand competition assays. In contrast to B-16 melanoma, no estrogen, androgen, or progestin receptor can be found in the Syrian hamster melanoma cell line. However, a substantial level of specific binding is observed using [3H]-dexamethasone. Sucrose-gradient centrifugation of cytosol from this cell line after incubation with [3H]-dexamethasone revealed a 7S peak that was suppressed by excess radioinert dexamethasone. Scatchard analysis indicated a single class of high affinity sites with a dissociation constant of 2 × 10?9 M. Binding levels from 70–610 fmoles per mg cytosol protein were observed. The Syrian hamster melanoma cells also exhibit a biological response to glucocorticoids: Dexamethasone causes both an inhibition of growth and a decrease in final-cell density in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号